A*STAR, EDB partner with Stanford University to nurture next-generation Asian leaders in medical device innovation

The Stanford University Biodesign Program is partnering with the Agency for Science, Technology and Research (A*STAR) and the Singapore Economic Development Board (EDB) to establish a new training program called Singapore-Stanford Biodesign. This program seeks to train the next generation of Asian leaders who can develop innovative medical devices to address Asia's growing healthcare needs.

Biological nanofactories that combine the advantages of synthetic biology and biofabrication

About two years ago we reported on the concept of a biological nanofactory that comprises multiple functional modules: a targeting module specifically targets cells; a sensing module senses and transports raw materials that are present in their vicinity; a biosynthesis module converts raw materials to useful molecules, transport them back to the cell surface, and self-destructs upon completion of this sequence (self-destruct module).
Scientists at the University of Maryland have now demonstrated what was conceptualized in this earlier vision. Moreover they have added a quality that was not originally conceived - the nanofactory needs to have modalities that enable its own assembly. The scientists used the principles of synthetic biology to create the enzyme pathway that has as a part of it an assembly domain. Then, they used 'biofabrication' to assemble antibodies on to the synthesis domain, which enables targeting.

Nanotechnology drives electronic paper displays

With all the buzz that is being created by portable e-book readers, it's worth taking a look at one of the advanced display technologies - also often referred to as electronic paper - that make these devices happen. Unlike a conventional flat panel display, which uses a power-consuming backlight to illuminate its pixels, electronic paper reflects light like ordinary paper and is capable of holding text and images indefinitely without drawing electricity, while allowing the image to be changed later. Because they can be produced on thin, flexible substrates an due to their paper-like appearance, electrophoretic displays are considered prime examples of the electronic paper category. Electrophoretic displays already are in commercial use, for instance in the Kindle or in the Sony Reader, but so far the displays are mostly black and white. There are still cost and quality issues with color displays. New work by researchers in South Korea shows that organic ink nanoparticles could provide an improved electronic ink fabrication technology resulting in e-paper with high brightness, good contrast ratio, and lower manufacturing cost.

Wyss Institute launches ‘molecular origami’ interactive feature

Molecular Origami is a process that allows researchers to build nano-sized structures out of DNA (or RNA). To help illustrate the basics of DNA origami, Harvard’s Wyss Institute has created a Flash-based interactive feature that allows users to build virtual nanostructures by sequencing a simple, abstract representation of a DNA molecule and then allowing it to self assemble.