Gene Study Offers Clues to Why Autism Strikes More Males

By Mary Brophy Marcus HealthDay Reporter

THURSDAY, Feb. 27, 2014 (HealthDay News) -- A new DNA study begins to explain why girls are less likely than boys to have an autism spectrum disorder.

It turns out that girls tend not to develop autism when only mild genetic abnormalities exist, the researchers said. But when they are diagnosed with the disorder, they are more likely to have more extreme genetic mutations than boys who show the same symptoms.

"Girls tolerate neurodevelopmental mutations more than boys do. This is really what the study shows," said study author Sebastien Jacquemont, an assistant professor of genetic medicine at the University Hospital of Lausanne, in Switzerland.

"To push a girl over the threshold for autism or any of these neurodevelopmental disorders, it takes more of these mutations," Jacquemont added. "It's about resilience to genetic insult."

The dilemma is that the researchers don't really know why this is so. "It's more of an observation at a molecular level," Jacquemont noted.

In the study, the Swiss researchers collaborated with scientists from the University of Washington School of Medicine to analyze about 16,000 DNA samples and sequencing data sets from people with neurodevelopmental disorders, including autism spectrum disorders.

The investigators also analyzed genetic data from almost 800 families affected by autism for the study, which was released online Feb. 27 in the American Journal of Human Genetics.

The researchers analyzed copy-number variants (CNVs), which are individual variations in the number of copies of a particular gene. They also looked at single-nucleotide variants (SNVs), which are DNA sequence variations affecting a single nucleotide. Nucleotides are the basic building blocks of DNA.

The study found that females diagnosed with any neurodevelopmental disorder, including attention-deficit/hyperactivity disorder and intellectual disability, had more harmful CNVs than males who were diagnosed with the same disorder. Females with autism also had more harmful SNVs than males with the condition.

Original post:

Gene Study Offers Clues to Why Autism Strikes More Males

Cushing's syndrome: Genetic basis for cortisol excess

An international team of researchers led by an endocrinologist at Ludwig-Maximilians-Universitaet (LMU) in Munich has identified genetic mutations that result in uncontrolled synthesis and secretion of the stress hormone cortisol.

Cortisol is a hormone that is produced by the adrenal gland in response to stressful events, and modulates a whole spectrum of physiological processes. An international research collaboration has now identified genetic mutations that lead to the production and secretion of cortisol in the absence of an underlying stressor.

The discovery emerged from the genetic characterization of benign tumors of the adrenal gland which produce cortisol in excess amounts. Patients who develop such tumors suffer from weight gain, muscle wasting, osteoporosis, diabetes and hypertension. This condition, known as Cushing's syndrome, can be successfully treated by surgical removal of the affected adrenal gland.

Overproduction of cortisol

The team, which included researchers from Germany, France and the US and was led by Professors Felix Beuschlein and Martin Fassnacht of the LMU Medical Center, were able to show that in one-third of a patient population with such adrenal tumors, a mutation in the gene for the enzyme phosphokinase A was specifically associated with the continuous production of cortisol. This mutation had occurred in the adrenal gland and is therefore restricted to the tumor cells. The results have just appeared in the New England Journal of Medicine.

"The gene for phosphokinase

A plays a key role in the regulation of adrenal gland function, and the newly identified mutation causes it to become irreversibly activated, which results in the unrestrained production of cortisol," says Felix Beuschlein. In collaboration with a group at the US National Institutes of Health, the team was also able to identify patients who carry similar genetic alterations in their germline DNA. In these families, Cushing's syndrome occurs as a heritable genetic disease.

The elucidation of the genetic mechanism responsible for a significant fraction of cases of Cushing's syndrome provides a new diagnostic tool, and may also lead to new approaches to treatment. To enable further investigations towards this end, the German Cushing Register, which is maintained by Professor Martin Reincke at the LMU Medical Center, has received a grant of 400,000 euros from the Else Krner-Fresenius Foundation. A recently initiated European research consortium devoted to the study of Cushing's syndrome, of which Professors Beuschlein and Fassnacht are members is supported by a grant of 700,000 euros from the ERA-NET program administered by the Federal Ministry for Education and Research.

Story Source:

The above story is based on materials provided by Ludwig-Maximilians-Universitaet Muenchen (LMU). Note: Materials may be edited for content and length.

Read this article:

Cushing's syndrome: Genetic basis for cortisol excess

Personalized medicine has finally arrived — or has it?

PUBLIC RELEASE DATE:

26-Feb-2014

Contact: Michael Bernstein m_bernstein@acs.org 202-872-6042 American Chemical Society

As the price for decoding a person's DNA keeps dropping, expectations for personalized medicine based on specific genetic profiling rise. But translating an individual's genetic data into finely tailored medical treatments still faces major challenges, explains a new article in Chemical & Engineering News (C&EN), the weekly magazine of the American Chemical Society.

Rick Mullin, senior editor at C&EN, notes that advances in DNA sequencing have allowed researchers to design some therapies, particularly in the cancer realm, for patients with certain genetic traits. As the technology for reading people's genes improves and drops even further in cost, more progress is on the horizon. The U.S. Food and Drug Administration, the government body responsible for approving pharmaceuticals for commercialization, supports these efforts. With the stars seemingly aligned, some industry experts have declared that the age of personalized medicine has arrived. So why do others claim that victory is still a long way off?

The article points out that when pharmaceutical labs launched their search for new drugs based on genomics more than 15 years ago, the focus was almost exclusively on DNA sequences. But now researchers have realized that for personalized medicine to truly take hold, they need to also pay attention to individuals' health histories, their environments and how their genes actually translate into physical traits. This requires a shift in thinking, plus closer ties between the research and clinical sides, and ultimately, insurers. But perhaps the tallest barrier is cultural an attitude among some in the health care industry to simply continue business as usual.

###

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With more than 161,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter Facebook

Original post:

Personalized medicine has finally arrived -- or has it?

Genetic secret of mosquito resistance to DDT, bed net insecticides discovered

Researchers from LSTM have found that a single genetic mutation causes resistance to DDT and pyrethroids (an insecticide class used in mosquito nets). With the continuing rise of resistance the research, published in the journal Genome Biology, is key as scientists say that this knowledge could help improve malaria control strategies.

The researchers, led by Dr Charles Wondji, used a wide range of methods to narrow down how the resistance works, finding a single mutation in the GSTe2 gene, which makes insects break down DDT so it's no longer toxic. They have also shown that this gene makes insects resistant to pyrethroids raising the concern that GSTe2 gene could protect mosquitoes against the major insecticides used in public health.

Mosquitoes (Anopheles funestus) are vectors of malaria, and most strategies for combating the spread of the disease focus on control of mosquito populations using insecticides. The spread of resistance genes could hold back efforts to prevent the disease. The authors say that knowing how resistance works will help to develop tests, and stop these genes from spreading amongst mosquito populations.

Charles Wondji said: 'We found a population of mosquitoes fully resistant to DDT (no mortality when they were treated with DDT) but also to pyrethroids. So we wanted to elucidate the molecular basis of that resistance in the population and design a field applicable diagnostic assay for its monitoring.'

They took mosquitoes from Pahou in Benin, which were resistant to DDT and pyrethroids, and mosquitoes from a laboratory fully susceptible strain and did a genome wide comparison study. They identified the GSTe2 gene as being upregulated -- producing a lot of protein -- in Benin mosquitoes.

They found that a single mutation (L119F) changed a non-resistant version of the GSTe2 gene to a DDT resistant version. They designed a DNA-based diagnostic test for this type of resistance (metabolic resistance) and confirmed that this mutation was found in mosquitoes from other areas of the world with DDT resistance but was completely absent in regions without. X-ray crystallography of the protein coded by the gene illustrated exactly how the mutation conferred resistance, by opening up the 'active site' where DDT molecules bind to the protein, so more can be broken down. This means that the mosquito can survive by breaking down the poison into non-toxic substances..

They also introduced the gene into fruit flies (Drosophila melanogaster) and found they became resistant to DDT and pyrethroids compared to controls, confirming that just this single mutation is enough to make mosquitoes resistant to both DDT and permethrin.

Wondji says: 'For the first time, we have been able to identify a molecular marker for metabolic resistance (the type of resistance most likely to lead to control failure) in a mosquito population and to design a DNA-based diagnostic assay. Such tools will allow control programs to detect and track resistance at an early stage in the field, which is an essential requirement to successfully tackle the growing problem of insecticide resistance in vector control. This significant progress opens the door for us to do this with other forms of resistance as well and in other vector species.'

Story Source:

The above story is based on materials provided by Liverpool School of Tropical Medicine. Note: Materials may be edited for content and length.

Read the rest here:

Genetic secret of mosquito resistance to DDT, bed net insecticides discovered

Researchers crack the genetic secret of mosquito resistance to DDT and ITNs

14 hours ago

Researchers from LSTM have found that a single genetic mutation causes resistance to DDT and pyrethroids (an insecticide class used in mosquito nets). With the continuing rise of resistance the research, published in the journal Genome Biology, is key as scientists say that this knowledge could help improve malaria control strategies.

The researchers, led by Dr Charles Wondji, used a wide range of methods to narrow down how the resistance works, finding a single mutation in the GSTe2 gene, which makes insects break down DDT so it's no longer toxic. They have also shown that this gene makes insects resistant to pyrethroids raising the concern that GSTe2 gene could protect mosquitoes against the major insecticides used in public health.

Mosquitoes (Anopheles funestus) are vectors of malaria, and most strategies for combating the spread of the disease focus on control of mosquito populations using insecticides. The spread of resistance genes could hold back efforts to prevent the disease. The authors say that knowing how resistance works will help to develop tests, and stop these genes from spreading amongst mosquito populations.

Charles Wondji said: 'We found a population of mosquitoes fully resistant to DDT (no mortality when they were treated with DDT) but also to pyrethroids. So we wanted to elucidate the molecular basis of that resistance in the population and design a field applicable diagnostic assay for its monitoring.'

They took mosquitoes from Pahou in Benin, which were resistant to DDT and pyrethroids, and mosquitoes from a laboratory fully susceptible strain and did a genome wide comparison study. They identified the GSTe2 gene as being upregulated - producing a lot of protein - in Benin mosquitoes.

They found that a single mutation (L119F) changed a non-resistant version of the GSTe2 gene to a DDT resistant version. They designed a DNA-based diagnostic test for this type of resistance (metabolic resistance) and confirmed that this mutation was found in mosquitoes from other areas of the world with DDT resistance but was completely absent in regions without. X-ray crystallography of the protein coded by the gene illustrated exactly how the mutation conferred resistance, by opening up the 'active site' where DDT molecules bind to the protein, so more can be broken down. This means that the mosquito can survive by breaking down the poison into non-toxic substances.

They also introduced the gene into fruit flies (Drosophila melanogaster) and found they became resistant to DDT and pyrethroids compared to controls, confirming that just this single mutation is enough to make mosquitoes resistant to both DDT and permethrin.

Wondji says: 'For the first time, we have been able to identify a molecular marker for metabolic resistance (the type of resistance most likely to lead to control failure) in a mosquito population and to design a DNA-based diagnostic assay. Such tools will allow control programs to detect and track resistance at an early stage in the field, which is an essential requirement to successfully tackle the growing problem of insecticide resistance in vector control. This significant progress opens the door for us to do this with other forms of resistance as well and in other vector species.'

Explore further: Second door discovered in war against mosquito-borne diseases

See more here:

Researchers crack the genetic secret of mosquito resistance to DDT and ITNs

Self Regional Healthcare, Clemson, Genetic Center create national genetics research hub

PUBLIC RELEASE DATE:

21-Feb-2014

Contact: Peter Hull phull@clemson.edu 843-209-8341 Clemson University

GREENWOOD, S.C. A new partnership will establish formal collaboration among genetic researchers and Clemson University faculty at the Greenwood Genetic Center and Self Regional Healthcare, expanding an already successful working relationship.

Self Regional Healthcare will support the Clemson University Center for Human Genetics with a gift of $5.6 million over three years. The gift consists of an initial contribution of $2 million for the center's facilities and a subsequent contribution of $3.6 million to support research in genetics and human diagnostics at the facility located on the Greenwood Genetic Center campus.

"Today's announcement will create a new pipeline for genetic research," said John Pillman, chairman of the Self Regional board of trustees. "The collaboration of these three partners will ultimately connect genetic therapeutics research to patients."

Jim Pfeiffer, president and chief executive officer of Self Regional, said the partnership will accelerate the rate of innovation in genetic medicine. "This is what I like to call a win-win-win scenario," said Pfeiffer.

Steve Skinner, director of the Greenwood Genetic Center, said such collaborations are crucial to turning research advances into clinically available therapies for patients, not only in Greenwood and across South Carolina, but globally.

"This collaboration is a major step forward for patients as we combine the resources and strengths of each institution: Self's commitment to patient care, Clemson's expertise in basic scientific research and our experience with genetic disorders and treatment," Skinner said.

Self Regional and the Genetic Center have had an affiliation agreement since 1975 with the Genetic Center's clinical faculty serving as the Department of Medical Genetics for Self Regional.

Go here to read the rest:

Self Regional Healthcare, Clemson, Genetic Center create national genetics research hub

Infants with Leukemia Inherit Susceptibility

Contact Information

Available for logged-in reporters only

Babies who develop leukemia during the first year of life appear to inherit an unfortunate combination of genetic variations that can make the infants highly susceptible to the disease, according to a new study at Washington University School of Medicine in St. Louis and the University of Minnesota.

The research is available online in the journal Leukemia.

Doctors have long puzzled over why it is that babies just a few months old sometimes develop cancer. As infants, they have not lived long enough to accumulate a critical number of cancer-causing mutations.

Parents always ask why their child has developed leukemia, and unfortunately we have had few answers, said senior author Todd Druley, MD, PhD, a Washington University pediatric oncologist who treats patients at St. Louis Childrens Hospital. Our study suggests that babies with leukemia inherit a strong genetic predisposition to the disease.

The babies appear to have inherited rare genetic variants from both parents that by themselves would not cause problems, but in combination put the infants at high risk of leukemia. These variants most often occurred in genes known to be linked to leukemia in children, said Druley, an assistant professor of pediatrics.

Leukemia occurs rarely in infants, with only about 160 cases diagnosed annually in the United States. But unlike leukemia in children, which most often can be cured, about half of infants who develop leukemia die of the disease.

The researchers sequenced all the genes in the DNA of healthy cells from 23 infants with leukemia and their mothers. Looking at genes in the healthy cells helped the researchers understand which genetic variations were passed from a mother to her child, and by process of elimination, the scientists could determine the fathers contribution to a babys DNA.

Among the families studied, there was no history of pediatric cancers. The scientists also sequenced the DNA of 25 healthy children as a comparison.

Excerpt from:

Infants with Leukemia Inherit Susceptibility

Personalized Medicine a Cost-Effective Way to Tailor Drug Therapy After Stents

Genetic testing can help doctors choose the most effective and economical drugs to prevent blood clots in the half a million patients in the U.S. who receive coronary stents each year, according to a new study led by a UC San Francisco researcher.

The work, reported in the February 18, 2014 Annals of Internal Medicine, demonstrates that genetically guided personalized medicine, often perceived as pricier than traditional approaches, can both lower costs and increase the quality of health care.

Dhruv Kazi, MD, MSc, MS

Our results counter the general perception that personalized medicine is expensive, said Dhruv Kazi, MD, MSc, MS, assistant professor of medicine at UCSF and first author of the new study. What we have shown is that individualizing care based on genotype may in fact be very cost-effective in some settings, because it allows us to target the use of newer, more expensive drugs to the patients who are most likely to benefit from them.

According to the American Heart Association, about 500,000 patients per year in the U.S. receive stents to open up coronary arteries after experiencing unstable angina or a heart attack. These patients routinely begin a one-year regimen of aspirin taken daily in combination with a prescription antiplatelet medication, a dual therapy that can significantly reduce the risk of stent-clogging clots by preventing blood cells known as platelets from sticking together.

Historically, most patients have taken aspirin in combination with clopidogrel (trade name Plavix), but the effectiveness of that drug in preventing clotting and recurrent cardiovascular problems varies considerably among patients. One cause of this variability is that clopidogrel is a pro-drug: to work it must first be activated by a liver enzyme known as CYP2C19, and it is therefore less effective in patients who carry genetic variations that reduce the activity of the CYP2C19 gene. Approximately 28 percent of the population carries these genetic variations, which are known as loss-of-function alleles.

Two newer drugs, prasugrel (Effient) and ticagrelor (Brilinta), prevent clotting more reliably than clopidogrel in most patients, but they are considerably more expensive, and they can have troublesome side effects. Prasugrel can cause fatal bleeding in some patients, and ticagrelor can cause uncomfortable shortness of breath.

Juggling these variables of effectiveness, expense, side effects, and genetic factors has made it challenging for doctors to choose the right drug for their patients, particularly since neither the benefit of genetic testing for CYP2C19 variants nor the relative advantages of prasugrel versus ticagrelor have been tested in randomized clinical trials.

In the new research, Kazi and colleagues built a computer simulation based on 100,000 hypothetical 65-year-old patients receiving stents for heart problems. The model incorporated more than 100 quantitative parameters that might affect the choice of anti-platelet therapy, including clinical data from the medical literature and Medicare claims, procedure and hospitalization costs from national datasets, as well as actuarial information from published life tables.

Visit link:

Personalized Medicine a Cost-Effective Way to Tailor Drug Therapy After Stents

Genetic Diversity Of The European Beaver In Peril Due To Human Predation

February 19, 2014

Image Credit: Christof Angst, Biberfachstelle

Brett Smith for redOrbit.com Your Universe Online

Long-prized for their thick fur, the cuddly Eurasian beaver has been hunted by humans for thousands of years and a new genetic study from a large group of international researchers has found that predation by humans has significantly cut down the genetic diversity of these animals.

While beaver populations have been growing rapidly since the late 19th century when conservation efforts began, genetic diversity within modern beaver populations remains considerably reduced to what was present prior to the period of human hunting and habitat reduction, said study author Michi Hofreiter, a biology professor from the University of York in the United Kingdom.

In the study, which was published in the journal Molecular Ecology, the research team found that the Eurasian beaver can be divided into three different groups. The two predominant ones are in western and Eastern Europe and a now extinct, and previously unknown, third group inhabiting the Danube river basin. This population was around at least 6,000 years ago but vanished during the transition to modern society.

The rapid loss of diversity prior to conservation efforts appears to have established a very strong pattern for the geographic distribution of genetic diversity among present-day beaver populations, Hofreiter said.

After centuries of being hunted by humans, the Eurasian beaver had faded from the majority of its original range at the end of the 1800s, with approximately 1,200 beavers remaining. The researchers said they wanted to see if the lack of genetic diversity and strong distribution of genetic diversity seen today are caused by hunting or had already existed before the beavers range was diminished.

To reach their conclusion, the team analyzed DNA from 48 ancient beaver samples, ranging in age from a few hundred to about 11,000 years old, and over 150 modern beavers. The analytical work was performed at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany.

We found that overall there was more genetic diversity in the past, said study author Susanne Horn, from the institute. Apparently, already in ancient times an ancient contact zone existed between the eastern and western populations of beavers in the Oder River area. This is close to a present-day contact zone in Germany and Poland.

Read the original here:

Genetic Diversity Of The European Beaver In Peril Due To Human Predation

Penn Medicine and Wistar Scientists Create Precise Tumor Classifier for Glioblastoma

PHILADELPHIA A newly developed, more specific approach to classifying tumors by molecular type can help cancer researchers to determine tumor characteristics and guide treatment strategies. A team of researchers from the Perelman School of Medicine at the University of Pennsylvania and the Wistar Institute have created the first isoform-level assay for stratifying tumors at a molecular level, in patients with glioblastoma, the most common and most aggressive type of malignant primary brain tumor. This new classifier is more efficient and replicable in a laboratory setting than existing diagnostic tools, and can provide more accurate predictions for survival and how glioblastoma patients may respond to different treatments.

"Current tests can help classify tumor types to a lesser degree. This new classifying system improves both the diagnostic accuracy and the efficiency of the testing process," said Donald O'Rourke, MD, associate professor of Neurosurgery with Penn's Abramson Cancer Center and director of the Penn Brain Tumor Tissue Bank. "The more detailed information we have about the tumor, at a molecular level, the better we can target new immunotherapies and other treatments for our patients with glioblastoma."

Penn Medicine's Center for Personalized Diagnostics (CPD) currently analyzes all brain tumors to determine the best treatment approach for a given tumor type. This new approach would be complementary to the work of the CPD on brain tumor specimens and enhance the overall effort of molecular sub typing of GBM tumors.

This new isoform-based classifier, which looks at variations within cellular RNA, improves prediction accuracy and requires half the variables for the analysis than the genetic-based analysis. The isoform classifier glioblastoma tumor noted the correct subtype with 92 percent accuracy, according to the study, published in Nucleic Acids Research.

The study was completed in collaboration with Ramana Davuluri, PhD, formerly at The Wistar Institute and now at Northwestern University and colleagues. For more details on the study, please see the Wistar Institute press release.

###

Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of theRaymond and Ruth Perelman School of Medicine at the University of Pennsylvania(founded in 1765 as the nation's first medical school) and theUniversity of Pennsylvania Health System, which together form a $4.3 billion enterprise.

The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 16 years, according toU.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $398 million awarded in the 2012 fiscal year.

The University of Pennsylvania Health System's patient care facilities include: The Hospital of the University of Pennsylvania -- recognized as one of the nation's top "Honor Roll" hospitals byU.S. News & World Report; Penn Presbyterian Medical Center; Chester County Hospital; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.

Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2012, Penn Medicine provided$827million to benefit our community.

View original post here:

Penn Medicine and Wistar Scientists Create Precise Tumor Classifier for Glioblastoma

Researchers shed new light on the genetic history of the European beaver

PUBLIC RELEASE DATE:

17-Feb-2014

Contact: Caron Lett caron.lett@york.ac.uk 44-019-043-22029 University of York

An international team of scientists has used detailed analysis of ancient and modern DNA to show that the distribution and lack of genetic diversity among modern European beavers is due largely to human hunting.

The research, which was led by University of York researcher Professor Michi Hofreiter, provides important new insights into the genetic history of the Eurasian beaver Castor fiber. Crucially, it shows the European beaver has been strongly affected by expanding human populations for many thousands of years.

The researchers say that centuries of hunting, rather than changing climate conditions since the beginning of the Holocene (or recent) period, accounts for the lack of genetic diversity, as well as the geographic distribution of genetic diversity, seen in modern European beavers.

The research, which also involved researchers from Germany, USA, Norway, New Zealand, Russia, Poland, Sweden, Austria and the Netherlands, is reported in the journal Molecular Ecology.

Through DNA sequencing, the research team discovered that the Eurasian beaver can be divided into three distinct groups. The two main ones are in western and eastern Europe, with a now extinct, and previously unknown, third group in the Danube basin. This population existed at least 6,000 years ago but went extinct during the transition to modern times.

Professor Hofreiter, from York's Department of Biology and the University of Potsdam's Faculty of Mathematics and Life Sciences, said: "While beaver populations have been growing rapidly since the late 19th century when conservation efforts began, genetic diversity within modern beaver populations remains considerably reduced to what was present prior to the period of human hunting and habitat reduction.

"In addition, the rapid loss of diversity prior to conservation efforts appears to have established a very strong pattern for the geographic distribution of genetic diversity among present-day beaver populations." Beavers have long been an important resource for human populations across the northern continents. Their fur is of exceptional quality, and has been a highly traded commodity. Beavers have also been hunted for meat and for castoreum - an anal gland secretion often used in traditional medicine. Stone engravings at Lake Onega in northern Europe indicate that beavers played a role in ancient human societies from around 3,000-4,000 years ago.

See the original post:

Researchers shed new light on the genetic history of the European beaver

UCI study finds specific genetic cue for sudden cardiac death syndrome

PUBLIC RELEASE DATE:

18-Feb-2014

Contact: Tom Vasich tmvasich@uci.edu 949-824-6455 University of California - Irvine

Irvine, Calif., Feb. 18, 2014 UC Irvine researchers have found a specific genetic flaw that is connected to sudden death due to heart arrhythmia a leading cause of mortality for adults around the world.

While a number of genes have been linked with arrhythmias, UC Irvine's Geoffrey Abbott and his colleagues discovered that the functional impairment of a gene called KCNE2 underlies a multisystem syndrome that affects both heart rhythm and blood flow and can activate chemical triggers that can cause sudden cardiac death.

"With these findings, we can now explore improved early detection and prevention strategies for people who are at higher risk of sudden cardiac death, such as those with diabetes," said Abbott, a professor of pharmacology and physiology & biophysics in the UC Irvine School of Medicine.

Study results appear in the February issue of Circulation: Cardiovascular Genetics, a publication of the American Heart Association.

Distinct from a heart attack, in which the heart continues to beat but blood flow is blocked, sudden cardiac death occurs when the heart ceases to beat because of the uncontrolled twitching of muscle fibers in its ventricles. Without defibrillation within minutes, this type of event is fatal.

In studies on a mouse model with the KCNE2 gene removed, Abbott and his colleagues had found catalysts for sudden cardiac death including high blood cholesterol, anemia, high blood potassium, an age-related delay in the return to a resting position of the ventricle after contraction and, most surprisingly, diabetes.

Abbott said this link to diabetes and other systemic disturbances is significant because genes such as KCNE2 are better known for directly controlling the electrical signaling that ensures a steady heartbeat. The KCNE2 gene provides instructions for making a protein that regulates the activity of potassium channels, which play a key role in a cell's ability to generate and transmit electrical signals. Channels regulated by the KCNE2 protein are present in heart muscles and help recharge them after each heartbeat to maintain a regular rhythm.

Continue reading here:

UCI study finds specific genetic cue for sudden cardiac death syndrome

Swathi Rao PA-C, an Indianapolis Clinician, Graduates to Become a Part of the Elite Group of Certified Practitioners …

Swathi Rao PA-C, an Indianapolis Clinician, Graduates to Become a Part of the Elite Group of Certified Practitioners by the Institute for Functional Medicine

Swathi has chosen to focus her expertise in Functional medicine for many timely reasons. According to Federal Way, WA; February 10, 2014: "Of total healthcare costs in the United States, more than 75% is due to chronic conditions." Functional medicine incorporates the latest in genetic science and systems biology, and also enables health care practitioners to practice proactive, predictive, and personalized medicine while empowering patients to take an active role in their own health.

As a graduate of The Institute for Functional Medicines Certification Program (IFMCP), Swathi Rao is uniquely trained in the functional medicine model to identify and treat the root causes of chronic disease. In order to achieve the designation of IFM Certified Practitioner, Swathi has completed 7 onsite training seminars and passed stringent written and case study evaluations.

Swathi joins an elite group of 124 practitioners who are among the first graduates of IFMs Certification Program.

About Swathi Rao PA-C Swathi is a Physician Assistant who works at Excell for Life Family Care & Pediatrics. She obtained her Physician Assistant Degree at Buter University and her Bachelors at Indiana University. To arrange an interview with Swathi please contact: Samantha Crispin, 317-660-0888 ext. 205, scrispin@excellforlife.com

About The Institute for Functional Medicine The Institute for Functional Medicine believes that good health and vitality are essential to the human spirit. The mission of IFM is to serve the highest expression of individual health through widespread adoption of functional medicine as the standard of care.

Functional medicine is a personalized, systems-oriented model that empowers patients and practitioners to achieve the highest expression of health by working in collaboration to address the underlying causes of disease. The primary drivers of the chronic disease epidemic are the complex daily interactions among an individuals genetics, environment, and lifestyle choices. Functional medicine addresses these underlying causes of disease and equips healthcare practitioners to help their patients manage this complex, interconnected web. For more information, please visit: http://functionalmedicine.org/.

About Functional Medicine The rising rates of chronic disease are creating a huge burden on the economy and the current health care system is not adequately addressing the problem. Conventional health care is rooted in an acute-care model focused on rapid diagnosis and long-term pharmaceutical interventions. Functional medicine is a model for 21st century health care that focuses on identifying and addressing the underlying causes of chronic disease by recognizing that each patient is biochemically unique, a product of the continuous interaction between their genes, their environment, and their lifestyle choices. Only by finding the specific causes of each patients disease and providing treatment that is individualized to that patient will we be able to reverse the epidemic of chronic disease.

More here:

Swathi Rao PA-C, an Indianapolis Clinician, Graduates to Become a Part of the Elite Group of Certified Practitioners ...

How Alternative Medicine Has Infiltrated U.S. Medical Schools – Steve Salzberg – Video


How Alternative Medicine Has Infiltrated U.S. Medical Schools - Steve Salzberg
Presented by the National Capital Area Skeptics - http://www.ncas.org. Alternative medicine has become very popular over the past two decades, thanks to relentless ...

By: NCASVideo

Continue reading here:

How Alternative Medicine Has Infiltrated U.S. Medical Schools - Steve Salzberg - Video

The Genetics of Drug Tolerance

Contact Information

Available for logged-in reporters only

Newswise Put yourself in the shoes of a psychiatrist. You just diagnosed a person with schizophrenia, and you can prescribe any number of antipsychotic drugs, all of which can cause serious side effects. You know that older drugs, such as haloperidol, work well, but a third of all schizophrenia patients who take it suffer from Parkinsonian-like symptoms, such as tremors, involuntary spasms, and uncontrollable facial movements. You also know that those side effects are permanent in about half the people who experience them. In other words, you could be prescribed a drug that causes permanent brain damage.

So you consider prescribing a newer drug, such as clozapine, which also helps a large portion of patients. But clozapine causes severe weight gain and diabetes in many people. You check your patients history. He smokes, as do 90 percent of people diagnosed with schizophrenia. He weighs a lot for his height. Taking clozapine will substantially increase his risk of heart disease, and the drug costs much more than haloperidol. Your patient cant afford it.

Choosing the right drug is difficult, but you have to choose one. Letting the patient go without medication is not an option; untreated schizophrenia is much worse than even the most serious side effects.

What do you do?

You know what youd like to do: run a blood test to figure out your patients genetic susceptibility to the permanent side effects of haloperidol. But that genetic screen doesnt exist. In fact, the genetic underpinnings of drug side effects, in general, are not well understood.

Researchers at the UNC School of Medicine are trying to change that.

Two labs headed by statistical geneticist William Valdar, PhD, and psychiatric geneticist Patrick Sullivan, MD, have developed a new statistical model that scientists can use to parse the complex genetics of side effect susceptibility.

In a paper featured in the journal Genetics, their teams describe how theyve begun to strip away the mystery behind haloperidol. Their findings represent the first quantitative description of the genetic architecture of haloperidol response.

See the original post:

The Genetics of Drug Tolerance

Potential route to bladder cancer diagnostics, treatments

Researchers at the UNC School of Medicine conducted a comprehensive genetic analysis of invasive bladder cancer tumors to discover that the disease shares genetic similarities with two forms of breast cancer. The finding is significant because a greater understanding of the genetic basis of cancers, such as breast cancers, has in the recent past led to the development of new therapies and diagnostic aids.

Bladder cancer, which is the fourth most common malignancy in men and ninth in women in the United States, claimed more than 15,000 lives last year.

The analysis of 262 bladder cancer tumors, published online in the Proceedings of the National Academy of Sciences, revealed that the invasive form of the disease can be classified into two distinct genetic subtypes -- basal-like and luminal -- which were shown to be highly similar to the basal and luminal subtypes of breast cancer first described by Charles Perou, PhD, the May Goldman Shaw Distinguished Professor of Molecular Oncology at UNC Lineberger.

"It will be particularly interesting to see whether the bladder subtypes, like the breast subtypes, are useful in stratification for therapy," said lead author William Kim, MD, a researcher at the UNC Lineberger Comprehensive Cancer Center and associate professor in the departments of genetics and medicine at UNC.

Mapping genetic signaling pathways of breast cancer subtypes has led to the development of drugs to treat patients and diagnostic aids that help physicians determine the best course of therapy for patients. Because the identified bladder cancer subtypes share many of the same genetic signaling pathways of breast cancer, researchers hope that the identification of the genetic subtypes can lead to similar advances.

"Currently there are no approved targeted therapies for bladder cancer," said lead author Jeffrey Damrauer, graduate student in the Curriculum of Genetics and Molecular Biology at the UNC School of Medicine. "Our hope is that the identification of these subtypes will aid in the discovery of targetable pathways that will advance bladder cancer treatment."

The study also revealed a possible answer to why women diagnosed with bladder cancer have overall poorer outcomes compared to males. Analysis showed that female patients had a significantly higher incidence of the deadlier basal-like tumors. But researchers said that more research is needed before a definite link between the subtype and survival rate can be confirmed.

Dr. Kim's lab has developed a gene map -- BASE47 -- that proved successful as a prognostic aid when applied to the tumor samples in the study. The PAM50 genetic test, a similar genetic map developed in the Perou lab, was recently approved as a clinical diagnostic tool by the FDA.

Story Source:

The above story is based on materials provided by University of North Carolina Health Care. Note: Materials may be edited for content and length.

Here is the original post:

Potential route to bladder cancer diagnostics, treatments

Genetic Subtypes of Bladder Cancer Reflect Breast Cancer Biology

Contact Information

Available for logged-in reporters only

Newswise A comprehensive genetic analysis of invasive bladder cancer tumors has found that the disease shares genetic similarities with two forms of breast cancer, according to researchers at the University of North Carolina Lineberger Cancer Center. Bladder cancer, which is the fourth most common malignancy in men and ninth most common in women in the United States, claimed more than 15,000 patients last year.

The analysis of 262 bladder cancer tumors, published online by the Proceedings of the National Academy of Sciences, reveals that the invasive form of the disease can be classified into two distinct genetic subtypes basal-like and luminal which were shown to be highly similar to the basal and luminal subtypes of breast cancer first described by Charles Perou, PhD, May Goldman Shaw Distinguished Professor of Molecular Oncology at UNC Lineberger. A greater understanding of the genetic basis of cancers such as breast cancer has led to the development of new therapies and diagnostic aids.

It will be particularly interesting to see whether the bladder subtypes, like the breast subtypes, are useful in stratification for therapy, said lead author William Kim, MD, associate professor with the UNC School of Medicine.

The mapping of the genetic signaling pathways of the breast cancer subtypes has led to development of drugs and diagnostic aids that aid physicians in determining the best course of therapy for patients with that disease. As the identified bladder cancer subtypes share many of the same genetic signaling pathways of breast cancer, researchers hope that the identification of the genetic subtypes can lead to similar advances.

Currently there are no approved targeted therapies for bladder cancer. Our hope is that the identification of these subtypes will aid in the discovery of targetable pathways that will advance bladder cancer treatment, said lead author Jeffrey Damrauer, graduate student in the Curriculum of Genetics and Molecular Biology.

The study also revealed a possible answer to why women diagnosed with bladder cancer have overall poorer outcomes compared to males. Analysis from female patients showed a significantly higher incidence of the deadlier, basal-like tumors, but researchers said that more research is needed before a definite link between the subtype and survival can be confirmed.

Dr. Kims lab has developed a gene map, BASE47, that proved successful as a prognostic aid when applied to the tumor samples in the study. The PAM50 genetic test, a similar genetic map developed in the Perou lab, was recently approved as a clinical diagnostic tool by the FDA.

Additional LCCC members contributing to this work are Katherine Hoadley, PhD; David Chism, MD; Cheng Fan; Christopher Tiganelli, MD; Sara Wobker, MD; Jen Jen Yeh, MD; Matthew Milowsky, MD; and Joel Parker, PhD. This work was supported by National Institutes of Health Grant R01 CA142794 and Integrative Vascular Biology Training Grant T32-HL069768. Dr. Kim is a Damon Runyon Merck Clinical Investigator. Dr. Kim and Damrauer are inventors on the patent for the BASE47.

Read this article:

Genetic Subtypes of Bladder Cancer Reflect Breast Cancer Biology