Major hurdle cleared for organic solar cells

Researchers demonstrate enhanced performance of a hybrid photovoltaic device, where poly[3-hexylthiophene] (P3HT) is used as active material and a solution-processed thin flat film of ZnO modified by a self-assembled monolayer (SAM) of phenyl-C61-butyric acid (PCBA) is used as electron extracting electrode.

Superlens lithography for nanofabrication

A problem with conventional photolithography techniques is that they cannot achieve the small size requirement of nanoholes and nanopillars, required for various nanofabrication applications, because of the wavelength limitation of the exposure light source. Other nanolithography techniques, such as electron-beam lithography, focused ion beam milling, and x-ray lithography, have the high resolution to form these nanoholes and nanopillars. However, these techniques are all very expensive or have too low a throughput to fabricate a large area of repetitive nanopatterns. A low cost nanosphere lithography method for patterning and generation of semiconductor nanostructures provides a potential alternative to conventional top-down fabrication techniques.

GE Awarded $6.3 Million DARPA Grant to Develop New Bio-inspired Nanosensors

Scientists at GE Global Research in collaboration with Air Force Research Laboratory, State University at Albany, and University of Exeter, have received a four-year, $6.3 million award from the Defense Advanced Research Projects Agency (DARPA) to develop new bio-inspired nanostructured sensors that would enable faster, more selective detection of dangerous warfare agents and explosives.