Human Genetic Engineering – The Future of Human Evolution

Human genetic engineering is but one aspect of the overall field of Human Biotechnology. It is the most fascinating aspect of Human Biotechnology with the power to improve everyones quality of life, healing all of our genetic diseases permanently. We will soon be able to improve our mental, physical, and emotional capabilities. Well be able to introduce regenerative functions natural in other animals, increase longevity, and ensure a healthy diversity in the human genome. It carries the promise of enabling humanity to survive a wider range of environments on alien worlds ensuring our long term survival.

In this section of the website we have several articles on exactly what genetic engineering is, up to the state of the art, how it is accomplished, how we humans have been engaged in the activity for our own betterment for thousands of years, and how we can and are applying it to humans.

In addition to just the facts we also have a number of speculative articles that extrapolate the plausible, the probable, and the very unlikely in our exploration of the many paths to the future of human evolution.

The menu to the right has links to our genetic engineering articles.

Human Genetic Engineering: Improving the Quality of Life Now. Ensuring the Diverse, Robust Future of Human Evolution.

Go here to see the original:

Human Genetic Engineering - The Future of Human Evolution

Human-pig hybrids might be unsettling. But they could save lives. – Washington Post

By Paul Knoepfler By Paul Knoepfler February 2

Paul Knoepfler is a stem-cell biologist at the University of California at Davis and writes about innovative science at the Niche. His most recent book is GMO Sapiens: The Life-Changing Science of Designer Babies. You can watch his TED talk on that topic here and find him on Twitter: @pknoepfler.

A new study out of California unsettled a lot of people last week after revealing that scientists had, for the first time, made part-human, part-pig embryos referred to as chimeras. That should be expected: The debate over the technology is a mixed bag of difficult issues not unlike the fire-breathing hybrid Chimera from Greek mythology.

But on balance, the promise of this biotechnology should outweigh our fears and ethical questions. Chimeras could be a game-changer in terms of organ transplants in coming decades, and for that reason, scientists should carefully proceed with the research.

More than 100,000 people in the United States currently sit on organ waiting lists, struggling to stay alive long enough to get a new liver or kidney. With few realistic alternatives to the limited supply of cadaver-based transplants, about 22 Americans die each day. Hundreds more die daily at the global level.

[Eight questions to ask before human genetic engineering goes mainstream.]

Our recent renaissance of cutting-edge biotechnologies particularly based on the utilization of pluripotent stem cells gives real hope for these people in need of transplants. What exactly is a human chimera? Its a mixture of a small number of human cells within an otherwise predominantly animal embryo, such as a pig. The hope is that, if allowed to grow, a chimera embryo would develop entirely as animal except for one harvestable organ that is human. It might even be possible for that organ to be produced from the patients own stem cells, making it a perfect match.

In the past, other researchers have made similar chimeric embryos, mixing human stem cells with mouse cells. But a mouse-size kidney or liver even if made of human cells cannot help a human, because these organs would be about the size of a small kidney bean. Pigs, on the other hand, are relatively closer to humans on the evolutionary tree, perhaps bringing us a small step closer to actual clinical use.

Even so, theres a long road ahead. The California researchers found that many of the human-pig chimeric embryos did not grow properly. And even if organs in pig chimeras ended up 100 percent human at a cellular level, they are certain to contain other factors such as pig proteins that could spark a patient immune reaction leading to organ rejection. Still, every cutting-edge biomedical technology faces technical obstacles at first, and there is a good chance that researchers might overcome these hurdles in the future.

Its understandable if people imagined full-grown, human-pig creatures when reading about this new research. In reality, though, the chimeras produced were only embryos just tiny collections of cells. If the technology progresses further, chimeras would have to be taken to term or near-term before full-size organs could be harvested. Inevitably that means there may be large chimeras produced and photographed for the world to see; but remember, these animals wouldnt look any different from ordinary animals, because only a single organ would be human.

Animal rights advocates were quick to raise ethical questions: Should we allow chimeric pigs to be used as a biomedical incubator of sorts and then sacrificed to obtain a human organ? But this ignores the fact that people are eating billions of animals each year.

Tougher questions focus on the human side of chimeras and include the dilemma of what makes an animal a human in terms of cells. How many human cells within a chimera overall would make that chimera too close to a human being? How many human brain cells and in particular neurons in a human-pig chimera would be too many? What should we do if a human-pig chimera accidentally ended up with an abundance of human cells in its brain? What if a human-pig chimera made human sperm or eggs?

[Whats the difference between genetic engineering and eugenics?]

Fortunately, there are some simple technological answers to many of these questions. We could agree, for example, to prevent all chimeras from being born. We could also use animals that are sterile as the basis for making chimeras and closely monitor human cell numbers in chimeras (including in the brain) during early research studies. We could also ban organ production if human-cell levels consistently fall outside acceptable parameters.

Overall, though, the global shortage of organs for transplants is too urgent a problem to refuse to explore innovative solutions. We should pursue more human-chimera technology while from the start acknowledging and addressing the important bioethical considerations it faces. We should also carefully plan outreach efforts to the public as the technology advances.

Human chimeras not only have potential to address the organ shortage; they also could educate us about unexplored questions of human development. Groundbreaking biomedical technologies might be unnerving, but they have real potential to positively change our world.

Read more:

Eight questions to ask before human genetic engineering goes mainstream

Whats the difference between genetic engineering and eugenics?

In defense of transhumanism

Read the original here:

Human-pig hybrids might be unsettling. But they could save lives. - Washington Post

Benefits of Genetic Engineering – Buzzle

The genes present in the body of all living organisms helps determine the organism's habits. Genetic engineering is defined as a set of technologies that are used to change the genetic makeup of cells and move the genes from one species to another to produce new organisms. The techniques used are highly sophisticated manipulations of genetic material and other biologically important chemicals.

What are the Benefits of Genetic Engineering

Human Cloning: Almost everyday, a scientist makes a new breakthrough in the field of human engineering. Mammals have been successfully cloned and the human genome project has been completed. This is pushing the scientists all over the world to research many different facets of human genetic engineering. These researches have allowed a better understanding of DNA and its role in medicine, pharmacology, reproductive technology and various other fields. The scientists at Roslin Institute in Scotland, cloned an exact copy of a sheep, named 'Dolly'. Newly created animals by the process of genetic engineering are known as xenographs.

Medical Treatment: In humans, the most promising benefit of genetic engineering is gene therapy which is the medical treatment of a disease wherein the defective genes are repaired and replaced or therapeutic genes are introduced to fight the disease. Over the past decade, many autoimmune and heart diseases have been treated using gene therapy. Certain diseases like the Huntington's disease, ALS and cystic fibrosis is caused by defective genes. There is hope that a cure for such diseases can be found by either inserting the corrected gene or modifying the defective gene. Eventually, the hope is to completely eliminate genetic diseases and also treat non-genetic diseases with appropriate gene therapy. The latest research in the field makes it possible to repair or grow new muscle cells when they are not working or are damaged.

Pharmaceuticals: Thanks to genetic engineering, the pharmaceutical products available today are far superior to their predecessors. These new products are created by cloning certain genes. Some of the prominent examples are the bio-engineered insulin which was earlier obtained from sheep or cows and the human growth hormone which was earlier obtained from cadavers. New medicines are being made by changing the genetic structure of the plant cell.

Pregnancy Cases: Genetic engineering is also a boon for pregnant women who can choose to have their fetuses screened for genetic defects. These screenings can help the parents and doctors prepare for the arrival of the child who may have special needs during or after the delivery. A possible future benefit of genetic engineering which is very eagerly awaited is that a fetus with a genetic defect could be treated with genetic therapy even before it is born. Research is going on for gene therapy for embryos before it is implanted into the mother via in-vitro fertilization. The latest term coined is 'Designer Babies' wherein the couple can actually choose the features of the baby to be born!

Agriculture: The field of agriculture too greatly benefits from genetic engineering which has improved the genetic fitness of various plant species. The common benefits are increase in the efficiency of photosynthesis, increasing the resistance of the plant to salinity, drought and viruses and also reducing the plant's need for a nitrogen fertilizer. The latest research at Cornell University is to map the 'Oat' crop so that extra nutrients can be added to the sequence and the make the crop healthier. Similar research is done with the 'Soya' crop as well.

Here is a list of some of the most upfront benefits of genetic engineering:

Read more from the original source:

Benefits of Genetic Engineering - Buzzle

5 Key Pros and Cons of Human Genetic Engineering | NLCATP.org

When you take a close look at the human body it is easy to see that it is not without imperfection. This means that some bodies are built with inherent flaws and others fail over time. Science has the ability to change the way that humans are made and alter the flaws that are known. This can be done through the process of human genetic engineering. Altering the technology in humans is a topic that causes a lot of controversy. Human genetic engineering is something that people are either very passionate about or opposed to completely. Differing opinions on this issue drive forward the debate.

1. End Disease Human genetic engineering relies heavily on science in technology. It was developed to help end the spread of diseases. Using human genetic engineering it could be possible to change the way genomes are constructed to end some diseases. Genetic mutations can be to blame for certain diseases including Cystic Fibrosis, but with the help of human genetic engineering it could be possible to end this disease completely. If the complete benefits of human genetic engineering therapy are ever seen, it could have a huge impact on disease as a whole.

2. Longer Life Without certain diseases to increase death rates and decrease life span, it would be possible for more individuals to live longer and healthier lives. This means that human genetic engineering has the potential to improve the quality of life and allow for longer life spans. Reversing some of the cellular causes for decline of the body could be possible if strides are made with human genetic engineering.

3. Eliminating Illness and Disease in Unborn Children One of the largest benefits of genetic engineering is the prospect of helping cure illness and diseases in unborn children. Having a genetic screening with a fetus can allow for treatment of the unborn. Overtime this can impact the growing spread of diseases in future generations.

1. Ethical Issues Many of those opposed to human genetic engineering have their opinion based on ethical views. The belief that god should have ultimate power and we should not be altering nature is what many think should halt the progression of human genetic engineering. The power to shape the human race should not be left up to us humans, because there is divine intervention at work.

2. Safety Issue There are still many different unknowns linked to human genetic engineering. This brings up issues involving of safety. Getting genes into the human body is a complex process that could go bad very easily. The extent to the consequences if it goes bad are not fully known and could be quite devastating. The success rate is also something that brings up concern.

Some feel that more research needs to be done to further human genetic engineering technology, but others feel that this type of engineering has no place in society at all.

In order to obtain a full opinion on the topic of human genetic engineering, it is imperative that you gain a deeper understanding at the most basic level. It is essential that you know exactly what is meant by the concept of human genetic engineering and what it entails. This can be a very complex process, but you can break it down somewhat. In basic terms, human genetic engineering is a way to manipulate genes to make the human body closer to perfection. The altering of the genome has the ability to happen in the sperm or the egg cell. This type of genetic engineering is also referred to as germ line gene therapy and has the ability to change some of the traits a child is born with. The changes that are made through the child using germ line gene therapy would then be inherited traits that would be passed down for generations.

There is also another type of human genetic engineering that involves trading in a bad gene for a good one. This is done in the cells, but does not include the sex cell, which is the process of human genetic engineering refereed to as somatic cell gene therapy. To complete this process of human genetic engineering, functioning genes are fired into the human body to remove the bad function of the inferior gene. This technology does exist to some extent, but it has not been perfected and does not yet have a high success rate.

It is pretty difficult to classify such a complex issue as either good or bad. It is so much more complicated and hard to decipher than that. This issue brings up questions of ethics and often causes outrage among both sides. The only way to gain your own unbiased opinion on the topic of human genetic engineering is to look at both the pros and cons. Not everything involving this issue is a positive, but it is not all negative either.

Follow this link:

5 Key Pros and Cons of Human Genetic Engineering | NLCATP.org

Human Genetic Engineering – Popular Issues …

Human Genetic Engineering - A Hot Issue! Human genetic engineering is a hot topic in the legislative and executive branches of the U.S. government. Time will tell how committed the United States will be regarding the absolute ban on human cloning.

Human Genetic Engineering - Position of the U.S. Government Human genetic engineering has made its way to Capitol Hill. On July 31, 2001, the House of Representatives passed a bill which would ban human cloning, not only for reproduction, but for medical research purposes as well. The Human Cloning Prohibition Act of 2001, sponsored by Rep. Weldon (R-fL) and co-sponsored by over 100 Representatives, passed by a bipartisan vote of 265-to-162. The Act makes it unlawful to: "1) perform or attempt to perform human cloning, 2) participate in an attempt to perform cloning, or 3) ship or receive the product of human cloning for any purpose." The Act also imposes penalties of up to 10 years imprisonment and no less than $1,000,000 for breaking the law. The same bill, sponsored by Sen. Brownback (R-kS), is currently being debated in the Senate.

The White House also opposes "any and all attempts to clone a human being; [they] oppose the use of human somatic cell nuclear transfer cloning techniques either to assist human reproduction or to develop cell or tissue-based therapies."

Human Genetic Engineering - The Problems There are many arguments against human genetic engineering, including the established safety issues, the loss of identity and individuality, and human diversity. With therapeutic cloning, not only do the above issues apply, but you add all the moral and religious issues related to the willful killing of human embryos. Maybe the greatest concern of all is that man would become simply another man-made thing. As with any other man-made thing, the designer "stands above [its design], not as an equal but as a superior, transcending it by his will and creative prowess." The cloned child will be dehumanized. (See, Leon Kass, Preventing a Brave New World: Why we should ban human cloning now, New Republic Online, May 21, 2001.)

Human Genetic Engineering - A Final Thought Human genetic engineering leads to man usurping God as the almighty creator and designer of life. No longer will a child be considered a blessing from God, but rather, a product manufactured by a scientist. Man will be a created being of man. However, man was always intended to be a created being of God, in His absolute love, wisdom and glory.

Learn More Now!

Like this information? Help us by sharing it with others. What is this?

Read the original:

Human Genetic Engineering - Popular Issues ...

Human Genetic Engineering – Leadership University

What forms of genetic engineering can be done in human beings? Genetic technology harbors the potential to change the human species forever. The soon to be completed Human Genome Project will empower genetic scientists with a human biological instruction book. The genes in all our cells contain the code for proteins that provide the structure and function to all our tissues and organs. Knowing this complete code will open new horizons for treating and perhaps curing diseases that have remained mysteries for millennia. But along with the commendable and compassionate use of genetic technology comes the specter of both shadowy purposes and malevolent aims.

For some, the potential for misuse is reason enough for closing the door completely--the benefits just aren't worth the risks. In this article, I'd like to explore the application of genetic technology to human beings and apply biblical wisdom to the eventual ethical quagmires that are not very far away. In this section we'll investigate the various ways humans can be engineered.

Since we have introduced foreign genes into the embryos of mice, cows, sheep, and pigs for years, there's no technological reason to suggest that it can't be done in humans too. Currently, there are two ways of pursuing gene transfer. One is simply to attempt to alleviate the symptoms of a genetic disease. This entails gene therapy, attempting to transfer the normal gene into only those tissues most affected by the disease. For instance, bronchial infections are the major cause of early death for patients with cystic fibrosis (CF). The lungs of CF patients produce thick mucus that provides a great growth medium for bacteria and viruses. If the normal gene can be inserted in to the cells of the lungs, perhaps both the quality and quantity of their life can be enhanced. But this is not a complete cure and they will still pass the CF gene on to their children.

In order to cure a genetic illness, the defective gene must be replaced throughout the body. If the genetic defect is detected in an early embryo, it's possible to add the gene at this stage, allowing the normal gene to be present in all tissues including reproductive tissues. This technique has been used to add foreign genes to mice, sheep, pigs, and cows.

However, at present, no laboratory is known to be attempting this well-developed technology in humans. Princeton molecular biologist Lee Silver offers two reasons.{1} First, even in animals, it only works 50% of the time. Second, even when successful, about 5% of the time, the new gene gets placed in the middle of an existing gene, creating a new mutation. Currently these odds are not acceptable to scientists and especially potential clients hoping for genetic engineering of their offspring. But these are only problems of technique. It's reasonable to assume that these difficulties can be overcome with further research.

The primary use for human genetic engineering concerns the curing of genetic disease. But even this should be approached cautiously. Certainly within a Christian worldview, relieving suffering wherever possible is to walk in Jesus' footsteps. But what diseases? How far should our ability to interfere in life be allowed to go? So far gene therapy is primarily tested for debilitating and ultimately fatal diseases such as cystic fibrosis.

The first gene therapy trial in humans corrected a life-threatening immune disorder in a two-year-old girl who, now ten years later, is doing well. The gene therapy required dozens of applications but has saved the family from a $60,000 per year bill for necessary drug treatment without the gene therapy.{2} Recently, sixteen heart disease patients, who were literally waiting for death, received a solution containing copies of a gene that triggers blood vessel growth by injection straight into the heart. By growing new blood vessels around clogged arteries, all sixteen showed improvement and six were completely relieved of pain.

In each of these cases, gene therapy was performed as a last resort for a fatal condition. This seems to easily fall within the medical boundaries of seeking to cure while at the same time causing no harm. The problem will arise when gene therapy will be sought to alleviate a condition that is less than life-threatening and perhaps considered by some to simply be one of life's inconveniences, such as a gene that may offer resistance to AIDS or may enhance memory. Such genes are known now and many are suggesting that these goals will and should be available for gene therapy.

The most troublesome aspect of gene therapy has been determining the best method of delivering the gene to the right cells and enticing them to incorporate the gene into the cell's chromosomes. Most researchers have used crippled forms of viruses that naturally incorporate their genes into cells. The entire field of gene therapy was dealt a severe setback in September 1999 upon the death of Jesse Gelsinger who had undergone gene therapy for an inherited enzyme deficiency at the University of Pennsylvania.{3} Jesse apparently suffered a severe immune reaction and died four days after being injected with the engineered virus.

The same virus vector had been used safely in thousands of other trials, but in this case, after releasing stacks of clinical data and answering questions for two days, the researchers didn't fully understand what had gone wrong.{4} Other institutions were also found to have failed to file immediate reports as required of serious adverse events in their trials, prompting a congressional review.{5} All this should indicate that the answers to the technical problems of gene therapy have not been answered and progress will be slowed as guidelines and reporting procedures are studied and reevaluated.

Read the original:

Human Genetic Engineering - Leadership University

Human Genetic Engineering – Buzzle

Human genetic engineering is about genetically engineering human beings by modifying their genotypes before birth. The Genotype is the genetic constitution of an individual with respect to a particular character under consideration. This is done to control the traits possessed by the individual after his/her birth.

The cells of our body contain encoded information about the body's growth, structure and functioning in the form of genes. Human genetic engineering aims at decoding this information and applying it to the welfare of mankind.

There are two types of genetic engineering. They are:

In human genetic engineering, the genes or the DNA of a person are changed. This can be used to bring about structural changes in human beings. More importantly, it can be used to introduce the genes for certain positive and desirable traits in embryos. Genetic engineering in humans can result in finding a permanent cure for many diseases.

There are people with certain exceptional qualities. If the genes responsible for these qualities can be identified, they can be implanted in the early embryos. This can lead to something like 'personalized babies'! Human genetic engineering might progress to such an extent that it will be possible to discover new genes and embed them into unborn babies.

The Lighter Side Gene therapy is one of the most important benefits of human genetic engineering. Over the past decade, gene therapy has succeeded in finding treatments for certain heart diseases. Researchers hope to find cures for all the genetic diseases. This will result in a healthier and more evolved human race.

A future benefit of human genetic engineering is that a fetus with a genetic disorder will be treated before the baby is born. Parents will be able to look forward to a healthy baby. In case of in-vitro fertilization, gene therapy can be used for embryos before they are implanted into the mother.

Genes can be cloned to produce pharmaceutical products of superior quality. Researchers are hopeful about being able to bio-engineer plants or fruits to contain certain drugs.

The Darker Side Firstly, while it seems easy to cure diseases by genetic modifications, gene therapy may manifest side effects. While treating one defect, it may cause another. Any given cell is responsible for many activities and manipulating its genes may not be that easy.

The process of cloning can lead to risking the fundamental factors such as the individuality and the diversity of human beings. Ironically, man will become just another man-made thing!

Link:

Human Genetic Engineering - Buzzle

Benefits of Human Genetic Engineering – Popular Issues …

What are the benefits of human genetic engineering?

The benefits of human genetic engineering can be found in the headlines nearly every day. With the successful cloning of mammals and the completion of the Human Genome Project, scientists all over the world are aggressively researching the many different facets of human genetic engineering. These continuing breakthroughs have allowed science to more deeply understand DNA and its role in medicine, pharmacology, reproductive technology, and countless other fields.

The most promising benefit of human genetic engineering is gene therapy. Gene therapy is the medical treatment of a disease by repairing or replacing defective genes or introducing therapeutic genes to fight the disease. Over the past ten years, certain autoimmune diseases and heart disease have been treated with gene therapy. Many diseases, such as Huntington's disease, ALS (Lou Gehrig's disease), and cystic fibrosis are caused by a defective gene. The hope is that soon, through genetic engineering, a cure can be found for these diseases by either inserting a corrected gene, modifying the defective gene, or even performing genetic surgery. Eventually the hope is to completely eliminate certain genetic diseases as well as treat non-genetic diseases with an appropriate gene therapy.

Currently, many pregnant women elect to have their fetuses screened for genetic defects. The results of these screenings can allow the parents and their physician to prepare for the arrival of a child who may have special needs before, during, and after delivery. One possible future benefit of human genetic engineering is that, with gene therapy, a fetus w/ a genetic defect could be treated and even cured before it is born. There is also current research into gene therapy for embryos before they are implanted into the mother through in-vitro fertilization.

Another benefit of genetic engineering is the creation pharmaceutical products that are superior to their predecessors. These new pharmaceuticals are created through cloning certain genes. Currently on the market are bio-engineered insulin (which was previously obtained from sheep or cows) and human growth hormone (which in the past was obtained from cadavers) as well as bio-engineered hormones and blood clotting factors. The hope in the future is to be able to create plants or fruits that contain a certain drug by manipulating their genes in the laboratory.

The field of human genetic engineering is growing and changing at a tremendous pace. With these changes come several benefits and risks. These benefits and risks must be weighed in light of their moral, spiritual, legal, and ethical perspectives. The potential power of human genetic engineering comes with great responsibility.

Like this information? Help us by sharing it with others. What is this?

Continue reading here:

Benefits of Human Genetic Engineering - Popular Issues ...