Nanomaterials help in early diagnosis of Meningitis

In order to enhance the utilization of nanomaterial in biological systems, it is very important to understand the influence they impart on cellular health and function. Nanomaterials present a research challenge as very little is known about how they behave in relation to micro-organisms, particularly at the cellular and molecular levels. Most of the nanomaterials reported earlier have demonstrated to be efficient antimicrobial agents against virus, bacteria or fungus. There are scarce research reports on the growth-promoting role of nanomaterials especially with respect to microbes. Recent findings, however, have challenged this concept of antimicrobial activity of nanoparticles.

Graphene: Piecing it together

In this progress report, the properties of graphene that make it so attractive as a material for electronics is introduced to the reader. The focus then centers on current synthesis strategies for graphene and their weaknesses in terms of electronics applications are highlighted.

A hidden order unraveled – microscopic views on quantum fluctuations

Fluctuations are fundamental to many physical phenomena in our everyday life, such as the phase transitions from a liquid into a gas or from a solid into a liquid. But even at absolute zero temperature, where all motion in the classical world is frozen out, special quantum mechanical fluctuations prevail that can drive the transition between two quantum phases. Researchers have now succeeded in directly observing such quantum fluctuations.

Watching electrons in molecules

A research group led by ETH Zurich has now, for the first time, visualized the motion of electrons during a chemical reaction. The new findings in the experiment are of fundamental importance for photochemistry and could also assist the design of more efficient solar cells.