A matterless double-slit

According to the foundations of quantum mechanics, two different given paths for quantum particles may interfere. Such a so-called 'double-slit' scenario is put forward devoid of material constituents, consisting instead entirely of light.

Nanotechnology wool fabric combines multifunctionality with comfort

One important aspect of clothing comfort is thermo-physiological comfort. By adjusting the transport of heat and moisture through a fabric, thermo-physiological comfort can keep people comfortable with regard to temperature and moisture. Some hydrophobic fabrics have deficiencies in this area. Take wool. Wool is one of the best insulating fibers known to man - while at the same time being light and soft. The quality that distinguishes wool fibers is the presence of a fatty, water-repellent outer layer that surrounds each fiber. Therefore, the water absorption and sweat venting properties of wool fiber are not very good, which affects the wearing comfort of wool textiles. The wool hydrophobic surface layer is also a barrier to anticrease finishing, dyeing, and grafting of hydrophilic agents, which is an issue in trying to add smart functionalities to wool fabrics.
Researchers have now developed a simple method for fabricating environmentally stable superhydrophilic wool fabrics. They applied silica sols to natural wool fibers to form an ultrathin layer on the surface of the fibers.

All smoothed out – hydroxyl radicals remove nanoscopic irregularities on polished gold surfaces

The precious metal gold is the material of choice for many technical applications because it does not corrode - and because it also has interesting electrical, magnetic, and optical properties. In these applications, it is extremely important that the surface of the gold be completely clean and smooth. However, conventional processes not only 'polish' away the undesirable irregularities, but also attack the gold surface.

Communicating nanotechnology

Experts and the public generally differ in their perceptions of technology risk. While this might be due to social and demographic factors, it is generally assumed by scientists who conduct risk research that experts' risk assessments are based more strongly on actual or perceived knowledge about a technology than lay people's risk assessments. Nevertheless, whether the risks are real or not, the public perception of an emerging technology will have a major influence on the acceptance of this technology and its commercial success. If the public perception turns negative, potentially beneficial technologies will be severely constrained as is the case for instance with gene technology. It is not surprising that a new study found that, in general, nanoscientists are more optimistic than the public about the potential benefits of nanotechnology. What is surprising though, is that, for some issues related to the environmental and long-term health impacts of nanotechnology, nanoscientists seem to be significantly more concerned than the public. Arguing that risk communication on nanotechnologies requires target-specific approaches, a group of researchers in Germany advocate the development of communication strategies that help people to comprehend nanotechnology, to differentiate between the fields of application and to gain an understanding of the cause and effect chains.