Cell therapy weekly: Kyverna Therapeutics appoints new Senior Vice President – RegMedNet

This week: Kyverna Therapeutics appoints new Senior Vice President, Nucleus Biologics obtains ISO 13485:2016 Certification for manufacture and distribution of cell and gene therapy media, rare pediatric disease designation granted to iECUREs investigational gene editing product candidate for OTC deficiency and construction completed on Sheffield Gene Therapy Innovation and Manufacturing Centre.

The cell therapy company focusing on regenerative treatment of serious autoimmune diseases, Kyverna Therapeutics (CA, USA),has appointed Tom Van Blarcom as Senior Vice President, Head of Research. Kyvernas therapeutic platform utilizes advanced T-cell engineering and synthetic biology techniques to suppress and eliminate the autoreactive immune cells responsible for inflammatory and autoimmune diseases.

President and CEO of Kyverna, Dominic Borie stated, We are excited to welcome Tom to the Kyverna team. His broad experience in cell therapy research across a wide range of diseases will be invaluable in supporting our work developing engineered T-cell therapies for the treatment of autoimmune diseases. Toms leadership and extensive industry experience will be a critical pillar of our company as we advance our Regulatory T-cell platform and CAR-T programs to achieve our mission of bringing curative living medicines to life to free patients from the siege of autoimmune disease.

Read more

Nucleus Biologics (CA, USA) announced that it has received an ISO 13485:2016 certification from the British Standards Institution (London, UK) for the manufacture and distribution of media for the cell and gene therapy industry. ISO 13485 is the industry standard for quality management systems regulating medical devices and associated services and ensures that the design, development and production of a product consistently fulfils customer and regulatory requirements.

David Sheehan, CEO and Founder of Nucleus Biologics acknowledged, This milestone is the result of years of effort to extend our leadership in custom cell culture media for the cell and gene therapy market. Now, therapy developers have one partner that can offer everything from formulation development support to cGMP 2,000-liter media manufacturing all governed by strict adherence to the ISO 13485 level quality system. Our history of product innovations, quality and collaborations will only expand as we help our customers speed the time from discovery to cure.

Read more

iECURE (PA, USA) reported that the US FDA has granted rare pediatric disease designation to GTP-506 for treatment of Ornithine Transcarbamylase (OTC) deficiency, the most common urea cycle disorder. iECURE is a gene editing company developing mutation-agnostic in vivo gene insertion therapies to treat liver disorders with significant unmet need. GTP-506 is a potential single dose dual vector gene editing product candidate, designed to restore metabolic function through cleavage of the PCSK9 gene locus and insertion of a functional OTC gene into the cleavage site.

Joe Truitt, CEO of iECURE stated, Receiving Rare Pediatric Disease Designation for GTP-506 for the treatment of OTC deficiency highlights the dire need for new treatment options for this devastating pediatric disease. GTP-506 is a potentially transformative therapy for babies born with OTC deficiency and we expect to file an investigational new drug application with the FDA for our first-in-human clinical trial in mid-2023.

Read more

The University of Sheffield (UK) announced the completion of construction for The Sheffield Gene Therapy Innovation and Manufacturing Centre (GTIMC). The state-of-the-art center will provide translational and regulatory support in conjunction with training and skills programs in good manufacturing practice. The GTIMC is one of three innovative centers in a new 18 million network funded by LifeArc (London, UK) and the Medical Research Council (London, UK), with support from the Biotechnology and Biological Sciences Research Council (Swindon, UK).

Mimoun Azzouz, Director of the GTIMC and Chair of Translational Neuroscience at the University of Sheffield stated, Sheffield has emerged as one of the leading players in cell and gene therapy and this national network of partners, facilities and training programs will allow us to stay at the cutting edge of translational discoveries for new and potentially life changing treatments. Seeing the construction work completed is an exciting milestone for the team. It brings us closer to being fully operational and able to progress new and exciting discoveries, which will benefit patients and families worldwide.

Read more

You might also like:

Read more:

Cell therapy weekly: Kyverna Therapeutics appoints new Senior Vice President - RegMedNet

GICELL Announces Research Collaboration with HK inno.N for next-generation CAR-NK therapy – BioSpace

- Expecting the synergies of GICELLs research competency and HK inno.Ns know-hows on development and commercialization

- GICELL to reinforce its anticancer pipeline portfolio by leveraging its proprietary manufacturing capabilities for CAR-NK development

SEOUL, South Korea--(BUSINESS WIRE)-- GICELL announced research and development collaboration for allogeneic CAR-NK candidates with HK inno.N on August 29th, 2022.

This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20220829005272/en/

The companies plan to advance the development of numerous CAR-NK therapies by harnessing GICELL's outstanding research competency and HK inno.N's extensive experience in development and commercialization of anticancer therapies. As part of this agreement, the companies may open up a discussion on further developments, including clinical development and commercialization, if they succeed in discovering CAR-NK cell product candidates and producing non-clinical samples.

GICELL, pioneering novel technology for large-scale immune cell manufacturing, expects to demonstrate its technology on scalable culture under this research agreement.

In February, GICELL set a new world record in culturing highly active natural killer cells with 200 liters. The company's manufacturing technology obtained a patent registration decision in Taiwan in July, following the corresponding patent registration in Korea at the beginning of the year.

HK inno.N, a company deeply committed to the development of breakthrough therapies and biopharmaceutical products with high market value, has developed K-CAB Tablet, a new blockbuster drug, and is enjoying unbeatable shares in basic fluid and anti-hangover beverage markets. Currently, the company has established GMP facilities based on its belief in the anticancer therapeutic potential of cell and gene therapy products as a future growth engine and seeks to secure its core competitiveness by developing a wide range of pipelines.

Sung Yoo Cho, CSO and Vice President of GICELL, a global expert on CAR-NK, confidently commented, "Allogeneic NK cells developed by GICELL have joined the lead group in the CAR-NK field by avoiding NK cell exhaustion through the adjustment of binding force of cytokine receptors during the cell culture and markedly improving the efficiency of CAR gene introduction in NK cells, which are generally known as challenging for gene expression, compared to T cells."

Sung Yong Won, Head of the Bio Research Center and Managing Director of HK inno.N said, "HK inno.N is conducting research with many companies possessing technological competitiveness in cell therapy products to accelerate the development of anticancer immune cell therapy products. The company will continue to develop its promising CAR-NK pipelines through this research and development collaboration with GICELL."

GICELL and HK inno.N will co-develop CAR-NK programs with the aim of initiating the clinical phase of CAR-NK cell therapy products by 2024.

View source version on businesswire.com: https://www.businesswire.com/news/home/20220829005272/en/

See original here:

GICELL Announces Research Collaboration with HK inno.N for next-generation CAR-NK therapy - BioSpace

Gene therapy – Mayo Clinic

Overview

Gene therapy involves altering the genes inside your body's cells in an effort to treat or stop disease.

Genes contain your DNA the code that controls much of your body's form and function, from making you grow taller to regulating your body systems. Genes that don't work properly can cause disease.

Gene therapy replaces a faulty gene or adds a new gene in an attempt to cure disease or improve your body's ability to fight disease. Gene therapy holds promise for treating a wide range of diseases, such as cancer, cystic fibrosis, heart disease, diabetes, hemophilia and AIDS.

Researchers are still studying how and when to use gene therapy. Currently, in the United States, gene therapy is available only as part of a clinical trial.

Gene therapy is used to correct defective genes in order to cure a disease or help your body better fight disease.

Researchers are investigating several ways to do this, including:

Gene therapy has some potential risks. A gene can't easily be inserted directly into your cells. Rather, it usually has to be delivered using a carrier, called a vector.

The most common gene therapy vectors are viruses because they can recognize certain cells and carry genetic material into the cells' genes. Researchers remove the original disease-causing genes from the viruses, replacing them with the genes needed to stop disease.

This technique presents the following risks:

The gene therapy clinical trials underway in the U.S. are closely monitored by the Food and Drug Administration and the National Institutes of Health to ensure that patient safety issues are a top priority during research.

Currently, the only way for you to receive gene therapy is to participate in a clinical trial. Clinical trials are research studies that help doctors determine whether a gene therapy approach is safe for people. They also help doctors understand the effects of gene therapy on the body.

Your specific procedure will depend on the disease you have and the type of gene therapy being used.

For example, in one type of gene therapy:

Viruses aren't the only vectors that can be used to carry altered genes into your body's cells. Other vectors being studied in clinical trials include:

The possibilities of gene therapy hold much promise. Clinical trials of gene therapy in people have shown some success in treating certain diseases, such as:

But several significant barriers stand in the way of gene therapy becoming a reliable form of treatment, including:

Gene therapy continues to be a very important and active area of research aimed at developing new, effective treatments for a variety of diseases.

Explore Mayo Clinic studies of tests and procedures to help prevent, detect, treat or manage conditions.

Dec. 29, 2017

Excerpt from:

Gene therapy - Mayo Clinic

Document: Big Pharma exec: COVID shots are ‘gene therapy’

An Air Force medical technician draws a dose of the COVID-19 vaccine to inoculate Air Force reservists at Joint Base Lewis McChord, Washington, Sept. 12, 2021. (U.S. Air Force photo by Staff Sgt. Paolo Felicitas)

Many skeptics have contended that the mRNA-based Pfizer and Moderna COVID-19 shots are not "vaccines" but rather a form of gene therapy that poses untold risks by altering a recipient's DNA.

The federal government and health-care experts have denied that claim. But the president of Bayer's Pharmaceuticals Division is on record describing the mRNA shots as "cell and gene therapy" and acknowledging public wariness of the technology.

Bayer executive Stefan Oelrich, LifeSiteNews reported, made the statement at the World Health Summit, which took place in Berlin Oct. 24-26, drawing 6,000 people from 120 countries.

Oelrich said his company is "really taking that leap" to drive innovation "in cell and gene therapies."

"Ultimately, the mRNA vaccines are an example for that cell and gene therapy," he said.

"I always like to say: If we had surveyed two years ago in the public 'would you be willing to take a gene or cell therapy and inject it into your body?' we probably would have had a 95% refusal rate," Oelrich said.

In August, Reuters ran a "fact check" citing experts who contend that the technology in the Pfizer/BioNTech and Moderna shots are not gene therapy.

Both shots usea piece of genetic code from SARS-CoV-2 to prompt an immune response in recipients. But Dr. Adam Taylor, a virologist and researcher at Griffith University in Australia, insisted that while it's "a genetic-based therapy," it doesn't alter a person's genes.

Gene therapy, in the classical sense, involves making deliberate changes to a patients DNA in order to treat or cure them," he said. "mRNA vaccines will not enter a cells nucleus that houses your DNA genome. There is zero risk of these vaccines integrating into our own genome or altering our genetic makeup."

At the Berlin summit, the Bayer executive said that his company's "successes" over the 18 months of the pandemic "should embolden us to fully focus much more closely on access, innovation and collaboration to unleash health for all, especially as we enter, on top of everything else that is happening, a new era of science a lot of people talk about the Bio Revolution in this context."

LifeSiteNews noted that, according to the McKinsey Global Institute, the "Bio Revolution" is "a confluence of advances in biological science and accelerating development of computing, automation, and artificial intelligence [that] is fueling a new wave of innovation."

"This Bio Revolution could have significant impact on economies and our lives, from health and agriculture to consumer goods, and energy and materials."

Oelrich said Bayer also is working at reducing the populations of Third World countries, investing $400 million in "long-acting contraceptives" and partnering with the Bill and Melinda Gates Foundation on "family planning initiatives."

EDITOR'S NOTE: Last year, America's doctors, nurses and paramedics were celebrated as frontline heroes battling a fearsome new pandemic. Today, under Joe Biden, tens of thousands of these same heroes are denounced as rebels, conspiracy theorists, extremists and potential terrorists. Along with massive numbers of police, firemen, Border Patrol agents, Navy SEALs, pilots, air-traffic controllers, and countless other truly essential Americans, they're all considered so dangerous as to merit termination, their professional and personal lives turned upside down due to their decision not to be injected with the experimental COVID vaccines. Bidens tyrannical mandate threatens to cripple American society from law enforcement to airlines to commercial supply chains to hospitals. It's already happening. But the good news is that huge numbers of "yesterdays heroes" are now fighting back bravely and boldly. The whole epic showdown is laid out as never before in the sensational October issue of WND's monthly Whistleblower magazine, titled "THE GREAT AMERICAN REBELLION: 'We will not comply!' COVID-19 power grab ignites bold new era of national defiance."

Content created by the WND News Center is available for re-publication without charge to any eligible news publisher that can provide a large audience. For licensing opportunities of our original content, please contact licensing@wndnewscenter.org.

SUPPORT TRUTHFUL JOURNALISM. MAKE A DONATION TO THE NONPROFIT WND NEWS CENTER. THANK YOU!

The post Big Pharma exec: COVID shots are 'gene therapy' appeared first on WND.

Originally posted here:

Document: Big Pharma exec: COVID shots are 'gene therapy'

Gene & Cell Therapy FAQs | ASGCT – American Society of Gene & Cell …

For more in-depth learning, we recommend Different Approaches in our Patient Education program.

The challenges of gene and cell therapists can be divided into three broad categories based on disease, development of therapy, and funding.

Challenges based on the disease characteristics: Disease symptoms of most genetic diseases, such as Fabrys, hemophilia, cystic fibrosis, muscular dystrophy, Huntingtons, and lysosomal storage diseases are caused by distinct mutations in single genes. Other diseases with a hereditary predisposition, such as Parkinsons disease, Alzheimers disease, cancer, and dystonia may be caused by variations/mutations in several different genes combined with environmental causes. Note that there are many susceptible genes and additional mutations yet to be discovered. Gene replacement therapy for single gene defects is the most conceptually straightforward. However, even then the gene therapy agent may not equally reduce symptoms in patients with the same disease caused by different mutations, and even the samemutationcan be associated with different degrees of disease severity. Gene therapists often screen their patients to determine the type of mutation causing the disease before enrollment into a clinical trial.

The mutated gene may cause symptoms in more than one cell type. Cystic fibrosis, for example, affects lung cells and the digestive tract, so the gene therapy agent may need to replace the defective gene or compensate for its consequences in more than one tissue for maximum benefit. Alternatively, cell therapy can utilizestem cellswith the potential to mature into the multiple cell types to replace defective cells in different tissues.

In diseases like muscular dystrophy, for example, the high number of cells in muscles throughout the body that need to be corrected in order to substantially improve the symptoms makes delivery of genes and cells a challenging problem.

Some diseases, like cancer, are caused by mutations in multiple genes. Although different types of cancers have some common mutations, every tumor from a single type of cancer does not contain the same mutations. This phenomenon complicates the choice of a single gene therapy tactic and has led to the use of combination therapies and cell elimination strategies. For more information on gene and cell therapy strategies to treat cancer, please refer to the Cancer and Immunotherapy summary in the Disease Treatment section.

Disease models in animals do not completely mimic the human diseases and viralvectorsmay infect various species differently. The testing of vectors in animal models often resemble the responses obtained in humans, but the larger size of humans in comparison to rodents presents additional challenges in the efficiency of delivery and penetration of tissue.Gene therapy, cell therapy, and oligonucleotide-based therapy agents are often tested in larger animal models, including rabbit, dog, pig and nonhuman primate models. Testing human cell therapy in animal models is complicated by immune rejections. Furthermore, humans are a very heterogeneous population. Their immune responses to the vectors, altered cells, or cell therapy products may differ or be similar to results obtained in animal models.

Challenges in the development of gene and cell therapy agents: Scientific challenges include the development of gene therapy agents that express the gene in the relevant tissue at the appropriate level for the desired duration of time. There are a lot of issues in that once sentence, and while these issues are easy to state, each one requires extensive research to identify the best means of delivery, how to control sufficient levels or numbers of cells, and factors that influence duration of gene expression or cell survival. After the delivery modalities are determined, identification and engineering of a promoter and control elements (on/off switch and dimmer switch) that will produce the appropriate amount of protein in the target cell can be combined with the relevant gene. This gene cassette is engineered into a vector or introduced into thegenomeof a cell and the properties of the delivery vehicle are tested in different types of cells in tissue culture. Sometimes things go as planned and then studies can be moved onto examination in animal models. In most cases, the gene/cell therapy agent may need to be improved further by adding new control elements to obtain the desired responses in cells and animal models.

Furthermore, the response of the immune system needs to be considered based on the type of gene or cell therapy being undertaken. For example, in gene or cell therapy for cancer, one aim is to selectively boost the existing immune response to cancer cells. In contrast, to treat genetic diseases like hemophilia and cystic fibrosis the goal is for the therapeutic protein to be accepted as an addition to the patients immune system.

If the new gene is inserted into the patients cellularDNA, the intrinsic sequences surrounding the new gene can affect its expression and vice versa. Scientists are now examining short DNA segments that may insulate the new gene from surrounding control elements. Theoretically, these insulator sequences would also reduce the effect of vector control signals in the gene cassette on adjacent cellular genes. Studies are also focusing on means to target insertion of the new gene into safe areas of the genome, to avoid influence on surrounding genes and to reduce the risk of insertional mutagenesis.

Challenges of cell therapy include the harvesting of the appropriate cell populations and expansion or isolation of sufficient cells for one or multiple patients. Cell harvesting may require specific media to maintain the stem cells ability toself-renew and mature into the appropriate cells. Ideally extra cells are taken from the individual receiving therapy. Those additional cells can expand in culture and can be induced to becomepluripotent stem cells(iPS), thus allowing them to assume a wide variety of cell types and avoiding immune rejection by the patient. The long term benefit of stem cell administration requires that the cells be introduced into the correct target tissue and become established functioning cells within the tissue. Several approaches are being investigated to increase the number of stem cells that become established in the relevant tissue.

Another challenge is developing methods that allow manipulation of the stem cells outside the body while maintaining the ability of those cells to produce more cells that mature into the desired specialized cell type. They need to provide the correct number of specialized cells and maintain their normal control of growth and cell division, otherwise there is the risk that these new cells may grow into tumors.

Challenges in funding: In most fields, funding for basic or applied research for gene and cell therapy is available through the National Institutes of Health (NIH) and private foundations. These are usually sufficient to cover the preclinical studies that suggest a potential benefit from a particular gene and cell therapy. Moving into clinical trials remains a huge challenge as it requires additional funding for manufacturing of clinical grade reagents, formal toxicology studies in animals, preparation of extensive regulatory documents, and costs of clinical trials.Biotechnology companies and the NIH are trying to meet the demand for this large expenditure, but many promising therapies are slowed down by lack of funding for this critical next phase.

Read more:

Gene & Cell Therapy FAQs | ASGCT - American Society of Gene & Cell ...

FDA approves novel gene therapy to treat patients with a rare form of …

For Immediate Release: December 18, 2017

Espaol

The U.S. Food and Drug Administration today approved Luxturna (voretigene neparvovec-rzyl), a new gene therapy, to treat children and adult patients with an inherited form of vision loss that may result in blindness. Luxturna is the first directly administered gene therapy approved in the U.S. that targets a disease caused by mutations in a specific gene.

Todays approval marks another first in the field of gene therapy both in how the therapy works and in expanding the use of gene therapy beyond the treatment of cancer to the treatment of vision loss and this milestone reinforces the potential of this breakthrough approach in treating a wide-range of challenging diseases. The culmination of decades of research has resulted in three gene therapy approvals this year for patients with serious and rare diseases. I believe gene therapy will become a mainstay in treating, and maybe curing, many of our most devastating and intractable illnesses, said FDA Commissioner Scott Gottlieb, M.D. Were at a turning point when it comes to this novel form of therapy and at the FDA, were focused on establishing the right policy framework to capitalize on this scientific opening. Next year, well begin issuing a suite of disease-specific guidance documents on the development of specific gene therapy products to lay out modern and more efficient parameters including new clinical measures for the evaluation and review of gene therapy for different high-priority diseases where the platform is being targeted.Luxturna is approved for the treatment of patients with confirmed biallelic RPE65 mutation-associated retinal dystrophy that leads to vision loss and may cause complete blindness in certain patients.

Hereditary retinal dystrophies are a broad group of genetic retinal disorders that are associated with progressive visual dysfunction and are caused by mutations in any one of more than 220 different genes. Biallelic RPE65 mutation-associated retinal dystrophy affects approximately 1,000 to 2,000 patients in the U.S. Biallelic mutation carriers have a mutation (not necessarily the same mutation) in both copies of a particular gene (a paternal and a maternal mutation). The RPE65 gene provides instructions for making an enzyme (a protein that facilitates chemical reactions) that is essential for normal vision. Mutations in the RPE65 gene lead to reduced or absent levels of RPE65 activity, blocking the visual cycle and resulting in impaired vision. Individuals with biallelic RPE65 mutation-associated retinal dystrophy experience progressive deterioration of vision over time. This loss of vision, often during childhood or adolescence, ultimately progresses to complete blindness.

Luxturna works by delivering a normal copy of the RPE65 gene directly to retinal cells. These retinal cells then produce the normal protein that converts light to an electrical signal in the retina to restore patients vision loss. Luxturna uses a naturally occurring adeno-associated virus, which has been modified using recombinant DNA techniques, as a vehicle to deliver the normal human RPE65 gene to the retinal cells to restore vision.

The approval of Luxturna further opens the door to the potential of gene therapies, said Peter Marks, M.D., Ph.D., director of the FDAs Center for Biologics Evaluation and Research (CBER). Patients with biallelic RPE65 mutation-associated retinal dystrophy now have a chance for improved vision, where little hope previously existed.

Luxturna should be given only to patients who have viable retinal cells as determined by the treating physician(s). Treatment with Luxturna must be done separately in each eye on separate days, with at least six days between surgical procedures. It is administered via subretinal injection by a surgeon experienced in performing intraocular surgery. Patients should be treated with a short course of oral prednisone to limit the potential immune reaction to Luxturna.

The safety and efficacy of Luxturna were established in a clinical development program with a total of 41 patients between the ages of 4 and 44 years. All participants had confirmed biallelic RPE65 mutations. The primary evidence of efficacy of Luxturna was based on a Phase 3 study with 31 participants by measuring the change from baseline to one year in a subjects ability to navigate an obstacle course at various light levels. The group of patients that received Luxturna demonstrated significant improvements in their ability to complete the obstacle course at low light levels as compared to the control group.

The most common adverse reactions from treatment with Luxturna included eye redness (conjunctival hyperemia), cataract, increased intraocular pressure and retinal tear.

The FDA granted this application Priority Review and Breakthrough Therapy designations. Luxturna also received Orphan Drug designation, which provides incentives to assist and encourage the development of drugs for rare diseases.

The sponsor is receiving a Rare Pediatric Disease Priority Review Voucher under a program intended to encourage development of new drugs and biologics for the prevention and treatment of rare pediatric diseases. A voucher can be redeemed by a sponsor at a later date to receive Priority Review of a subsequent marketing application for a different product. This is the 13th rare pediatric disease priority review voucher issued by the FDA since the program began.

To further evaluate the long-term safety, the manufacturer plans to conduct a post-marketing observational study involving patients treated with Luxturna.

The FDA granted approval of Luxturna to Spark Therapeutics Inc. The FDA, an agency within the U.S. Department of Health and Human Services, protects the public health by assuring the safety, effectiveness, and security of human and veterinary drugs, vaccines, and other biological products for human use, and medical devices. The agency also is responsible for the safety and security of our nations food supply, cosmetics, dietary supplements, products that give off electronic radiation, and for regulating tobacco products.

Luxturna is the first gene therapy approved in the U.S. to target a disease caused by mutations in a specific gene

Andrea Fischer301-796-0393

888-INFO-FDAOCOD@fda.hhs.gov

###

Read more from the original source:

FDA approves novel gene therapy to treat patients with a rare form of ...

Adeno-Associated Virus (AAV) as a Vector for Gene Therapy

BioDrugs. 2017; 31(4): 317334.

1Janssen Research and Development, 200 McKean Road, Spring House, PA 19477 USA

1Janssen Research and Development, 200 McKean Road, Spring House, PA 19477 USA

1Janssen Research and Development, 200 McKean Road, Spring House, PA 19477 USA

2BiStro Biotech Consulting, LLC, Bridgewater, NJ 08807 USA

1Janssen Research and Development, 200 McKean Road, Spring House, PA 19477 USA

2BiStro Biotech Consulting, LLC, Bridgewater, NJ 08807 USA

Open AccessThis article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

There has been a resurgence in gene therapy efforts that is partly fueled by the identification and understanding of new gene delivery vectors. Adeno-associated virus (AAV) is a non-enveloped virus that can be engineered to deliver DNA to target cells, and has attracted a significant amount of attention in the field, especially in clinical-stage experimental therapeutic strategies. The ability to generate recombinant AAV particles lacking any viral genes and containing DNA sequences of interest for various therapeutic applications has thus far proven to be one of the safest strategies for gene therapies. This review will provide an overview of some important factors to consider in the use of AAV as a vector for gene therapy.

The discovery of DNA as the biomolecule of genetic inheritance and disease opened up the prospect of therapies in which mutant, damaged genes could be altered for the improvement of the human condition. The recent ability to rapidly and affordably perform human genetics on hundreds of thousands of people, and to sequence complete genomes, has resulted in an explosion of nucleic acid sequence information and has allowed us to identify the gene, or genes, that might be driving a particular disease state. If the mutant gene(s) could be fixed, or if the expression of overactive/underactive genes could be normalized, the disease could be treated at the molecular level, and, in best case scenarios, potentially be cured. This concept seems particularly true for the treatment of monogenic diseases, i.e. those diseases caused by mutations in a single gene. This seemingly simple premise has been the goal of gene therapy for over 40years.

Until relatively recently, that simple goal was very elusive as technologies to safely deliver nucleic acid cargo inside cells have lagged behind those used to identify disease-associated genes. One of the earliest approaches investigated was the use of viruses, naturally occurring biological agents that have evolved to do one thing, i.e. deliver their nucleic acid (DNA or RNA) into a host cell for replication. There are numerous viral agents that could be selected for this purpose, each with some unique attributes that would make them more or less suitable for the task, depending on the desired profile [1]. However, the undesired properties of some viral vectors, including their immunogenic profiles or their propensity to cause cancer have resulted in serious clinical adverse events and, until recently, limited their current use in the clinic to certain applications, for example, vaccines and oncolytic strategies [2]. More artificial delivery technologies, such as nanoparticles, i.e. chemical formulations meant to encapsulate the nucleic acid, protect it from degradation, and get through the cell membrane, have also achieved some levels of preclinical and clinical success. Not surprisingly, they also have encountered some unwanted safety signals that need to be better understood and controlled [3].

Adeno-associated virus (AAV) is one of the most actively investigated gene therapy vehicles. It was initially discovered as a contaminant of adenovirus preparations [4, 5], hence its name. Simply put, AAV is a protein shell surrounding and protecting a small, single-stranded DNA genome of approximately 4.8kilobases (kb). AAV belongs to the parvovirus family and is dependent on co-infection with other viruses, mainly adenoviruses, in order to replicate. Initially distinguished serologically, molecular cloning of AAV genes has identified hundreds of unique AAV strains in numerous species. Its single-stranded genome contains three genes, Rep (Replication), Cap (Capsid), and aap (Assembly). These three genes give rise to at least nine gene products through the use of three promoters, alternative translation start sites, and differential splicing. These coding sequences are flanked by inverted terminal repeats (ITRs) that are required for genome replication and packaging. The Rep gene encodes four proteins (Rep78, Rep68, Rep52, and Rep40), which are required for viral genome replication and packaging, while Cap expression gives rise to the viral capsid proteins (VP; VP1/VP2/VP3), which form the outer capsid shell that protects the viral genome, as well as being actively involved in cell binding and internalization [6]. It is estimated that the viral coat is comprised of 60 proteins arranged into an icosahedral structure with the capsid proteins in a molar ratio of 1:1:10 (VP1:VP2:VP3) [6]. The aap gene encodes the assembly-activating protein (AAP) in an alternate reading frame overlapping the cap gene. This nuclear protein is thought to provide a scaffolding function for capsid assembly [7]. While AAP is essential for nucleolar localization of VP proteins and capsid assembly in AAV2, the subnuclear localization of AAP varies among 11 other serotypes recently examined, and is nonessential in AAV4, AAV5, and AAV11 [8].

Although there is much more to the biology of wild-type AAV, much of which is not fully understood, this is not the form that is used to generate gene therapeutics. Recombinant AAV (rAAV), which lacks viral DNA, is essentially a protein-based nanoparticle engineered to traverse the cell membrane, where it can ultimately traffic and deliver its DNA cargo into the nucleus of a cell. In the absence of Rep proteins, ITR-flanked transgenes encoded within rAAV can form circular concatemers that persist as episomes in the nucleus of transduced cells [9]. Because recombinant episomal DNA does not integrate into host genomes, it will eventually be diluted over time as the cell undergoes repeated rounds of replication. This will eventually result in the loss of the transgene and transgene expression, with the rate of transgene loss dependent on the turnover rate of the transduced cell. These characteristics make rAAV ideal for certain gene therapy applications. Following is an overview of the practical considerations for the use of rAAV as a gene therapy agent, based on our current understanding of viral biology and the state of the platform. The final section provides an overview for how rAAV has been incorporated into clinical-stage gene therapy candidates, as well as the lessons learned from those studies that can be applied to future therapeutic opportunities.

The main point of consideration in the rational design of an rAAV vector is the packaging size of the expression cassette that will be placed between the two ITRs. As a starting point, it is generally accepted that anything under 5kb (including the viral ITRs) is sufficient [10]. Attempts at generating rAAV vectors exceeding packaging cassettes in excess of 5kb results in a considerable reduction in viral production yields or transgene recombination (truncations) [11]. As a result, large coding sequences, such as full-length dystrophin, will not be effectively packaged in AAV vectors. Therefore, the use of dual, overlapping vector strategies (reviewed by Chamberlain et al.) [12], should be considered in these cases. An additional consideration relates to the biology of the single-stranded AAV-delivered transgenes. After delivery to the nucleus, the single-stranded transgene needs to be converted into a double-stranded transgene, which is considered a limiting step in the onset of transgene expression [13]. An alternative is to use self-complementary AAV, in which the single-stranded packaged genome complements itself to form a double-stranded genome in the nucleus, thereby bypassing that process [13, 14]. Although the onset of expression is more rapid, the packaging capacity of the vector will be reduced to approximately 3.3kb [13, 14].

AAV2 was one of the first AAV serotypes identified and characterized, including the sequence of its genome. As a result of the detailed understanding of AAV2 biology from this early work, most rAAV vectors generated today utilize the AAV2 ITRs in their vector designs. The sequences placed between the ITRs will typically include a mammalian promoter, gene of interest, and a terminator (Fig.). In many cases, strong, constitutively active promoters are desired for high-level expression of the gene of interest. Commonly used promoters of this type include the CMV (cytomegalovirus) promoter/enhancer, EF1a (elongation factor 1a), SV40 (simian virus 40), chicken -actin and CAG (CMV, chicken -actin, rabbit -globin) [15]. All of these promoters provide constitutively active, high-level gene expression in most cell types. Some of these promoters are subject to silencing in certain cell types, therefore this consideration needs to be evaluated for each application [16]. For example, the CMV promoter has been shown to be silenced in the central nervous system (CNS) [16]. It has been observed that the chicken -actin and CAG promoters are the strongest of these constitutive promoters in most cell types; however, the CAG promoter is significantly larger than the others (1.7kb vs. 800bp for CMV), a consideration to take into account when packaging larger gene inserts [15].

Schematic representation of the basic components of a gene insert packaged inside recombinant AAV gene transfer vector. AAV adeno-associated virus, ITR inverted terminal repeat

Although many therapeutic strategies involve systemic delivery, it is often desirable to have cell- or tissue-specific expression. Likewise, for local delivery strategies, undesired systemic leakage of the AAV particle can result in transduction and expression of the gene of interest in unwanted cells or tissues. The muscle creatine kinase and desmin promoters have been used to achieve high levels of expression, specifically in skeletal muscle, whereas the -myosin heavy chain promoter can significantly restrict expression to cardiac muscle [15, 17]. Likewise, the neuron-specific enolase promoter can attain high levels of neuron-specific expression [18, 19]. Often is the case, systemic delivery of AAV results in a significant accumulation in the liver. While this may be desirable for some applications, AAV can also efficiently transduce other cells and tissues types. Thus, in order to restrict expression to only the liver, a common approach is to use the 1-antitrypsin promoter [20, 21]. Finally, there are now technologies that have the ability to generate novel, tissue-specific promoters, based on DNA regulatory element libraries [22].

Over the course of the past 1015years, much work has been done to understand the correlation between codon usage and protein expression levels. Although bacterial expression systems seem to be most affected by codon choice, there are now many examples of the effects of codon engineering on mammalian expression [23]. Many groups have developed their own codon optimization strategies, and there are many free services that can similarly provide support for codon choice. Codon usage has also been shown to contribute to tissue-specific expression, and play a role in the innate immune response to foreign DNA [24, 25]. With regard to the gene of interest, codon engineering to support maximal, tissue-specific expression should be performed.

Additionally, terminator/polyadenylation signal choices, the inclusion of post-transcriptional regulator elements and messenger RNA (mRNA) stability elements, and the presence of microRNA (miRNA) target sequence in the gene cassette can all have effects on gene expression [26]. The human factor IX 3 UTR, for example, was shown to dramatically increase factor IX expression in vivo, especially in the context of additional cis regulatory elements [27]. Likewise, synthetic miRNA target sequences have been engineered into the 3 UTR of AAV-delivered genes to make them susceptible to miRNA-122-driven suppression in the liver [28]. Although there is much known about these individual components that needs to be considered when designing an AAV vector, the final design will most likely need to be determined empirically. It is not yet possible to know how a particular design will function by just combining the best elements together based on published reports, therefore considerable trial and error will eventually be required for deciding on the final construct. In addition, one also needs to consider the differences between in vitro and in vivo activity. Although it is possible to model rAAV expression in rodents, there is still significant concern about the translatability to humans.

AAV has evolved to enter cells through initial interactions with carbohydrates present on the surface of target cells, typically sialic acid, galactose and heparin sulfate [29, 30]. Subtle differences in sugar-binding preferences, encoded in capsid sequence differences, can influence cell-type transduction preferences of the various AAV variants [3133]. For example, AAV9 has a preference for primary cell binding through galactose as a result of unique amino acid differences in its capsid sequence [34]. It has been postulated that this preferential galactose binding could confer AAV9 with the unique ability to cross the bloodbrain barrier (BBB) and infect cells of the CNS, including primary neurons [35, 36].

In addition to the primary carbohydrate interactions, secondary receptors have been identified that also play a role in viral transduction and contribute to cell and tissue selectivity of viral variants. AAV2 uses the fibroblast/hepatocyte growth factor receptor and the integrins V5 and 51; AAV6 utilizes the epidermal growth factor receptor; and AAV5 utilizes the platelet-derived growth factor receptor. Recently, an uncharacterized type I membrane protein, AAVR (KIAA0319L), was identified as a critical receptor for AAV cell binding and internalization [37].

As a result of these subtle variations in primary and secondary receptor interactions for the various AAV variants, one can choose a variant that possesses a particular tropism and preferentially infects one cell or tissue type over others (Table). For example, AAV8 has been shown to effectively transduce and deliver genes to the liver of rodents and non-human primates, and is currently being explored in clinical trials to deliver genes for hemoglobinopathies and other diseases [38]. Likewise, AAV1 and AAV9 have been shown to be very effective at delivering genes to skeletal and cardiac muscle in various animal models [3946]. Engineered AAV1 is currently being explored as the gene transfer factor in clinical trials for heart failure, and has been approved for the treatment of lipoprotein lipase deficiency [47]. However, although different AAV vectors have been identified that preferentially transduce many different cell types, there are still cell types for which AAV has proven difficult to transduce.

Selected AAV vectors, known receptors, and known tropisms

With the strong desire to utilize AAV to deliver genes to very selective cell and tissue types, efforts to clone novel AAV variants from human and primate tissues have identified a number of unique capsid sequences that are now being studied for tropism specificities [48]. In addition, recombinant techniques involving capsid shuffling, directed evolution, and random peptide library insertions are being utilized to derive variants of known AAVs with unique attributes [4951]. In vivo-directed evolution has been successfully used to identify novel AAV variants that preferentially transduce the retinal cells of the eye, as well as other cell populations, including those in the CNS [50, 52, 53]. In addition, these techniques have been employed to identify novel AAV variants with reduced sensitivities to neutralizing antibodies (NAbs) [5457].

Alternatively, other investigators have inserted larger binding proteins into different regions of AAV capsid proteins to confer selectivity. For example, DARPins (designed ankyrin repeat proteins), portions of protein A, and cytokines, have all been engineered into the capsid of AAV for the purpose of greater cell specificity and targeting [58, 59]. Employing this concept, others have been able to selectively target AAV to tumors and CD4+ T cells, as examples of engineered tropism [60, 61].

As we continue to learn more about the biology of AAV with regard to the mechanisms involved in membrane translocation, endosomal escape, and nuclear entry, we will undoubtedly find opportunities to engineer unique properties into viral vectors through modulating one or more of these functions. For example, it has been hypothesized that surface-exposed serine and tyrosine residues could be phosphorylated upon viral cell entry, resulting in their ubiquitination and proteolytic degradation [6264]. Studies have shown that mutation of tyrosine to phenylalanine, which prevents this phosphorylation, results in dramatically improved transduction efficiencies [63]. Similar efforts have been made in attempts to limit the effects of NAbs, as discussed below.

The choice of a particular AAV to use as a gene transfer vector is heavily reliant on several critically important criteria: (1) which cell/tissue types are being targeted; (2) the safety profile associated with the delivered gene; (3) the choice of systemic versus local delivery; and (4) the use of tissue-specific or constitutively active promoters. As one gives careful consideration to these selection criteria, it is possible to narrow the choices of which AAVs (natural or engineered) to profile. Alternatively, one can begin the path of exploring fully engineered versions of AAV for truly selective cell targeting and optimized transduction. Because our understanding of AAV biology is in relative infancy, many of these efforts will remain empirical for quite some time as optimization for one activity could have a negative impact on another. Nonetheless, the future looks promising for this highly adaptable platform.

One of the appealing aspects of using rAAV as a gene transfer vector is that it is composed of biomolecules, i.e. proteins and nucleic acids. Fortunately, a full-package virus lacks engineered lipids or other chemical components that could contribute to unwanted toxicities or immunogenicities that may not be predictable or fully understood. In general, AAV has been shown to be less immunogenic than other viruses. Although not completely understood, one possible reason for this may hinge on the observation that certain AAVs do not efficiently transduce antigen-presenting cells (APCs) [65]. Additionally, unlike previous viral delivery strategies, rAAV does not contain any viral genes, therefore there will be no active viral gene expression to amplify the immune response [66]. Although AAV has been shown to be poorly immunogenic compared with other viruses (i.e. adenovirus), the capsid proteins, as well as the nucleic acid sequence delivered, can trigger the various components of our immune system. This is further complicated by the fact that most people have already been exposed to AAV and have already developed an immune response against the particular variants to which they had previously been exposed, resulting in a pre-existing adaptive response. This can include NAbs and T cells that could diminish the clinical efficacy of subsequent re-infections with AAV and/or the elimination of cells that have been transduced. It should be of no surprise that the formidable challenge is how to deliver a therapeutically efficacious dose of rAAV to a patient population that already contains a significant amount of circulating NAbs and immunological memory against the virus [67]. Whether administered locally or systemically, the virus will be seen as a foreign protein, hence the adaptive immune system will attempt to eliminate it.

The humoral response to AAV is driven by the uptake of the virus by professional APCs, and their presentation of AAV capsid peptides in the context of class II major histocompatibility proteins (MHCs) to B cells and CD4+ T cells [68, 69]. This leads to plasma cell and memory cell development that has the capacity to secrete antibodies to the AAV capsid. These antibodies can either be neutralizing, which has the potential to prevent subsequent AAV infection, or non-neutralizing. Non-NAbs are thought to opsonize the viral particles and facilitate their removal through the spleen [70].

Upon entry of the virus into target cells during the course of the natural infection process, the virus is internalized through clathrin-mediated uptake into endosomes [71]. After escape from the endosome, the virus is transported to the nucleus where the ITR-flanked transgene is uncoated from the capsid [72]. The pathway and mechanism of AAV intracellular transport and processing is not fully understood, and there are quite a few areas of debate with regard to current understanding. The most current hypothesis is that following endosomal escape, capsid breakdown and uncoating occurs after subsequent nuclear translocation. However, it is thought that cytosolic ubiquitination of the intact virus can occur during transport to the nucleus [73]. This would be a critical step in directing capsid proteins to the proteasome for proteolytic processing into peptides for class I MHC presentation. This hypothesis is supported by data in which proteasome inhibitors, or mutations in capsid residues that are sites for ubiquitination, can limit class I presentation and T-cell activation [7376]. However, apparent differences have been observed for T-cell activation to different AAV variants with significant sequence identity. At this time, it is unclear whether this is due to subtle capsid sequence differences and susceptibility to MHC I presentation or differential cellular processing that is innate to the different AAV variants, or simply due to contaminants in vector preparations [76].

In addition to an adaptive immunological reaction to the capsid of AAV, the transgene can elicit both an adaptive and an innate response. If the transgene encodes a protein that can be recognized as foreign, it too can generate a similar B- and T-cell response. For example, in replacement therapy applications in which the protein to be replaced is the consequence of a null genotype, the immune system will have never selected against precursor B and T cells to that protein [70, 77]. Likewise, if the transgene is an engineered variant, the engineered sequence can be recognized as foreign. Even the variable regions of antibodies can activate an adaptive response that can result in deletion of target cells that are expressing transgene as a result of AAV delivery. Finally, a transgene with a significant number of CpG dinucleotides can activate innate responses through toll-like receptor (TLR) molecular pattern receptors [78].

Pre-existing immunity to AAV, especially the presence of circulating NAb, can have a dramatic effect on AAV clinical efficacy. To date, this represents one of the biggest therapeutic challenges to the use of systemically delivered AAV, and is thought to be one of the factors in early clinical failures [79]. Pre-existing immunity to AAV can often be overcome by selecting a particular AAV variant that has not circulated throughout the human population, and, therefore, does not have any memory responses elicited against it, including NAbs and T cells [80]. Additionally, some of the AAV evolution technologies discussed above have been used to identify AAVs that are resistant to the effects of NAbs [50, 57]. Although not optimal, it is possible to prescreen subjects for the presence of NAbs to the particular AAV variant to be used. In addition, the impact of this immunological response can sometimes be minimized by the particular route of administration employed for the particular therapeutic strategy, as discussed in Sect. 6 [80].

Like most biotherapeutics, AAV needs to be produced in a living system (Fig.). The parallels with recombinant antibody production during the 1990s and 2000s, with regard to the upstream challenges of robust production levels, are important to understand where the industry currently is, and where we need to strive to be.

Overview of AAV production/purification. Cell platform: HEK-293T, Sf9, or other suitable cell system can be grown on a small scale on 150mm tissue culture-treated culture dish, hyperflasks, or shake flasks. Cells are then transfected with adenovirus helper virus, rep/cap, and ITR-transgene plasmids for 293T, or infected with baculovirus for Sf9. Producer lines with integrated expression of rep/cap and ITR-transgene can be infected with adenovirus and grown to scale. Scale-up: For larger-scale culture volumes, virus can be produced in roller bottles, continuous perfusion, or WAVE Bioreactor systems. Purification/polishing: Affinity or heparin chromatography are optimal for isolation of virus from culture supernatants with or without cell pellet harvesting. Benzonase/DNAse treatment of eluted virus is required for removal of extraviral DNA contamination, followed by anion-exchange chromatography to fractionate empty vs. full AAV particles. QC/release: Upper left of far right panel: image depicts a silver stain analysis of culture FT next to affinity/anion exchange purified AAV (pure). The three bands represent the viral capsid proteins VP1, VP2, and VP3. Upper right of far right panel: Dynamic light scattering analysis of purified AAV1 indicates a uniform particle distribution of approximately 2530nM. Bottom half of far right panel: Analytical ultracentrifugation can resolve the proportion of empty vs, full particles of purified material. Additional assays that should be employed are digital drop polymerase chain reaction for determining titer in GC/mL, cryo or transmission electron microscopy for visual representation of purified particles, endotoxin testing, and other assays to evaluate the presence of residual host-cell protein contamination. AAV adeno-associated virus, FT flow-through, GC genome copies, rep/cap replication/capsid, QC quality control

Current methods to produce rAAV are still expensive despite years of research (Table). The most widely used platform for producing rAAV involves transfecting HEK293 cells with either two or three plasmids; one encoding the gene of interest, one carrying the AAV rep/cap genes, and another containing helper genes provided by either adeno or herpes viruses [6]. While most robust production rates have been achieved with adherent cells in either roller bottles or cell stacks, similar rates are now achievable in suspension-adapted HEK293 cells (Table). Production rates of approximately 105 genome copies (GC)/cell are now common, resulting in 1014 GC/L [81]. While this has proven to be sufficient to support early clinical trials, and could supply marketed product for small patient population indications, the deficiencies in scalability with this platform are a significant limitation [82, 83]. As one could surmise, successfully delivering three plasmids to one cell is a relatively inefficient process. For larger-scale manufacturing efforts, transient delivery of plasmid requires excess quantities of DNA, adding to the overall cost of production and purification. Moreover, transient delivery of rep/cap genes in the presence of helper genes can also contribute to product heterogeneity, including AAV vectors lacking a transgene. These empty capsids represent a significant proportion of virus produced in transient transfection assays. Thus, it is critically important to develop robust analytical quality control (QC) methods that are able to distinguish between these viral variants in order to ensure similarities between production lots [82, 83].

Current manufacturing platforms being employed to generate rAAV for clinical use

In three other AAV manufacturing platforms, one or more genetic components for the AAV manufacturing has been integrated into the genome of mammalian or insect production cell lines. While most viral helper genes needed for AAV production cannot be stably transfected, the adenoviral E1a and E1b genes are exceptions. These genes have been used to transform HEK293 cells, however they induce expression of the AAV rep gene, which is toxic to mammalian and insect cells [84, 85]. Hence, two different approaches have been used to develop mammalian cell lines. The first uses co-infection of BHK cells with two replication-defective HSVs engineered to encode the ITR-flanked transgene and the rep/cap genes. The second is based on stable producer cell lines in HeLa cells carrying the ITR-flanked transgene and the rep/cap genes. Rep proteins are not expressed in these cells since HeLa carries no adenoviral genes. However, infection with wild-type adenovirus is required for AAV production. The inclusion of replication-competent viral agents into a production process is a concern that needs to be addressed and also requires additional steps during the downstream processing [82, 83].

More recently, the Sf9 insect cell system in combination with baculovirus infection has been utilized to produce bulk quantities of rAAV. In this system, two or three baculovirus particles may be used to infect the Sf9 cells and initiate AAV production. In one example, one virus contains the rep gene, a second contains the cap gene, and the final virus carries the ITR-flanked gene of interest. In an alternative system, the Sf9 cells can be engineered to have the ITR-flanked gene of interest integrated into their genome, upon which production is initiated with only two baculovirus preps [81, 82]. A further improvement has recently been shown whereby the rep/cap genes are stably integrated into the Sf9 cell line genome, but are under the control of a promoter/enhancer that is induced by subsequent baculovirus infection. In this system, infection can occur, with only one baculovirus containing the ITR-flanked gene of interest, simplifying the system significantly [86, 87].

Production levels of approximately 105 GC/cell and 1015 GC/L have routinely been achieved with these Sf9 systems. Because of their ease of manipulation and their ability to grow to very high cell densities, the Sf9 system is rapidly becoming the platform of choice for AAV manufacturing. Concerns regarding baculovirus instability and differences in post-translational modifications between mammalian and insect cell systems are now beginning to be understood and controlled. These concerns are offset by the fact that baculovirus cannot efficiently infect mammalian cells which makes it inherently safer then other viral-based production systems [8183, 86, 87].

Unlike antibody manufacturing that relied on a single protein A-based purification platform early in the development of the downstream process, AAV is still rapidly evolving in that area. The products of an AAV production run will contain not only cellular debris (protein/lipids/nucleic acids) but also two main populations of AAV particles: particles that contain (full capsids) or those lacking (empty capsids) the ITR-flanked transgene. Although still widely debated in the field, the presence of empty capsids represents another contaminant that must be removed or controlled. Initial attempts to separate these two populations originally relied on the cumbersome and non-scalable method of density ultracentrifugation. In addition to the scalability issue, there are also concerns about the physiochemical effects of this method on the particles. Regardless, this method is still employed by many organizations as either a primary or secondary step in AAV purification [83].

Current technologies utilizing various affinity resins and/or ion exchange chromatography are being adopted by the industry. As mentioned above, AAV uses cell membrane-associated carbohydrates as the primary cell receptor for transduction. This affinity for carbohydrates can be exploited as an initial capture step in AAV purification. Indeed, heparin columns are frequently used in many downstream processing steps for AAV [88]. However, because of the lack of specificity, alternative affinity columns based on AAV-specific binding proteins such as scFvs and antibody single domains from llamas (camelids) have started to dominate the field. Improvements in generating these AAV-specific resins confers many advantages in downstream purification. These resins have the ability to bind to more than one AAV variant, have very high binding capacities (>1014GC/mL resin), and are stable against harsh clean-in-place and regeneration methods, making them suitable for use multiple times. Some of these commercial resins are already Good Manufacturing Practice (GMP) compliant, making them ideal for downstream manufacturing at commercial scales. Polishing steps using anion exchange chromatography are now routinely included after affinity capture steps, and can efficiently separate full capsids from empty capsids [8992].

As with any new therapeutic platform, and, again, similar to antibody-based therapeutic evolution, details on product specification and regulatory requirements are still evolving. With still very limited clinical experience, the impact of empty particles, host-cell impurities, post-translational modifications from different production platforms, fidelity of the packaged transgene, capsid ratio integrity, and probably many other specifications are still not known. However, over time, and as more clinical experience is gained, the field will be able to better relate these details to product performance and safety [83].

The use of rAAV as a delivery vector for gene therapies has been rapidly gaining interest over the past 35years. As approvals begin to increase (see Sect.6), efforts to optimize and maximize clinical manufacturing technologies will see a burst of activity. This will most likely mirror what occurred with antibody therapeutics in the 1990s and 2000s, in which early technologies were quickly overcome by next-generation technologies, resulting in significant cost savings and increased clinical supplies.

AAV has been shown to be a very stable vector able to withstand wide temperature and pH changes with little to no loss in activity [93]. To date, the only limitation seems to be the concentration with which it can be formulated, currently maximized around 51013 particles per milliliter [83]. With the resurgence in clinical use, this formulation limit will most likely be overcome in the near future. However, the robust stability of these vectors provides ample opportunities to attempt different routes of administration and specialized delivery strategies (Table).

Selected examples of more than 50 clinical candidates employing rAAV

Other than the European Medicines Agency (EMA)-approved AAV-based product alipogene tiparvovec (Glybera), the most advanced current clinical trial using AAV is sponsored by Spark Therapeutics and utilizes local injection of AAV2 into the eye for inherited retinal diseases (voretigene neparvovec-RPE65) (Table) [94]. Phase III studies have just been completed on this candidate and a Biologics License Application (BLA) submission is expected this year. This type of local delivery has proven to be safe and efficacious, but requires specialized surgical techniques and/or devices to deliver the vector [94, 95]. Similar strategies are being conducted by Applied Genetic Technologies Corporation (AGTC), targeting X-linked retinoschisis and achromatopsia, X-linked retinitis pigmentosa, and age-related macular degeneration. These programs are at various stages of development, with the most advanced for X-linked retinoschisis and achromatopsia in phase I safety studies (http://www.AGTC.com) (Table).

Several clinical trials are being run in which systemic administration is being used to target the liver, a tissue that is readily accessible through this route of administration and a tissue type that is readily transduced by many well-understood AAV variants [96]. These trials are mostly for monogenic, inherited diseases, in which the goal is gene replacement for defective genes, including those mutated in hemophilia A and B. Currently, these trials are in phase I/II, and are sponsored by academic groups, as well as biopharmaceutical companies such as Spark Therapeutics (SPK-9001, SPK-8011), Sangamo Therapeutics (SB-525), UniQure (AMT-060), Dimension Therapeutics (DTX101, DTX201), and Biomarin (BMN 270) (Table) [97]. Unlike local administration to the eye, which is considered an immune-privileged site that might not be affected by the existence of NAbs, systemic administration will require patient stratification for patient NAb levels. In addition, the possibility for re-administration becomes very difficult, should the need arise [80]. Although rare, there have been reports of rAAV vector integration into animal model genomes with subsequent genotoxicities [98, 99]. In addition, AAV genome sequences have been found in human hepatocellular carcinoma samples near known cancer driver genes, although at a low frequency [100]. There is an ongoing debate on these findings regarding cause and effect, and mouse/human translation. Regardless, hepatocellular, as well as other tissue genotoxicity, will need to be monitored in the course of AAV clinical development.

Another common delivery strategy is direct intramuscular injections. The only approved AAV gene therapy in Europe (Glybera) is an AAV1 encoding the gene for lipoprotein lipase deficiency [47, 101]. Skeletal muscle has been shown to be a target tissue type that is efficiently transduced by many AAV variants [39]. Once transduced, the muscle cells serve as a production site for protein products that can act locally or systemically, as is the case with Glybera. As a result of the low cellular turnover rate of the muscle cells, the transduced AAV gene product will be maintained in these cells as an episome for years, as has been shown in many studies in non-human primates [39]. Consequently, a single-dose regimen of an intramuscularly-delivered product may never need to be readministered unless there is significant damage or immune clearance of the transduced cells. This strategy is also being employed by Adverum and AGTC for 1-antitrypsin deficiency, as well as for certain muscular dystrophies (Table) [97].

Direct CNS administration is being utilized for Parkinsons disease, as well as various inherited diseases such as Batten disease, Canavan disease, and mucopolysaccharidosis (MPS) IIA and IIB, as well as MPS IIIa and MPS IIIb (Sanfilippo syndromes type A and type B, respectively). Phase I/II studies for these diseases using a variety of AAV variants, including AAV2, AAVrh10, and AAV9, are currently ongoing by various academic groups and biopharmaceutical companies, such as Abeona Therapeutics (ABO-101, ABO-102, ABO-201, ABO-202) [97, 102, 103]. Delivery strategies range from direct intraparenchymal administration into particular areas of the brain, intracerebroventricular, and cisternal and lumbar intrathecal routes [102]. The decision on the best route of administration is intimately related to the disease and affected areas. For example, for Parkinsons disease, according to our current understanding of disease pathogenesis and therapeutic strategies, direct injection into the putamen, substantia nigra or striatum is thought to be required. Similarly, for diseases that affect larger areas of the brain, such as Canavan disease or MPS, direct injection into the cerebellum is thought to be most beneficial [102, 103].

Alternatively, administration directly into the cerebrospinal fluid through an intrathecal route can result in wide CNS biodistribution, which is thought to be necessary for diseases such as spinal muscular atrophy (SMA) and Alzheimers disease [102106]. An alternative to cerebral spinal fluid (CSF)-based routes is the use of systemic administration of AAV variants that have been shown to cross the BBB. AAV9 has been shown to transcytosis across the BBB and transduce large sections of the CNS [36, 104, 107, 108]. This approach is currently being explored in the clinic for the treatment of SMA by AveXis (AVXS-101).

Neurodegenerative diseases represent a particular devastating health problem for which there is significant unmet medical need. These diseases of the CNS have proven to be very difficult to treat as a result of our poor understanding of their etiology and difficulty getting efficacious agents across the BBB. With regard to Alzheimers disease, although there is still some disagreement in the field, idiopathic amyloid plaque formation or generation of neurofibrillary tau tangles (NFTs), both of which are thought to be neurotoxic, are still the prevailing hypotheses behind the mechanism of many of these neuropathologies. Attempts to clear these plaques with plaque-specific antibodies have shown signs of limiting this process in animals and early-stage clinical trials [109, 110]; However, larger studies have all shown to be inconclusive at best, or failures at worst. It is unclear if these failures were because the plaque hypothesis is wrong, or if there was inefficient CNS exposure to the antibody therapeutic [110, 111]. Alternative strategies taking advantage of the safety and persistence of AAV would utilize either local administration of antibody-encoding AAVs directly to the CNS, or systemic delivery of AAVs that can cross the BBB, resulting in significantly higher CNS exposure levels of the antibody [112].

Local delivery of AAV to cardiac muscle for heart failure has been attempted in various clinical trials. In one case, Celladon failed in their attempt to deliver SERCA2A directly to the heart, and, in a second case, there is an ongoing program sponsored by UniQure to deliver S100A directly to the heart that is currently still in preclinical development [46, 113115]. Although it is not thoroughly clear why Celladon failed in the clinic, and why one would expect UniQure/BMS to succeed, there are significant differences in the delivery methods used by the two programs and the target gene delivered. Celladon used intracoronary infusion to deliver their AAV1 SERCA2A gene product, whereas UniQure is using retroinfusion and left anterior descending (LAD) coronary occlusion [41, 115]. This procedure is thought to better localize and restrict the delivered AAV9 S100A gene product to better target the heart tissue of interest. The reality of this suspected benefit will be realized in the clinic in the coming years.

Aerosolized AAV for inhaled pulmonary delivery was utilized in some of the earliest trials for cystic fibrosis (CF). Although none of these trials resulted in significant benefit or showed much of a pharmacodynamic response, they did help to show the safety of AAV when administered via this route [116118]. More importantly, the pathophysiology of CF, molecular biology of the CF transmembrane conductance regulator (CFTR) gene, and the target cell population for this type of indication exposed some key considerations when using AAV [117]. Congestion of the airways in these patients can limit AAV biodistribution after delivery, thus attenuating robust transduction [118]. In addition, the CFTR gene is over 4kb in size, putting it at the upper limit of the packaging capacity of AAV after also considering a required promoter and terminator. Finally, CFTR is expressed by the submucosal glands, which may be difficult to target efficiently [116, 117]. Nonetheless, these early efforts proved that AAV can safely deliver genes to the lung, which might be an ideal strategy for other diseases, such as influenza and other infectious diseases of the lung [119].

The field is just beginning to explore localized delivery of AAV for gene therapy applications. The stability of the virus and broad tropism for many different cell and tissue types make them ideal for most applications. There appears to be at least one AAV variant option for every tissue type of interest, with engineering and novel AAV discovery efforts sure to identify and create AAV variants with very specialized functions on demand. These efforts will undoubtedly result in new therapeutic strategies for many new indications.

The transfer of genes and other nucleic acids into cells has been a research tool in the laboratory for more than four decades. However, it was our growing understanding of the genetic components underlying certain diseases that has driven the search for true gene therapies. Progressively, research in other areas have identified other potential opportunities in which gene delivery could be applied therapeutically. In addition, limitations with current small molecule and protein therapeutic platforms have also driven the search for alternative therapeutic platforms that accommodate those limitations [120, 121]. Gene therapies accommodate all of those limitations, especially around target accessibility. As a result, the search for safe and effective gene delivery technologies has been a major focus in pharmaceutical research and development, and will hopefully represent a paradigm shift in how we approach disease-state intervention.

AAV was discovered over 50years ago and has since become one of the leading gene delivery vectors in clinical development. As a result of its unique biology, simple structure, and no known disease associations, AAV could become the vector of choice for most gene therapy applications. Gene therapy using rAAV has been demonstrated to be safe and well-tolerated in virtually every clinical setting in which it has been used. These studies, along with basic research on its biology, have revealed many facets of this vector that can be applied to future efforts.

Among the critical parameters to be considered are vector design, capsid selection, desired target cell and tissue type, and route of administration. The transgene to be delivered optimized for expression, the right AAV variant with an appropriate capsid for target cell transduction and immunoreactivity profile, and the appropriate delivery approach to maximize target tissue exposure while limiting off-tissue exposure are key focal points for AAV-based therapies.

All of these variables will be dictated by the overall therapeutic strategy which will be influenced by our understanding of the pathobiology of the disease to be treated. Will the transgene have the desired effect? Is the target cell driving the disease state? Is the turnover rate of the target cell high, requiring repeat dosing? This cannot be emphasized enough; without a strong understanding of the mechanisms driving the disease state, it will not be possible to design, discover, and develop the right gene therapeutic. Better designed trials, optimized vector construction, and novel AAV variants will certainly result in future regulatory approvals and improvements on patient outcomes and health.

Michael F. Naso, Brian Tomkowicz, and William L. Perry III are employees of Janssen Research and Development. William R. Strohl has no conflicts of interest to declare.

No funding was received for the preparation of this review.

View original post here:

Adeno-Associated Virus (AAV) as a Vector for Gene Therapy

Adverum cuts jobs, restructures to give eye gene therapy another shot – BioPharma Dive

Dive Brief:

Despite significant setbacks that have left the fate of its eye gene therapy in doubt and shares trading near all-time lows, Adverum hasnt given up.

The company is one of a few gene therapy makers aiming to develop a one-time treatment for diabetic macular edema and age-related macular degeneration, two common forms of vision loss that are treated with chronic injections of biologic medicines. But those drugs, like Eylea and Lucentis, are highly effective and considered safe, making the bar much higher for a gene therapy whose main goal is to improve convenience.

Adverums program was also beset by side effects the company once described as not seen before in ocular gene therapy, a combination of inflammation, vision loss and decrease in eye pressure observed in five trial participants.

Adverum stopped that trial, in diabetic macular edema, in 2021. At the time, some analysts suggested the company should attempt a reverse merger, a way for struggling biotechs to bring in new assets by combining with a privately held company seeking fast access to the public markets.

The company instead vowed to press on. Executives suggested testing a lower dose than previously planned with a different regimen of protective drugs could lead to better results in AMD. In 2021, the company noted that no cases of severe inflammation were observed in DME patients treated with a lower dose or in participants with AMD in another trial.

Adverum has since gained clearance from U.S. regulators for its new plan, a Phase 2 trial in AMD thatll test both the lowest dose evaluated in previous studies as well as one more than three-times lower. With shares trading at just over $1 apiece and equity harder to raise during the sectors downturn, Adverum has turned to cost-cutting to save money and fund the work. The savings could enable the company to get to one-year results from that trial, in 2023, without needing to raise more cash, wrote RBC analyst Luca Issi.

Yet Adverums odds remain long. A rival gene therapy from Regenxbio is already in Phase 3 testing in AMD, and pending positive results, could lead to an approval filing in 2024. The company remains a show-me story given its history, Issi wrote. Additionally, Adverums decision to turn to layoffs, rather than a partnership, may also signal limited strategic interest in the platform, he added.

Excerpt from:

Adverum cuts jobs, restructures to give eye gene therapy another shot - BioPharma Dive

Gene therapy: Where the action is for retinal diseases – Modern Retina

Foundation Fighting Blindness is a driving force in advancing retinal gene therapies into clinical trials.

Growth in the clinical and commercial development of gene therapies for retinal degenerative diseases has been explosive over the past decade. The rapid expansion of the field has been led by dramatic vision restoration for virtually blind patients made possible by voretigene neparvovec-rzyl(Luxturna; Spark Therapeutics), which the FDA approved in December 2017. It is the first gene therapy for the eye or any inherited retinal disease to cross the regulatory finish line in the United States. Developed by gene therapy pioneer Jean Bennett, MD, PHD, for children and adults with Leber congenital amaurosis (LCA) or retinitis pigmentosa (RP) caused by biallelic RPE65 mutations, the therapy provided immediate and impressive vision improvements in a phase 1/2 clinical trial at Childrens Hospital of Philadelphia. Those initial results, reported in 2008, sent a strong signal to investigators and biotechnology companies that gene therapy could be a powerful modality for treating retinal diseases.

Now, dozens of companies are in the retinal gene therapy development space and more than 20 clinical trials for genetic therapies are underway for patients with a broad range of retinal degenerative diseases. These include RP, LCA, choroideremia, achromatopsia, and the dry and wet forms of age-related macular degeneration (AMD).

The Foundation Fighting Blindness, the worlds leading private funder of retinal degenerative research, has played a pivotal role in advancing retinal gene therapies into clinical development. As an early funder of the modality for myriad retinal diseases, the foundation began investing in RPE65 gene therapy research back in the mid-1990s and ultimately invested $10 million in the research that eventually led to voretigene neparvovec.

We were very early adopters, recognizing that the retina was an ideal gene therapy target. Its a small, accessible piece of tissue, and many conditions that affect the retina are monogenic. We knew that if we could directly address the patients mutated gene by augmenting or modifying its activity, we had an excellent opportunity to save and restore vision, said Benjamin Yerxa, PhD, chief executive officer at the foundation. Furthermore, we see gene therapys potential for gene-agnostic applications such as neuroprotection and optogenetics to help a broad range of patients, regardless of the mutated gene causing their vision loss.

The foundation currently funds a broad range of gene therapies and other treatment modalities at both early and late stages of development. Its RD (Retinal Degeneration) Fund, a venture philanthropy fund with nearly $120 million in commitments, was launched in 2018 to help investigators and start-up companies move their emerging therapies into and through early-stage clinical trials. The funds goal is to attract additional investments from pharmaceutical and biotechnology companies to fund the more expensive, late-stage trial phases. Furthermore, all returns on the funds investments are put back into the foundation to support additional research and investments.

The ultimate goal of the RD Fund is to get more treatments across the finish line and out to patients. We cant afford to fund late-stage clinical research, which often costs a hundredmillion dollars or more, but we can afford the earlier-stage research to attract those major investments from biotechs and big pharma, said Yerxa.

In fall 2021, the RD Fund took the bold step of launching its own company, Opus Genetics, to develop gene therapies for orphan retinal diseases, those rare conditions that werent being addressed by other companies. Opus $19 million in seed financing included investments from the Manning Family Foundation and Bios Partners. Its first 3 targets are for LCA caused by mutations in LCA5, RDH12, and NMNAT1. The LCA5 and RDH12 therapies were developed preclinically by Opus cofounder Bennett and licensed from the University of Pennsylvania. The NMNAT1 treatment was developed in the laboratory by cofounder Eric A. Pierce, MD, PhD, and licensed from Harvard Medical Schools Massachusetts Eye and Ear. Opus plans to launch a clinical trial for LCA5 by the end of 2022. In April 2022, the company signed a collaboration agreement with Resilience to provide manufacturing services for its gene therapy pipeline.

In October 2020, the RD Fund realized its first financial win when Novartis acquired Vedere Bio for around $280 million. In 2019, the fund had helped launch Vedere Bio to advance an optogenetic therapy developed by its scientific cofounders John G. Flannery, PhD, and Ehud Isacoff, PhD, from the University of California, Berkeley. The investigators approacha gene-agnostic gene therapyprovides potential vision restoration for patients who have lost all their photoreceptors to a condition such as RP by delivering a gene that expresses a light-sensing green cone opsin in surviving ganglion cells. In essence, the treatment enables ganglion cells to work like a back-up system for lost photoreceptors. The approach holds promise for restoring vision for patients who are completely or nearly blind, regardless of the mutation causing their disease. A new incarnation of the company, Vedere Bio II, was subsequently launched after the Novartis acquisition to continue development of other retinal gene therapies.

Also in 2020, the RD Fund invested in the gene therapy start-up Atsena Therapeutics, which reported early, encouraging vision improvements for 3 patients in a phase 1/2 clinical trial for its LCA (GUCY2D mutations) gene therapy. Cofounded by Shannon E. Boye, PhD, and Sanford L. Boye, MS, both of the University of Florida in Gainesville, Atsena also has preclinical gene therapy programs for X-linked retinoschisis and Usher syndrome type 1B.

SparingVision, another RD Fund investment, is planning to launch a clinical trial in 2022 for its gene-agnostic, cone-preserving therapy for patients with RP, Usher syndrome, and related conditions. Nearly 2 decades ago, Jos-Alain Sahel, MD, and Thierry Lveillard, PhD, investigators from the Institut de la Vision in Paris, France, identified a protein secreted by rod photoreceptors that is critical to the survival of cones. Aptly named rod-derived cone-viability factor, it is the protein expressed by SparingVisions cone-preserving gene therapy. The company is also developing a gene therapy that restores light sensitivity to cones that have lost their ability to process light due to advanced forms of RP, Usher syndrome, and related diseases.

The RD Funds other gene-related therapy investments include SalioGen Therapeutics, whose Saliogase technology seamlessly inserts new DNA of any size (eg, the Stargardt disease gene ABCA4) into precise, defined genomic locations. The fund also invests in ProQR Therapeutics, which has an RNA therapy in a phase 2/3 clinical trial for individuals with Usher syndrome 2A and nonsyndromic RP caused by mutations in exon 13 of the USH2A gene.

We are off to a great start with our investments and working to continue to expand our portfolio with the strategy of investing in strong science being developed by well-managed companies, said Yerxa. I think our coinvestors recognize and appreciate our commitment to making every shot on goal really count.

View original post here:

Gene therapy: Where the action is for retinal diseases - Modern Retina

Lysogene Provides Additional Update on AAVance Phase 2/3 Gene Therapy Clinical Trial with LYS-SAF302 in children with MPS IIIA – Business Wire

PARIS--(BUSINESS WIRE)--Regulatory News:

Lysogene (Paris:LYS)(FR0013233475 LYS), a phase 3 gene therapy platform Company targeting central nervous system (CNS) diseases, today communicates additional preliminary data from the AAVance Phase 2/3 gene therapy trial in MPS IIIA (NCT03612869). Data will be presented at the ADVANCE 2022 Sanfilippo Community Conference held on July 7-8, 2022, and at the 3rd Annual Gene Therapy for Neurological Disorders Europe held on July 11-13, 2022.

A positive effect of LYS-SAF302 on the MPS IIIA disease biomarker heparan sulfate (HS) in the cerebrospinal fluid (CSF) was confirmed in additional subjects and at additional timepoints relative to previously communicated partial data. Statistically significant decreases of about 20% in average levels of total HS-derived oligosaccharides in the CSF relative to baseline levels were observed at 6, 12 and 24 months after dosing with LYS-SAF302. HS levels at 24 months after dosing with LYS-SAF302 (1654 497 ng/ml, mean SD, n=15) were decreased by 22% relative to baseline levels (2159 589 ng/ml, mean SD, n=16), p=0.015 by Student's t test (preliminary analysis). No statistically significant effect on serum HS levels was observed at 6, 12 or 24 months after dosing with LYS-SAF302. These results confirm the biological activity of LYS-SAF302 gene therapy treatment. They are consistent with the intraparenchymal mode of administration of LYS-SAF302, which is expected to lead to a specific decrease of HS in the brain, but not in the systemic circulation nor in other tissues, including the spinal cord.

The previous observation that treatment with LYS-SAF302 led to a transient increase in serum neurofilament light (NFL) levels, likely due to transient axonal damage caused by brain surgery, followed by a decrease below baseline levels, was confirmed in additional subjects and at additional timepoints. Moreover, a similar effect was demonstrated in the CSF. In the serum, NFL levels decreased by 33% (n=12, p=0.026) and 41% (n=16, p=0.0075) below baseline levels (113 50 pg/ml, mean SD, n=19), 18 and 24 months after dosing with LYS-SAF302, respectively. In the CSF, NFL levels decreased by 33% (n=15, p=0.025) below baseline levels (3.7 1.5 ng/ml, mean SD, n=17) 24 months after dosing with LYS-SAF302. All statistical analyses were done by Students t test and are preliminary. These results suggest that treatment with LYS-SAF302 led to a decrease in neuronal damage relative to baseline at 18 and 24 months after drug administration.

Three subjects in AAVance, treated at 10, 13 and 31 months of age, present continuous increase of cognitive, language and motor functions 24 months after dosing with LYS-SAF302, as assessed by the BSID-III (Bayleys Scales of Infant Development, Third edition). Two of these subjects have a cognitive developmental age (DA) at 24 months after dosing with LYS-SAF302 that is 5-6 months higher (41 and 42, respectively) than the highest cognitive DA (35) observed in natural history studies of MPS IIIA (Shapiro et al, 2016; Wijburg et al 2022). Remarkably, one of these subjects is homozygous for a severe mutation (deletion) and the other subject is compound heterozygous for two severe mutations (a duplication and a deletion). The third subject with continuously increasing DA at 24 months after dosing with LYS-SAF302 is a compound heterozygote for a severe mutation and a S298P mutation, which may give rise to either a classical severe or an intermediate phenotype. Longer follow-up is warranted to confirm positive evolution of development in this patient. Three other subjects, treated at 24, 30 and 31 months of age, have stable cognitive DA relative to baseline, as assessed by the BSID-III scale, and stable or continuously increasing BSID-III language and motor development scores at 24 months after dosing with LYS-SAF302. Two of these subjects have SGSH missense mutations associated with the classical severe phenotype of MPS IIIA. One subject has a severe mutation on one allele and a mutation with unknown effect on disease severity on the second allele. The fact that developmental progression or stabilization is seen in subjects with mutations associated with the classical severe disease phenotype suggests that early therapeutic intervention with LYS-SAF302 can protect children with MPS IIIA from decline of cognitive, language, and motor functions.

The AAVance trial Month 24 database lock took place as planned on 1st of July 2022. Full study results are expected by mid-September 2022, along with results from the PROVide patient reported outcome videos study. Based on this comprehensive clinical data package, the company plans to initiate discussions with regulatory authorities in the US and in Europe to determine next steps.

Preliminary data for AAVance indicates that subjects with MPS IIIA treated prior to 31 months of age not only continued with increasing developmental age, but exceeded developmental ages of any MPS IIIA subjects within the natural history cohorts. This data is highly suggestive of LYS-SAF302 efficacy in this treatment population, marking an important milestone as no treatment is currently available to slow the progression of MPS IIIA, said Raymond Wang, M.D., Director, Foundation of Caring Multidisciplinary Lysosomal Disorder Program at CHOC Childrens Specialists, Orange, CA, USA, and one of the principal investigators for the AAVance trial.

We are very pleased to confirm on a larger scale the encouraging data already observed earlier, notably stabilization or improvement in cognitive, language and motor functions in the younger patient population, even in those presenting with severe forms of the disease. We have recently locked the database of the 24-month post-treatment follow-up data. Full statistical analyses are underway with results expected in September this year. This represents a very exciting milestone as it completes years of efforts by the Lysogene team to bring a treatment to patients with MPSIIIA, a disease with a high unmet medical need. By Q3 2022, we should have the necessary elements to discuss the next steps with the regulatory authorities, said Marie Trad, M.D. Chief Medical Officer of Lysogene.

About Lysogene

Lysogene is a gene therapy Company focused on the treatment of orphan diseases of the central nervous system (CNS). The Company has built a unique capability to enable delivery of gene therapies to the CNS to treat lysosomal diseases and other disorders of the CNS. A phase 2/3 clinical trial in MPS IIIA is ongoing. An adaptive clinical trial in GM1 gangliosidosis is also ongoing. Lysogene is also developing an innovative AAV gene therapy approach for the treatment of Fragile X syndrome, a genetic disease related to autism. The Company also entered into an exclusive worldwide license agreement with Yeda, the commercial arm of the Weizmann Institute of Science, for a novel gene therapy candidate for neuronopathic Gaucher disease and Parkinson disease with GBA1 mutations. http://www.lysogene.com.

Forward Looking Statement

This press release may contain certain forward-looking statements, especially on the Companys progress of its clinical trials and cash runway. Although the Company believes its expectations are based on reasonable assumptions, all statements other than statements of historical fact included in this press release about future events are subject to (i) change without notice, (ii) factors beyond the Companys control, (iii) clinical trial results, (iv) increased manufacturing costs, (v) potential claims on its products. These statements may include, without limitation, any statements preceded by, followed by or including words such as target, believe, expect, aim, intend, may, anticipate, estimate, plan, objective, project, will, can have, likely, should, would, could and other words and terms of similar meaning or the negative thereof. Forward-looking statements are subject to inherent risks and uncertainties beyond the Companys control that could cause the Companys actual results, performance or achievements to be materially different from the expected results, performance or achievements expressed or implied by such forward-looking statements. A further list and description of these risks, uncertainties and other risks can be found in the Companys regulatory filings with the French Autorit des Marchs Financiers, including in the 2021 universal registration document, registered with the French Markets Authorities on April 19, 2022, and future filings and reports by the Company. Furthermore, these forward-looking statements are only as of the date of this press release. Readers are cautioned not to place undue reliance on these forward-looking statements. Except as required by law, the Company assumes no obligation to update these forward-looking statements publicly, or to update the reasons actual results could differ materially from those anticipated in the forward-looking statements, even if new information becomes available in the future. If the Company updates one or more forward-looking statements, no inference should be drawn that it will or will not make additional updates with respect to those or other forward-looking statements.

This press release has been prepared in both French and English. In the event of any differences between the two texts, the French language version shall supersede.

Continue reading here:

Lysogene Provides Additional Update on AAVance Phase 2/3 Gene Therapy Clinical Trial with LYS-SAF302 in children with MPS IIIA - Business Wire

EditForce and Mitsubishi Tanabi Pharma to work on gene therapy for CNS – Labiotech.eu

EditForce, Inc. has entered into a license agreement with Mitsubishi Tanabe Pharma Corporation (MTPC) to research, develop and commercialize potential gene therapy products for a specific target disease related to the central nervous system (CNS) by utilizing EditForces pentatricopeptide repeat (PPR) protein platform technology.

MTPC and EditForce aim to create potential novel pharmaceuticals for the specific CNS disease by utilizing the drug R&D know-how and global business experience of MTPC and the novel biotechnology of EditForce.

MTPC will acquire the exclusive right to conduct the selection of drug candidate molecules, preclinical and clinical development, manufacturing, and commercialization worldwide.

Under the terms of the agreement, EditForce will receive an upfront payment and milestone payments amounting to more than 20 billion yen ($147.3 million), depending on the development stage and commercialization progress, and royalties based on worldwide sales after the launch.

I am so delighted to reach the agreement with MTPC, which has an interest in our proprietary PPR protein platform technology, said Takashi Ono, president and CEO of EditForce.

We look forward to working closely with MTPC to develop and deliver breakthrough pharmaceutical products with our technology to patients suffering from diseases.

PPR is a protein discovered in plants that regulates gene expression by binding to DNA and RNA in a sequence-specific manner. The PPR proteins are also found in humans and yeasts, and they have similar functions.

Takahiro Nakamura and Yusuke Yagi, CTO of EditForce, have focused on the PPR proteins and elucidated the mechanism that determines sequence specificity, and established a technology for creating various PPR proteins, each of which binds to a specific target DNA or RNA sequence.

It is possible to manipulate and modify the target genome and RNA both inside and outside the cell by fusion with effector proteins.

Follow this link:

EditForce and Mitsubishi Tanabi Pharma to work on gene therapy for CNS - Labiotech.eu

TC BioPharm CEO, Bryan Kobel to Speak at the "Innovating Cell and Gene Therapy Quality Control Conference 2022" – PR Newswire

During the fireside chat, moderated by Caroline Peachey, Editor of the European Pharmaceutical Review, Kobel will focus on TC BioPharm's journey as a CGT startup, the challenges the Company has faced, and the impact of quality control on its development. Kobel will also offer advice to other cell and gene therapy manufacturers and discuss the industry landscape.

The "Innovating Cell and Gene Therapy Quality Control Conference 2022" will take place virtually on July 13, 2022. For more information, visit the conference's website.

TC BioPharm manufactures young, active gamma-delta T cells exogenously using donor blood, expanding the gamma delta t-cell population into the billions and infusing these healthy donor cells into cancer patients. The Company's allogeneic unmodified gamma-delta T cell product, OmnImmune has shown positive results from its Phase 1a/2b human study evaluating its safety and tolerability. OmnImmune targets the potential treatment of relapse/refractory Acute Myeloid Leukemia ("AML"). Additionally, the FDA granted orphan drug status for OmnImmune after reviewing the trial results. TC BioPharm also received MHRA and Research Ethics Committee approvals to initiate Phase 2b/3 gamma-delta T cell therapy clinical trials of OmnImmune.

About TC BioPharm (Holdings) PLC

TC BioPharm is a clinical-stage biopharmaceutical company focused on the discovery, development and commercialization of gamma-delta T cell therapies for the treatment of cancer and viral infections with human efficacy data in acute myeloid leukemia. Gamma-delta T cells are naturally occurring immune cells that embody properties of both the innate and adaptive immune systems and can intrinsically differentiate between healthy and diseased tissue. TC BioPharm uses an allogeneic approach in both unmodified and CAR modified gamma delta t-cells to effectively identify, target and eradicate both liquid and solid tumors in cancer.

TC BioPharm is the leader in developing gamma-delta T cell therapies, and the first company to conduct phase II/pivotal clinical studies in oncology. The Company is conducting two investigator-initiated clinical trials for its unmodified gamma-delta T cell product line - Phase 2b/3 pivotal trial for OmnImmune in treatment of acute myeloid leukemia and Phase I trial for ImmuniStim in treatment of Covid patients using the Company's proprietary allogenic CryoTC technology to provide frozen product to clinics worldwide. TC BioPharm also maintains a robust pipeline for future indications in solid tumors and other aggressive viral infections as well as a significant IP/patent portfolio in the use of CARs with gamma delta t-cells and owns our manufacturing facility to maintain cost and product quality controls.

Forward Looking Statements

This press release may contain statements of a forward-looking nature relating to future events. These forward-looking statements are subject to the inherent uncertainties in predicting future results and conditions. These statements reflect our current beliefs, and a number of important factors could cause actual results to differ materially from those expressed in this press release. We undertake no obligation to revise or update any forward-looking statements, whether as a result of new information, future events or otherwise. The reference to the website of TC BioPharm has been provided as a convenience, and the information contained on such website is not incorporated by reference into this press release.

SOURCE TC BioPharm

See more here:

TC BioPharm CEO, Bryan Kobel to Speak at the "Innovating Cell and Gene Therapy Quality Control Conference 2022" - PR Newswire

AAVIATE: Gene therapy via suprachoroidal drug delivery may lower treatment burden for patients with AMD – Modern Retina

Emily Kaiser [EK]: Hello, welcome. I'm Emily Kaiser, editor of Modern Retina. I'm sitting down with Dr. Rahul Khurana to discuss the Aaviate study. Dr. Khurana, can you tell us a little bit about the Aaviate data presented at the Angiogenesis meeting?

Rahul Khurana, MD [RK]: For sure, Emily.

Aaviate is a really exciting clinical trial that I've been involved with and at Angiogenesis this year, we presented the updated data on the first two cohorts. And so to give everyone kind of a background, obviously, gene therapy is a very exciting area of interest right now.

We know there's a lot of unmet needs in our treatments of macular degeneration. You know, these treatments often are very effective, but they require a lot of treatments. And there's a high burden with our current set of treatments out there, and gene therapy offers the potential for a one-time treatment to give us long-term, anti-VEGF suppression and really a long-term answer to this kind of chronic disease.

And so Aaviate is along with many gene therapy programs, or studies, that are looking to kind of tackle this. And the thing which is interesting about Aaviate is that most of gene therapy has really looked at it the traditional approaches. Either theyve gone intravitreal, which is something we're very used to because we do these injections, or done a subretinal gene therapy delivery, which requires surgery, which is much more invasive. And Aaviate utilizes a suprachoroidal approach.

And the benefit of this is that we get good drug delivery of inhibiting anti-VEGF gene therapy, but by delivering it in the office. And one of the benefits of suprachoroidal delivery over intravitreal delivery is that in intravitreal, there is a potential for a lot of exposure of the medicine to not just the back of the eye, but also the front of the eye. And we've seen in some early gene therapy programs, a lot of complications involving inflammation and hypotony.

In a suprachoroidal approach, you can get a very high concentration to the retina with very low concentration to the anterior segment.

EK: That's really interesting. Has anything developed since the presentation?

RK: the study has been ongoing. So what I presented at Angiogenesis was the first two cohorts in the sense that those patients had been fully enrolled, and we had up to date up to six months. So that was really exciting. And we'll kind of delve into some of the details there. But there's still cohorts three, four, and five, which are now fully enrolled. So since that time, we've now fully enrolled those patients. And we're basically waiting to hear back on updates, or we were waiting to hear back those results. And we need to once they're fully enrolled, we need to have the subsequent time to see how these patients do.

EK: And what are the next steps?

RK: Part of the next steps for gene therapy is really to finish up the clinical study. The patients are all enrolled, which is wonderful. Now we want to see how they did in these higher enrolling cohorts. So one thing that we haven't talked about is what were the results that we actually found from the first two cohorts? And so as I mentioned before, Aaviate takes patients who have been previously treated so these patients who were in the study were basically patients who needed to get multiple injections.

On average, they average nearly nine injections in the previous year, which is about an injection every five weeks. And we took those patients who basically needed regular anti-VEGF therapy, and we basically offered them a super coronal injection of RGX-314, which involves a novel Aaviate vector, which encodes for an anti VEGF monoclonal antibody fragment, which is transduced, or basically transvexed, the patient's own retinal cells to produce anti-VEGF protein to effectively give you long term suppression.

And the data showed that in the first two cohorts where this was done, not only was the treatment quite safe, there was a very low rate of inflammation and no serious adverse events. But more impressively, that the number of treatments had gone down dramatically. The patients in the study were able to maintain their visual acuity, which was wonderful to see. But more importantly, the number of injections went down significantly.

As I told you, before, most of these patients needed about an injection every five weeks, and in the study, the number of injections went down nearly 70 to 79% than they had before receiving the gene therapy, they were able to maintain the visual acuity, maintain the retinal anatomy, and the number of patients who didn't even need injections was nearly 30% in the first cohort, and nearly 40% in the second cohort. And that was quite exciting because this truly was kind of delivering on the promise of a once-and-done therapy. But as I said before, we really need the long-term data to kind of see how this translates and also we need to see how higher doses if we can get better efficacy and also maintain a very good safety profile.

EK: Wow. So what does this mean for clinicians and for patients?

RK: I think it offers a really exciting hope for both our patients and physicians. As we mentioned before, we have a lot of treatment options for anti-VEGF therapy and they do work very well. The problem is that they require a lot of treatments and there's a high treatment burden, and this is challenging for patients because not all patients can come back in there's a high rate of lost to followup, non-compliance, and non-adherence to the treatment regimens. And we've seen in Phase 3 clinical studies, especially in follow up in real world practice that when patients are not getting regular treatments, they lose vision. And that's why we've it's been hard to replicate the excellent results we've seen in the Phase 3 studies in real world practice. And the hope is that if one of these gene therapy treatments can work, we can offer a really one-and-done or a much more sustainable treatment therapy for our patients, which ultimately lead to better compliance and better visual outcomes.

EK: Fantastic. Well, thank you so much for the update.

RK: My pleasure. Thanks for having me.

Note: This transcript has been lightly edited for clarity.

See the original post here:

AAVIATE: Gene therapy via suprachoroidal drug delivery may lower treatment burden for patients with AMD - Modern Retina

Gene Therapy Market is Expected to Grow Revenue up to USD 20 Billion by 2028 Know More with Infinium Global Research – Digital Journal

The Gene Therapy Market Research Report Study. Covers global and regional markets with an in-depth analysis of the overall market growth prospects. It also sheds light on the comprehensive competitive landscape of the global market with a forecast period of 2022 to 2028. The Gene Therapy Market Research Report. Further provides a dashboard overview of the key players covering successful marketing strategies, market contribution, and recent developments in historical and current contexts, along with the forecast period 2022 to 2028. The global gene therapy market was valued at USD 5.6 Billion in 2022 and is expected to reach USD 20 Billion in 2028, with a CAGR of about 24% during the forecast period.

Get a Sample Copy of the Report: https://www.infiniumglobalresearch.com/reports/sample-request/40133

The Significant Therapeutic Potential Offered by Gene Therapy is Boosting the Growth of this Market

Innovation in gene therapy for rare & cardiovascular disease treatment is growing and increasing awareness regarding the ability of gene therapy to cure diseases drives the growth of the gene therapy market. Further, several benefits such as the ability to replace defective cells help in eliminating diseases and the significant therapeutic potential offered by gene therapy is boosting the growth of this market. The rising occurrence of cancer and increasing government support for gene therapy in cancer treatment can further fuel the demand for the gene therapy market. Gene therapy has substantial potential to eradicate and counter several genetic illnesses and frequent life-threatening disorders, such as AIDS, cancer, Parkinsons disease, heart diseases, age-related disorders, and cystic fibrosis.

Moreover, the upsurge in the number of gene therapy treatment centers in developed countries and the increasing adoption of gene therapy for Oncological disorders have expected to create lucrative growth opportunities for this market. On the contrary, the high cost associated with gene therapies and the potential to give rise to other disorders is likely to restrain the growth of the gene therapy market. However, the High cost of therapy treatment will restrain the market growth during the forecast period.

This report focuses on Gene Therapy Market Status, Future Forecast, Growth Opportunities, Key Market, and Key Players. The Gene Therapy Market Report. Studies various parameters, such as raw materials, cost and technology, and consumer preferences. It also provides important market credentials such as history, various spreads, and trends, and an overview of the trade, regional markets, trade, and market competitors. It covers capital, revenue, and pricing analysis by business, along with other sections such as plans, support areas, products offered by major manufacturers, alliances, and acquisitions. Headquarters delivery.

To understand how the Impact of Covid-19 is covered in this Report:

The complete profile of the company is mentioned. And it includes capacity, production, price, revenue, cost, gross margin, sales volume, revenue, consumption, growth rate, import, export, supply, future strategies, and the technological developments that they are making the report. Historical market data Gene Therapy and forecast data from 2022 to 2028.

Major players are included in the Gene Therapy market report. They are Novartis AG, Gilead Sciences, Inc., Spark Therapeutics, Inc., Amgen Inc., Biogen Inc., Pfizer Inc., Regeneron Pharmaceuticals, Sanofi SA., Abeona Therapeutics, Inc., and Merck & Co., Inc.

Need Assistance? Send an [emailprotected] https://www.infiniumglobalresearch.com/reports/enquiry/40133

Market segmentation Gene Therapy by type (suicide gene, cancer gene, tumor suppressor gene, cytokine gene therapy, antigen gene therapy), application (neurological, cardiovascular, genetic, infectious, oncological disorders), vector type (non-viral, viral vectors)

Geographically, this report is segmented into Several Key Regions, With Sales, Revenue, Market Share, and Growth Rate of Gene Therapy in Those Regions, from 2022 to 2028

=> North America (US, Canada, and Mexico)

=> Europe (Germany, UK, France, Italy, Russia, Turkey, etc.)

=> Asia Pacific (China, Japan, Korea, India, Australia, Indonesia, Thailand, Philippines, Malaysia, and Vietnam)

=> South America (Brazil, Argentina, Colombia, etc.)

=> The Middle East and Africa (Saudi Arabia, United Arab Emirates, Egypt, Nigeria, and South Africa)

-Market Landscape: Here, the Gene Therapy Market opposition is based on value, revenue, trade, and organization-specific pie slices, market rates, cut-throat situation landscape, and market rates. Patterns, integrations, developments, acquisitions, and, in general, most recent top organizations It is part of the industry.

-Manufacturers Profiles: Here, they are considered to be the driving force for the Gene Therapy Market. It is dictated by regions marketed, major products, net margin, revenue, cost, and generation.

-Market Status and Outlook by Region: In this segment, the report studies the market size by region, net advantage, exchanges, revenue, generation, overall industry share, CAGR, and region. Here, is the Gene Therapy Market. It is studied in depth according to regions and countries such as North America, Europe, China, India, Japan, and MEA.

-Market Outlook Production Side In this report, the authors have focused on the creation and estimates regarding creation by type, key manufacturer indicators, and estimates regarding creation and creation.

-Results and Conclusions of the Research: It is one of the last parts of the report where the researchers findings and the conclusion of the exploratory study are presented.

Enquire Here Get Customization & Check Discount for Report @ https://www.infiniumglobalresearch.com/reports/customization/40133

Key Stakeholders

Raw Material Suppliers

Distributors/Traders/Wholesalers/Suppliers

Regulatory Agencies, including Government Agencies and NGOs

Research and Development (R&D) Trade Agencies

Imports and Exports, Government Agencies, Research Agencies, and Companies Consultants

Trade associations and industry groups.

End-use industries

The Study Objectives of this Report are:

To analyze the Gene Therapy Industrys status, future forecast, growth opportunity, key market, and key players.

Present the development of the Supply of Gene Therapy Market products. In the United States, Europe, and China.

Strategically profile key players and comprehensively analyze their development plans and strategies.

To define, describe and forecast the market by product type, market, and key regions.

Table of Content

Chapter 1 Preface

1.1. Report Description

1.2. Research Methods

1.3. Research Approaches

Chapter 2 Executive Summary

2.1. Gene Therapy Market Highlights

2.2. Gene Therapy Market Projection

2.3. Gene Therapy Market Regional Highlights

Chapter 3 Global Gene Therapy Market Overview

3.1. Introduction

3.2. Market Dynamics

3.2.1. Drivers

3.2.2. Restraints

3.2.3. Opportunities

3.3. Analysis of COVID-19 impact on the Gene Therapy Market

3.4. Porters Five Forces Analysis

3.5. IGR-Growth Matrix Analysis

3.6. Value Chain Analysis of Gene Therapy Market

Chapter 4 Gene Therapy Market Macro Indicator Analysis

Chapter 5 Global Gene Therapy Market by Type

5.1. Suicide Gene Therapy

5.2. Cancer Gene Therapy

5.3. Tumor Suppressor Gene Therapy

5.4. Cytokine Gene Therapy

5.5. Antigen Gene Therapy

Chapter 6 Global Gene Therapy Market by Application

6.1. Neurological Diseases

6.2. Cardiovascular Diseases

6.3. Genetic Diseases

6.4. Infectious Diseases

6.5. Oncological Disorders

Chapter 7 Global Gene Therapy Market by Vector Type

7.1. Non-viral Vectors

7.2. Viral Vectors

Chapter 8 Global Gene Therapy Market by Region 2022-2028

8.1. North America

8.2. Europe

8.3. Asia-Pacific

8.4. RoW

Chapter 9 Company Profiles and Competitive Landscape

9.1. Competitive Landscape in the Global Gene Therapy Market

9.2. Companies Profiles

9.2.1. Novartis AG

9.2.2. Gilead Sciences, Inc.

9.2.3. Spark Therapeutics, Inc.

9.2.4. Amgen Inc.

9.2.5. Biogen Inc.

9.2.6. Pfizer Inc.

9.2.7. Regeneron Pharmaceuticals

9.2.8. Sanofi SA.

9.2.9. Abeona Therapeutics, Inc.

9.2.10. Merck & Co., Inc

Reasons to Buy this Report:

=> Comprehensive analysis of global as well as regional markets of the gene therapy.

=> Complete coverage of all the product types and applications segments to analyze the trends, developments, and forecast of market size up to 2028.

=> Comprehensive analysis of the companies operating in this market. The company profile includes an analysis of the product portfolio, revenue, SWOT analysis, and the latest developments of the company.

=> Infinium Global Research- Growth Matrix presents an analysis of the product segments and geographies that market players should focus on to invest, consolidate, expand and/or diversify.

Contact Us:

If you have any queries about this report or if you would like further information, please contact us:

Name: Kishor Devchake

E-mail: [emailprotected]

Phone: +918421989712

Read the rest here:

Gene Therapy Market is Expected to Grow Revenue up to USD 20 Billion by 2028 Know More with Infinium Global Research - Digital Journal

Why Shares of Bluebird Bio, CRISPR Therapeutics, and Editas Medicine Soared This Week – The Motley Fool

What happened

The downtrodden biotech space has kicked off the second half of 2022 with a boom. Hard-hit gene-editing and gene therapy companies in particular have started the back half of the year on the right foot. Underscoring this point, Bluebird Bio (BLUE 3.59%) stock has already risen by 17% over the holiday-shortened week as of Thursday's closing bell, according to data provided by S&P Global Market Intelligence.

What's more, shares of CRISPR Therapeutics (CRSP 0.77%) have gained 22.6% over the same period, and fellow gene editor Editas Medicine (EDIT 0.33%) also saw its equity rise in price by a healthy 20.7% this week. By contrast, Bluebird and Editas shares both fell by over 50% over the first six months of 2022, while CRISPR's stock price stumbled by a noteworthy 20% during the first half of the year.

Image Source: Getty Images.

What's behind this sudden trend reversal? The most likely explanation is simply short-sellers covering their positions (buying back their borrowed shares). In keeping with this theme, Bluebird, Editas, and CRISPR all saw a sharp rise in their short interest during the first six months of 2022. Short-sellers piled into these three names earlier this year due to the fact that they are all cash flow negative, which is a tough spot to be in during a persistent bear market and an era of rising interest rates. Bluebird, in fact, is staring down a serious cash crunch at the moment.

Short-sellers, for their part, are probably backing away at this stage for no other reason than to play it safe in the event that big pharma starts to go bargain shopping.

Why might big pharma target beaten-down gene-editing and gene therapy companies in the second half of the year? The key reason is that these high-value fields are starting to move beyond the research stage of their life cycle and into the realm of commercially available therapies.

Speaking to this point, Bluebird's gene therapies for beta thalassemia and cerebral adrenoleukodystrophy appear to be on their way toward a formal approval from the Food and Drug Administration (FDA) following a pair of positive advisory committee votes last month. What's more, CRISPR is also expected to file for regulatory approval for its Vertex Pharmaceuticalspartnered blood disorder candidate, exa-cel, later this year.

Are any of these three biotech stocks still worth buying? CRISPR is arguably the most attractive bargain among the three. The company's ex-vivo gene-editing platform has posted stellar trial results so far, and Vertex could very well decide to buy its partner as a result.

Bluebird, on the other hand, is a tough call. The company ought to have a compelling buyout case if the FDA does grant it a pair of approvals soon. The bad news is that the biotech's balance sheet may force a sale at a heavily discounted price (relative to the commercial potential of its lead assets).

Finally, Editas might simply get lost in the mix when everything is said and done. There are several gene-editing companies vying for the spot of top dog, and Editas' clinical pipeline lags in several key areas at the moment. Time will tell.

George Budwell has no position in any of the stocks mentioned. The Motley Fool has positions in and recommends CRISPR Therapeutics, Editas Medicine, and Vertex Pharmaceuticals. The Motley Fool recommends Bluebird Bio. The Motley Fool has a disclosure policy.

View post:

Why Shares of Bluebird Bio, CRISPR Therapeutics, and Editas Medicine Soared This Week - The Motley Fool

PROMISING STEM CELL THERAPY IN THE MANAGEMENT OF HIV & AIDS | BTT – Dove Medical Press

Introduction

Stem cells are highly specialized cell types with an impressive ability to self-renew, able to transform into one or even more specific cell types that play a significant role in the regulation and tissue healing process.17 To self-renew, a stem divides into two identical daughter stem cells and a progenitor cell and the embryonic and adult cells contain stem cells.1,2,8

Curing patients with serious medical conditions has been the focus of all disciplines of medical research for many years. Stem cell treatment has evolved into a highly exciting and progressed field of scientific research. Major advances have recently been introduced in fundamental and translational stem-cell-based treatment studies. As stem cell research progressed, many therapeutic options were investigated. The development of therapeutic procedures has sparked a great deal of interest.1,9 Humanity has known for many years that it is possible to regenerate lost tissue. Recently, the regenerative medicine research has taken hold, defying the tremendous scientific advances in the molecular biology sciences only. Technological advances provide limitless opportunities for transformational and potentially restorative therapies for many of humanitys most illnesses. A variety of human organs have successfully yielded stem cells. Besides this, the cell therapy is rapidly bringing good advancements in the healthcare system, intending to restore and possibly replace injured tissue, as well as organs, and ultimately restore the functional capacity of the body.2,10,11

The stem cells can be obtained from various sources of Adult (Adult body tissues), Embryonic (Embryos), Mesenchyma (Connective tissue or stroma), and Induced pluripotent stem [ips] cells (Skin cells or tissue-specific cells).3,68,1215

Due to various stem cells cellular characteristics, the therapeutic clinical possibilities of stem-cell-based treatment are considered promising. These cells can regrow and restore various types of body tissues, for this reason, they are recognized as precursor cells to all kinds of cells.15 The following are the distinguishing features: 1. Self-renewal- Divide without distinction to generate an infinite supply, 2. Multi-potency- One mature cell may distinguish more than one, 3. Pluripotency- Create all sorts of cells except for embryonic membrane cells, 4. Toti- potency- Produce various sorts of cells, including embryonic stem cells.1,2,6,7,16

Stem cells are essential human cells that really can self-renew and make a distinction into particular mature cell types.3,6 The different types of stem cells are embryonic, induced pluripotent, and adult kind of cell types. They all share the important feature of self-renewal, and the ability to discern themselves. It should be mentioned that, the stem cells are not homogeneous, but instead appear in a progressive order. Totipotent stem cells are the most basic and immature stem cells. The above cells can form a complete embryo and also extra-embryonic tissue. This one-of-a-kind efficiency is only present for a short period, starting with ovum development and completing whenever the embryo achieves the 4 to 8 cell phases. Having followed that, cells that divide until they approach the blastocyst, about which point they end up losing their totipotency and acquire a pluripotent character trait, at which cells can only distinguish through each embryonic germ stack. After a few divisions, the pluripotency character trait starts to fade and the distinguishing ability has become more lineage constrained, where its cells are becoming multipotent, indicating they could only transform into the cells connected to a cell or tissue of origin.10 Many researchers believe that adult stem cells should be used in stem cell therapies.6,17

The stem cells can be transformed into a wide range of specialized functional cell types.3,18 In response to injury or maturation, those same stem cells can propagate in massive quantities.19 Adult, embryonic, and induced pluripotent stem cells are examples of stem cell-based therapies.14,15,1921 The stem cells, due to their capability to distinguish the specific cell types requisite for a diseased tissue regeneration, can provide an effective solution, while tissue and organ transplantation are considered necessary.10 The sophistication of stem cell-based treatment interventions, on the other hand, probably leads researchers to seek stable, credible, and readily available stem cell sources capable of converting into numerous lineages. As an outcome, it is critical to exercise caution when selecting the type of stem cells to be used in therapeutic trials.12,14,22

Only with the explosive growth of basic stem cell research in recent years, the comparatively recent study sector of Translational Research had also grown exponentially, starting to build on major research knowledge and insight to advance new therapies. Once the necessary regulatory clearances have been obtained, the clinical translation process can start. Translational research is important because it acts as a filtration system, ensuring that only safe and effective therapeutic approaches start making it to the clinic.23 Recent research illustrating, the successful application of stem cell transplantation to patient populations suggests that, such restorative approaches have been used to address a wide variety of complicated ailments of future concerns.19,24

Currently, clinical trials are available for a variety of stem cell-based treatments based on adult stem cells. To date, the WHO International Clinical Experiments Registration process has recorded more than 3000 experiments involved based on adult stem cells. Furthermore, preliminary trials involving novel and intriguing pluripotent stem cell therapies have been registered. These studies findings will assist the ability to comprehend and the timeframes required to obtain effective treatments and it will contribute to a better knowledge of the different disorders or abnormalities.10

The role of stem cells in modern medicine is vital, both for their widespread application in basic research and for the opportunities they provide for developing new therapeutic strategies in clinical practice.6,16 In recent times, the number of studies involving stem cells has expanded tremendously. Globally, thousands of studies claiming to use stem cells in experimental therapies have now been in the investigation field. This may give the impression that such treatments have already been shown to be extremely effective in the context of healthcare. Despite some promising results, the vast majority of stem cell-based therapeutic applications are still in the experimental stage itself.6,25

The stem cells are a valuable resource for understanding organogenesis as well as the bodys continual regenerative capacity. These cells have brought up enormous anticipations among doctors, investigators, patients, and the public at large because of their ability to distinguish into a variety of cell types.25 These cells are necessary for living beings for a variety of reasons and can play a distinguishable role. Several stem cells can play all cell types roles, and when stimulated effectively, they can also repair damaged tissue. This capability has the potential to save lives as well as treat human injuries and tissue destruction. Moreover, different kinds of stem cells could be used for several purposes, including tissue formation, cell deficiency therapeutic interventions, and stem cell donation or retrieval.3,6,26

New research demonstrating that the successful application of stem cell treatments to patients has expressed hope that such regenerative strategies might very well one day is being used to address a wide variety of problematic ailments. Furthermore, clinical trials incorporating stem cell-based therapeutics have advanced at an alarming rate in recent years. Some of these studies had a significant impact on a wide range of medical conditions.10 As a regenerative medicine strategy, cell-based treatment is widely regarded as the most fascinating field of study in advanced science and medicine. Such technological innovation paves the way for an infinite number of transformational and potentially curable solutions to some of humanitys most pressing survival issues. Moreover, it is gradually becoming the next major concern in medical services.11

Modern data, which shows that the successful stem cell transplantation in beneficiaries has raised hopes on the certain rejuvenating approaches, will one day be used to treat many different types of challenging chronic conditions.24 Preliminary data from highly innovative investigations have documented that the prospective advancement of stem cells provides a wide range of life-threatening ailments that have so far eluded current medical therapy.2,10,11 Furthermore, clinical trials involving stem cell-based therapies have advanced at an unprecedented rate. Many of these studies had a significant impact on various disorders.19 Despite the increasing significance of articles concerning viable stem cell-based treatments, the vast majority of clinical experiments have still yet to receive full authorization for stem cell treatments confirmation.11,12,27

Even though the first case of AIDS were noted nearly 27 years ago, and the etiologic agent was noticed 25 years ago, still for the effective control of the AIDS pandemic continues to remain elusive.28 The HIV epidemic started in 1981 when a new virus syndrome defined by a weakened immune system was revealed in human populations across the globe. AIDS showed up to have a substantial reduction in CD4+ cell counts and also elevated B-cell multiplication.15,2831

The agent that causes AIDS, later named HIV, is a retroviral disease with a genomic structural system made up of 2 identical single-stranded RNA particles.3234 According to the Centres for Disease Control and Prevention, with over 1.1 million Americans are presently infected with the virus.31 Compromised immune processes in HIV and AIDS, as well as partial immune restoration, barriers are confirmed for HIV disease eradication. Innovative developmental strategies are essential to maximizing virus protection and enabling the host immune response to eliminate the virus.35

The progression of HIV infection in humans is divided into the following stages of acute infection, chronic infection, and AIDS.15,36 During the acute infection phase, the circulation has a high viral replication, is extremely infectious, that may or may not demonstrate flu-like clinical signs. In the chronic stage, the viral load is lesser than in the acute stage, and individuals are still infectious but may be symptomless. The patient has come to the end stage of AIDS whenever the CD4+ cell count begins to fall below 200 cells/mm or even when opportunistic infections are advanced.15,36

There are currently two types of HIV isolated HIV-1 and HIV-2.15,37,38 However, HIV-1 is the most common cause of AIDS throughout the world, while HIV-2 is only found in a few areas of an African country. Although both virions can cause AIDS, HIV-2 infection is much more likely to occur in central nervous system disorder.15 Besides this, HIV-2 seems to be less infectious than HIV-1, and HIV-2 infection induces AIDS to develop more slowly. Even though both HIV-1 and HIV-2 have a comparable genetic structure comprised of group-specific antigen, polymerase, and envelope genes, their genome organizational structures are differed.15,3739

HIV infiltrates immune cell types, CD4+ T cell types, and monocytes, resulting in a drop in T-cell counts below a critical level and the failure of cell-mediated immune function.15,40 The glycoprotein (gp120) observed in the virion envelope comes into contact with the CD4 particle with high affinity, allowing HIV to infect T cells. By interacting with their co-receptors, CXCR4 and CCR5, the virus infiltrates T cells and monocytes. The retrovirus uses reverse transcriptase to convert its RNA into DNA after attaching it to and entering the host cell. These newly replicated DNA copies then exit the host cell and infect other cells.15,40,41

HIV-1 is a retrovirus and belongs to a subset of retroviruses known as lentiviruses.38,42 Infection is the most common global health concern around the world.15 It has destroyed the millions of peoples health and continues to wreak havoc on the individual health of millions more. The pandemic of HIV-1 is the most devastating plague in the history of humans, as well as a significant challenge in the areas of medicine, public health, and biological science of research activities.34,43 Antiretroviral therapy is the only treatment that is commonly used. This is not a curative treatment; it must be used for the rest of ones life.15 Although antiretroviral therapy has reduced significantly HIV intensity and transmission, the virus has not been eradicated, and its continued presence can lead to additional health issues.44

Infection with the human immunodeficiency virus necessitates entry into target cells, such as through adhesion of the viral envelope to CD4 receptor sites.43 Cellular antiviral responses fail to eliminate the virus, resulting in a gradual depletion of CD4+ T cells and, finally, a severely compromised immune functioning system. Unfortunately, there is no cure for the virus that destroys immunity.4447 In advanced HIV infection, memory T-cell depletion primarily affects cellular and adaptive immune responses, with a minor impact on innate immune responses.48 Globally, 37.7 million people were living with HIV in 2020, and with 1.5 million individuals are infected with the virus.49 The advancement of stem cell therapy and the conduct of implemented clinical trials have revealed that stem cell treatment has high hopes for a range of medical conditions and implementations.15

Stem cell treatment has shown impressive outcomes in HIV management and has the potential to have significant implications for HIV treatment and prevention in the future. In HIV patients, stem cell therapy helps to suppress the viral load even while enabling antiretroviral regimens to be tapered. Interestingly, this practice led to a significant improvement in procedure outcomes soon after starting antiretroviral treatment.15 Stem cell transplantation can alleviate a wide variety of diseases that are currently incurable. They could also be used to create a novel anti-infection therapy strategic plan and to enhance the treatment of immunologic conditions such as HIV infection. HIV wreaks havoc on immune system cells.30,50

The virus infects and replicates within T-helper cells (T-cells), which are white immune system cells. T-cells are also referred to as CD4 cells. HIV weakens a persons immune system over time by pulverizing more CD4 cells and multiplying itself. More pertinently, if the individual has been unable to obtain anti-retroviral medicine, he will progressively fail to control the infectious disease and illnesses.3,15,42

Despite 36 years of scientific research, investigators are still trying to cure human HIV and its potential problem, AIDS.3,5153 HIV continues to face unconquerable dangers to human survival. This virus has developed the potential to avoid anti-retroviral therapy and tends to result in victim death.52 Investigators are still looking for effective and all-encompassing treatment for HIV and its complexity, AIDS.54 This massive amount of data revealed potential AIDS treatment targets.55 Thousands of research projects have yielded a great deal of information on the elusive AIDS life cycle to date.5456 These massive amounts of data supplied possible targets for AIDS treatment.33,55,56 In HIV-infected patients, using stem cell therapy can augment the process of keeping the viral load stagnant by permitting antiretroviral regimens to be tapered.15

Overall, stem cell-based strategies for HIV and AIDS treatment have recently emerged and have become a key area of research. Ideally, effective stem cell-based therapeutic approaches might have several benefits.30 Clinical studies encompassing stem cell therapy have shown substantial therapeutic effects in the treatment of various autoimmune, degenerative, and genetic problems.15,25 Substantial progress has been developed in the treatment of HIV infection using stem cell-based techniques.30

Successfully treated, clinical studies have shown that total tissue recovery is feasible.15,57 In the early 1980s, the first stem cell transplants were accomplished on HIV-positive patients who were unsure of their viral disease. Following the above preliminary aspects, many HIV-positive patients with concurrent malignant tumours or other hematologic disorders underwent allogeneic stem cell transplantation around the world.42 After ART became a common treatment option for patients,58,59 the procedures prognosis improved dramatically. In addition, a retrospective study of 111 HIV+ transplant patients demonstrated a mildly lower overall survivorship performance in comparison to an HIV-uninfected comparison group.60

Earlier, the primary problem for people living with HIV and AIDS was immunodeficiency caused by a loss of productive T-cells. Some clinicians intended to replenish lost lymphocytes through adoptive cell transplants in the initial days before efficacious antiretroviral therapy options were available. Immunologically, it is relatively simple in an isogeneic condition, as illustrated on HIV-positive individuals with just a correlating identical twin who received T-lymphocytes and stem cell transfusions to rebuild the weak immune status of the patient.60 Cell therapy transfusion may be used to remove resting virion genomes from CD4+ immune cells and macrophages mostly through genome-editing or cytotoxic anti-viral cells.15,60 Cell technology and stem cell biological reprogramming developments have made a significant contribution to novel strategies that may give confidence to HIV healing process.3 However, human embryonic stem cells can be distinguished into significant HIV target cells, according to several research findings.30,61,62

Initially, stem cell transplantation was believed to influence the clinical significance of HIV infection, but viral regulation was not accomplished in the discipline. Moreover, improvements in stem cell transplants utilizing synthetic or natural resistant cell resources, in combination with novel genetic manipulative tactics or the advancement of cytotoxic anti-HIV effector cells, have significantly accelerated this sector of HIV cell management.60 Multiple techniques are being introduced to overcome HIV, either through protecting cells from infectious disease or by continuing to increase immune responses to the viral infection.30 The various methods are as follows: Bone marrow stem cells Therapies, Autologous stem cell transplantations, Hematopoietic stem cell transplantation, Genetical modifications of Hematopoietic stem cells (HSCT), HSCT and HAART therapeutic approach, Human umbilical cord mesenchymal stem cell transplantation, Mesenchymal stem/stromal cells (MSCs) applications, CCR5 Delta32/Delta32 Stem-Cell Transplantation, CRISPR and stem cell applications, Induced Pluripotent Stem Cells applications.

According to the findings, circulating replicative HIV remains the most significant threat to effective AIDS therapy. As a result, a method for conferring resistance to circulating HIV particles is required. The effective viral burden in the human body would be significantly reduced if it were possible to defeat reproducing HIV particles.43,44 For the treatment of AIDS, a restorative approach that relies on bone marrow stem cells has been suggested.52 The proposed treatment method captures and eventually destroys circulating HIVs using receptor-integrated red blood cells. Red blood cell membranes can be equipped with the CD4 receptor and the C-C chemokine receptor type 5 and C-X-C chemokine receptor type 4 co-receptors, which will selectively bind circulating HIV particles.15,30,32,33,43,44,46,6365

The term autologous pertains to blood-forming stem cells obtained from the patient for use as a source of fresh blood cells followed by high-dose chemotherapeutic agents.66 Lymphoma is still the biggest cause of mortality in HIV patients. Autologous stem cell recovery or transplantation with high-dose treatments has long been supported as a treatment for certain types of cancer in HIV-negative patients, including leukaemia and lymphoma. Individuals over the age of 65, as well as those with health problems such as HIV, were excluded from initial transfusion experiments. Moreover, the treatment regimen mortality of transplantation has also been reduced significantly due to its use of peripheral blood stem cells rather than bone marrow and the use of newer marginal conditioning therapeutic strategies. HIV-infected clients may be able to utilize enough stem cells for an autologous transplant advancement in HIV management. High-dose Autologous stem cell transplant (ASCT) treatments are better than conventional treatment in people with relapsed non-Hodgkin lymphoma, according to randomized trial evidence. Similarly, studies on HIV-negative people with Hodgkin Lymphoma have shown that ASCT would provide patients with repetitive illness with long-term progression-free survival.66,67 Even so, the clinical trial on Allogeneic Hematopoietic Cell Transplant for HIV Patients with Hematologic Malignancies report was explained as, the cell-associated HIV DNA and inducible infectious virus were not detectable in the blood of patients who attained complete chimerism.68

The study on long-term multilineage engraftment of autologous genome-edited hematopoietic stem cells in nonhuman primates report findings was Genome editing in hematopoietic stem and progenitor cells (HSPCs) is a potential innovative approach for the treatment of numerous human disorders. This report shows that genome-edited HSPCs engraft and contribute to multilineage repopulation following autologous transplantation in a clinically relevant large animal model, which is an important step toward developing stem cell-based genome-editing therapeutics for HIV and possibly other illnesses.69

Research on comprehensive virologic and immune interpretation in an HIV-infected participant again just after allogeneic transfusion and analytical interruption of antiretroviral treatment findings are the instance of HIV-1 cure having followed allogeneic stem cell transplantation (allo-SCT), resulting allo-SCTs in HIV-1 positive participants have failed to cure the disease. It describes adjustments in the HIV reservoir in a single chronically HIV-infected client who had undergone allo-SCT for acute lymphoblastic leukaemia treatment and was obtaining suppressive antiretroviral treatment.

To estimate the size of the HIV-1 reservoir and describe viral phylogenetic and phenotypic modifications in immune cells, the investigators just used leukapheresis to obtain peripheral blood mononuclear cells (PBMCs) from a 55-year-old man with chronic HIV infection prior and after allo-SCT. Once HIV-1 was found to be unrecognizable by numerous tests, including the PCR measurement techniques both of overall and fully integrated HIV-1 DNA, recompilation virus precise measurement by significant cell input quantifiable viral outgrowth assay, and in situ hybridization of intestine tissue, the client accepted to an analytic treatment interruption (ATI) with recurrent clinical observing on day 784 post-transplantation. He continued to remain aviremic off ART until ATI day 288, once a reduced virus rebound of 60 HIV-1 copies/mL resulted, which expanded to 1640 HIV-1 copies/mL five days later, urging ART reinitiation. Rebounding serum HIV-1 action sequences were phylogenetically distinguishable from pro-viral HIV-1 DNA discovered in circulating PBMCs before transplantation. It was indicated that allo-SCT tends to result in significant reductions in the magnitude of the HIV-1 reservoir and a >9-month ART-free cessation from HIV-1 multiplication.34

The Impact of HIV Infection on Transplant Outcomes after Autologous Peripheral Blood Stem Cell Transplantation: A Retrospective Study of Japanese Registry Data reported as ASCT is a successful treatment option for HIV-positive patients with non-Hodgkin lymphoma and multiple myeloma (MM). HIV infection was associated with an increased risk of overall mortality and relapse after ASCT for NHL in a study population.70

The procedure of delivering hematopoietic stem cells mostly through intravenous infusion to restore normal haematopoiesis or treat cancer is known as hematopoietic stem cell transplantation.71 There has recently been a rise in the desire to develop strategies for treating HIV/AIDS diseases employing human hematopoietic stem cells,30 along with this Hutter and Zaia were evaluated the background of Haematopoietic stem cell transplantation (HSCT) in HIV-infected individuals.42

Attempts to use HSCT as a technique for immunologic restoration in AIDS patients or as a therapeutic intervention for malignant tumours were initially insufficient. Regretfully, in the absence of sufficient ART, HSCT seemed to have no impact on the evolution of HIV infection, and the majority of the patients ended up dead of rapidly deteriorating immunosuppression or reoccurring lymphoma or leukaemia. A specific instance report described how an un-associated, matched donor supplied allogeneic HSCT to a patient with refractory lymphoma. The virus was unrecognizable by isolating or PCR of peripheral blood mononuclear cells commencing on day 32 after transplantation. Although HIV-1 was unrecognizable by cultural environment or PCR of several tissues examined at mortem, the patient died of recurring lymphoma on day 47. Another client who obtained both allogeneic HSCT and zidovudine had similar results, with HIV-1 becoming unnoticeable in the blood by PCR analysis. In some other particular instances, a 25-year-old woman with AIDS who obtained an allogeneic HSCT from a corresponding, unfamiliar donor after controlling with busulfan and cyclophosphamide and ART with zidovudine and IFN-2 regimen continued to live for 10 months before falling victim to adult respiratory distress. However, PCR testing of autopsy tissues revealed that they were HIV-1 negative.72

Recent research discovered significant progress towards the clinical application of stem cell-based HIV therapeutic interventions, principally illustrating the opportunity to effectively undertake a large-scale phase two HSC-based gene therapy experiment. In this investigation, the research team used autologous adult HSCs that had been transduced to a retroviral vector that usually contains a tat-vpr-specific anti-HIV ribozyme to develop cells that were less vulnerable to productive infection,73 whereas vector-containing cells have been discovered for extended periods (more than 100 weeks in most people) and CD4+ T cell gets counted were significantly high within anti-HIV ribozyme treating people group compared with the placebo group, the impacts on viral loads were minimal. The studys success, even so, is based on the realization that a stem cell-based strategy like this is being used as a more conventional and efficacious therapeutic approach.30 Some other latest clinical studies used a multi-pronged RNA-based strategic plan which included a CCR5-targeted ribozyme, an shRNA targeting tat/rev transcripts, and a TAR segment decoy.74

These crucial research findings are explained on lentiviral-based gene therapy vectors that can genetically manipulate both dividing and non-dividing HSCs and are less likely to cause cellular changes than murine retro-viral-based vectors. Long-term engraftment and multipotential haematopoiesis have been demonstrated in vector-containing and expressing cells, according to the researchers. Whereas the antiviral effectiveness was not reviewed, the results demonstrate the strategys protection, which helps to expand well for the possibility of a lentiviral-based approach in the upcoming years.30

A further approach, with a different emphasis, has been started up in the hopes of trying to direct immune function to target specific HIV to overcome barriers to attempting to clear the virus from the patient's body. These strategies use gene treatment innovations on peripheral blood cells to biologically modify cells so that they assert a receptor or chimeric particle that enables them to especially target a specific viral antigen,75 deception of HIV-infected peoples peripheral blood T cells raises issues to be addressed, such as the effects of ongoing HIV infection and ex vivo modification on the capabilities and lifetime of peripheral blood cells. Further to that, the above genetically manipulated cells would demonstrate their endogenous T cell receptors, and the representation of the newly introduced receptor could outcome in cross-receptor pairing, resulting in self-reactive T cells. Most of these deficiencies could be countered by enabling specific developmental strategies to take place that can start generating huge numbers of HIV-specific cells in a renewable, consistent way that can restore defective natural immune activity against HIV.30

One strategy being recognized is the application of B cells obtained from HSCs to demonstrate anti-HIV neutralizing specific antibodies. While animal studies have shown that neutralizing antibodies could protect against infection, and extensively neutralizing antibodies have been noticed in some HIV-infected persons, safety from a single engineered antibody might be exceptional.76,77 Realizing antibody binding and virus neutralization may assist in the development of chimeric receptors or single-chain therapeutic antibodies with recognition domains for other techniques that identify cellular immunity against HIV-infected cells.78,79 Thereby, genetically modifying HSCs to generate B cells that produce neutralizing anti-HIV specific antibodies, or engineering HSCs to enable multipotential haematopoiesis of cells that express a chimeric cellular receptor usually contains an antibody recognition domain, indicate one arm of an HSC-based engineered immunity process.30

A further technique of using HSCs that were genetically altered with molecularly cloned T-cell receptors or chimeric molecules particular to HIV to yield antigen-specific T cells. The basic difference in this strategy is that the cells produced from HSCs after standard advancement in the bone marrow and thymus are made subject to normal central tolerance modalities and are antigen-specific naive cells, and therefore do not have the ex-vivo manipulation and impaired functioning or exhaustion problems that other external cell modification methods would have. In this context, the latest actual evidence research using a molecularly cloned T cell receptor particular to an HIV-1 Gag epitope in the aspect of HLA-A*0201 revealed that HSC altered in this ability can progress into fully functioning, mature HIV specialized CD8+ T cells in human thymic tissue that conveys the acceptable constrained HLA-A*0201 particles.80 This explores the possibility of genetically engineering HSCs with a molecularly cloned receptor and signifies a step toward a better understanding and application of initiated T cell responses, which would probably result in the eradication of HIV infection from the body, similar to the natural immune function of other virus infections and pathogenic organisms.30

In an allogeneic transplantation, donor stem cells replace the patients cells.66 Allogeneic hematopoietic stem cell transplantation (HSCT) has appeared as one of the most potent treatment possibilities for many people who suffer from hemopoietic system carcinomas and non-malignant ailments.81 Both HIV-cured people have received HSCT utilizing CCR5 132 donor cells.82,83 This implies that HIV eradication necessitates a decrease in the viral reservoir through the myeloablative procedures,8486 Having followed that, immune rebuilding with HIV-resistant cells was carried out to prevent re-infection.45 The possibility of adoptive transfer of ex vivo-grown, virus-specific T-cells to prevent and control infectious diseases (eg, Cytomegalovirus and EBV) in immunocompromised patients helps to make adoptive T-cell treatment a feasible strategy to inhibit HIV rebound having followed HSCT.81,87,88

The Engineered Zinc Finger Protein Targeting 2LTR Inhibits HIV Integration in Hematopoietic Stem and Progenitor Cell-Derived Macrophages: In Vitro Study, the researchers investigated the efficacy and safety of 2LTRZFP in human CD34+ HSPCs. Researchers used a lentiviral vector to transduce 2LTRZFP with the mCherry tag (2LTRZFPmCherry) into human CD34+ HSPCs. The study findings suggest that the anti-HIV-1 integrase scaffold is an enticing antiviral molecule that could be utilised in human CD34+ HSPC-based gene therapy for AIDS patients.89

The fundamental element of HIV management is stem cell genetic modification, which involves genetically enhanced patient-derived stem cells to overcome HIV infection. In this sector, numerous experimental studies, in vitro as well as in vivo examinations, and positive outcomes for AIDS patients have been conducted.65,74 Genetic engineering for HIV-infected individuals can provide a once-only intervention that minimizes viral load, restores the immune system, and minimizes the accumulated toxicities concerned with highly active antiretroviral therapy (HAART).73 HSCs can be genetically altered, permitting for the addition of exogenous components to the progeny that protects them from direct infectious disease and/or enables them to target a specific antigen. Besides that, HSC-based strategies can enhance multilineage hemopoietic advancement by re-establishing several arms of the immune function. Eventually, as HSCs can be produced autologously, immunologic tolerance is typically high, enabling effective engraftment and subsequent distinction into the fully functioning mature hematopoietic cells.30

The utilization of human HSCs to rebuild the immune function in HIV disease is one application that tries to preserve newly formed cells from HIV infection, while another attempts to develop immune cells that attack HIV infected cells. While each initiative has many different aspects at the moment, they represent huge attention to HIV/AIDS therapies that, most likely when integrated with the other therapeutic approaches, would result in the body trying to overcome the obstacles needed for the virus to be effectively cleaned up.30

While HSC transplantation technique and processes are not accurately novel, as they are commonly and effectively used to address a wide variety of haematological diseases and malignant neoplasms,90 trying to combine them with a gene therapeutic strategy represents a unique and possibly potent therapeutic approach for HIV and AIDS-related ailments. As the results of HIV-infected patients who obtained autologous HSCT continued to improve, there was growing interest in genetically altered stem cells that were tolerant to HIV disease. Multiple logistical challenges have impeded the advancement of genetically modified hematopoietic stem cells as a conceivable therapeutic option for HIV/AIDS.72,73

UCLAs Eli and Edythe Broad Center for Restorative Medicine and Stem Cell Studies is one bit closer to constructing an instrument to arm the bodys immune system to attack and defeat HIV. Dr. Kitchen et al are the first ones to disclose the use of a chimeric antigen receptor (CAR), a genetically manipulated molecule, in blood-forming stem cells. In the experiment, the research team introduced a CAR gene into blood-forming stem cells, which were then moved into HIV-infected mice that had been genetically programmed. The scientists found that CAR-carrying blood stem cells efficiently transformed into fully functioning T cells that have the ability to kill HIV-infected cells in mice. The outcome was an 80-to-95 percentage reduction in HIV levels, suggesting that stem-cell-based genetic engineering with a CAR might be a viable and effective approach for treating HIV infection among humans. The CAR initiative, according to Dr. Kitchen, is much more able to adapt and ultimately more efficient, which can conceivably be used by others. If any further experiment showcases keep promising, the scientists expect that a practice based on their strategy will be accessible for clinical development within the next 510 years.91

HSCT and HAART therapeutic approaches in treating HIV/AIDS as the emergence of highly active antiretroviral therapy (HAART) in the 1990s improved survival rates of HIV infection, leading to a major dramatic drop in the occurrence of AIDS and AIDS-related mortalities. As an outcome, there is much less involvement with using HSCT as a therapy for HIV infection.28,33,43,67,86

A randomized clinical trial of human umbilical cord mesenchymal stem cell transplant among HIV/AIDS immunological non responders investigation, the researchers examined the clinical efficacy of transfusion of human umbilical cord mesenchymal stem cells (hUC-MSC) for immunological non-responder clients with long-term HIV disease who have an unmet medical need in the aspect of effective antiretroviral therapy. From May 2013 to March 2016, 72 HIV-infected participants were admitted in this stage of the randomized, double-blind, multi-center, placebo-controlled dose-determination investigation. They were either given a high dose of hUC-MSC of 1.5106/kg body weight as well as small doses of hUC-MSC of 0.5106/kg body weight, or a placebo application. During the 96-week follow-up experiment, interventional and immunological character traits were analysed. They found that hUC-MSC therapy was both safe and efficacious among humans. There was a significant rise in CD4+ T counts after 48 weeks of treatment in both the high-dose (P 0.001) and low-dose (P 0.001) groups, but no changes in the comparison group.92

One interesting invention made by a team of UC Davis investigators is the recognition of a particular form of stem cell that can minimize the quantity of the virus that tends to cause AIDS, thus dramatically increasing the bodys antiviral immune activity. Mesenchymal stem/stromal cells (MSCs) furnish an incredible opportunity for a creative and innovative, multi-pronged HIV cure strategic plan by augmenting prevailing HIV potential treatments. Even while no antivirals have been used, MSCs have been able to increase the hosts antiviral responses. MSC therapeutic approaches require specialized delivery systems and good cell quality regulation. The studys findings lay the proper scientific foundation for future research into MSC in the ongoing treatment of HIV and other contagious diseases in the clinical organization.35

Infection with HIV-1 necessitates the existence of both specific receptors and a chemokine receptor, particularly chemokine receptor 5 (CCR5).46 Resistance to HIV-1 infection is attained by homozygozygozity for a 32-bp removal in the CCR5 allele.93 In this investigation, stem cells were transplanted in a patient with severe myeloid leukaemia and HIV-1 infection from a donor who was homozygous to Chemokine receptor 5 delta 32. The client seemed to have no viral relapses after 20 months of transplantation and attempting to stop antiretroviral medicine. This finding highlights the essential role that CCR5 tries to play in HIV-1 infection maintenance.86

In comparison, additional HIV-1-infected people who have received allogeneic stem cell transplants with cells from CCR5 truly wild donors did not have long-term relapses from HIV-1 rebound, with 2 of these patients trying to report viral reoccurrence 12 as well as 32 weeks after analytic treatment interruption, respectively. Among these 2 patients, allogeneic stem cell transplantation probably reduced but did not eliminate latently HIV-infected cells, enabling persistent viral reservoirs to activate viral rebound. This viewpoint may not rule out the potential that allogeneic hematopoietic stem cell transplantation might result in a much more comprehensive or near-complete elimination of viral reservoirs, enabling long-term drug-free relapse of HIV-1 infection in some contexts.84 As just one report demonstrated a decade earlier, a curative treatment for HIV-1 remained elusive. The Berlin Patient has undergone 2 allogeneic hematopoietic stem cell transplantations to cure his acute myeloid leukaemia utilizing a potential donor with a homozygous genetic mutation in HIV coreceptor CCR5 (CCR532/32).15,34,46,64,65,72,82,84,86,9496 Other similar studies with CCR5 receptor targets are as follows: Automated production of CCR5-negative CD4+-T cells in a GMP compatible, clinical scale for treatment of HIV-positive patients,97 Mechanistic Models Predict Efficacy of CCR5-Deficient Stem Cell Transplants in HIV Patient Populations,98 Conditional suicidal gene with CCR5 knockout.99

Clustered regularly interspaced short palindromic repeats CRISPR/Cas9 is a promising gene editing approach that can edit genes for gain-of-function or loss-of-function mutations in order to address genetic abnormalities. Despite the fact that other gene editing techniques exist, CRISPR/Cas9 is the most reliable and efficient proven method for gene rectification.100103

Genome engineering employing CRISPR/Cas has proven to be a strong method for quickly and accurately changing specific genomic sequences. The rise of innovative haematopoiesis research tools to examine the complexity of hematopoietic stem cell (HSC) biology has been fuelled by considerable advancements in CRISPR technology over the last five years. High-throughput CRISPR screenings using many new flavours of Cas and sequential and/or functional outcomes, in specific, have become more effective and practical.104,105

The power of the CRISPR/Cas system is that it can specifically and efficiently target sequences in the genome with just a single synthetic guide RNA (sgRNA) and a single protein. Cas9 is directed to the specific DNA sequence by the sgRNA, which causes double stranded breaks and activates the cells DNA repair processes. Non-homologous end joining can cause insertiondeletion (indel) substitutions at the target location, whereas homology-directed repair can use a template DNA to insert new genetic material.104,106

The possibility for CRISPR/Cas9 to be used in the hematopoietic system was emphasised as pretty shortly after it was initiated as a new genome editing method.106,107 The efficiency with which CRISPR-mediated alteration can be used to evaluate hematopoietic stem/progenitor and mature cell function via transplantation. As a result, hematopoietic research has significantly advanced with the implementation of these technologies. Whilst single-gene CRISPR/Cas9 programming is a significant tool for testing gene function in primary hematopoietic cells, high-throughput screenings potentially offer CRISPR/Cas9 an even greater advantage in hematopoietic research.104

While understanding human haematological disorders requires the ability to mimic diseases, the ultimate goal is to transfer this innovation into therapies. Despite significant advancements in CRISPR technology, there are still barriers to overcome before CRISPR/Cas9 can be used effectively and safely in humans. CRISPR has also been used to target CCR5 in CD34+ HSPCs in an effort to make immune cells resistant to HIV infection, as CCR5 is an important coreceptor for HIV infection.104

CRISPR is a modern genome editing technique that could be used to treat immunological illnesses including HIV. The utilization of CRISPR in stem cells for HIV-related investigation, on the other end, was ineffective, and much of the experiment was done in vivo. The new research idea is about increasing CRISPR-editing efficiencies in stem cell transplantation for HIV treatment, as well as its future perspective. The possible genes that enhance HIV resistance and stem cell engraftment should be explored more in the future studies. To strengthen HIV therapy or resistance, double knockout and knock-in approaches must be used to build a positive engraftment. In the future, CRISPR/SaCas9 and Ribonucleoprotein (RNP) administration should be explored in the further investigations.108 As well as some different title studies were explained the effectiveness of the CRISPR gene editing technology on the management of HIV/AIDS including: CRISPR view of hematopoietic stem cells: Moving innovative bioengineering into the clinic,104 CRISPR-Edited Stem Cells in a Patient with HIV and Acute Lymphocytic Leukaemia,109 Sequential LASER ART and CRISPR Treatments Eliminate HIV-1 in a Subset of Infected Humanized Mice,110 Extinction of all infectious HIV in cell culture by the CRISPR-Cas12a system with only a single crRNA,111 HIV-specific humoral immune responses by CRISPR/Cas9-edited B cells,112 CRISPR-Cas9 Mediated Exonic Disruption for HIV-1 Elimination,113 RNA-directed gene editing specifically eradicates latent and prevents new HIV-1 infection,114 CRISPR/Cas9 Ablation of Integrated HIV-1 Accumulates Pro viral DNA Circles with Reformed Long Terminal Repeats,115 CRISPR-Cas9-mediated gene disruption of HIV-1 co-receptors confers broad resistance to infection in human T cells and humanized mice,116 Inhibition of HIV-1 infection of primary CD4+ T-cells by gene editing of CCR5 using adenovirus-delivered CRISPR/Cas9,117 Transient CRISPR-Cas Treatment Can Prevent Reactivation of HIV-1 Replication in a Latently Infected T-Cell Line,118 CCR5 Gene Disruption via Lentiviral Vectors Expressing Cas9 and Single Guided RNA Renders Cells Resistant to HIV-1 Infection,119 CRISPR/Cas9-Mediated CCR5 Ablation in Human Hematopoietic Stem/Progenitor Cells Confers HIV-1 Resistance In Vivo.109

Induced pluripotent stem cells (iPSCs) have significantly advanced the field of regenerative medicine by allowing the generation of patient-specific pluripotent stem cells from adult individuals. The progress of iPSCs for HIV treatment has the potential to generate a continuous supply of therapeutic cells for transplantation into HIV-infected patients. The title of the study is reported on Generation of HIV-1 Resistant and Functional Macrophages from Hematopoietic Stem Cellderived Induced Pluripotent Stem Cells. In this investigation, researchers used human hematopoietic stem cells (HSCs) to produce anti-HIV gene expressing iPSCs for HIV gene therapy. HSCs were dedifferentiated into constantly growing iPSC lines using 4 reprogramming factors and a combination anti-HIV lentiviral vector comprising a CCR5 shRNA and a human/rhesus chimeric TRIM5 gene. After directing the anti-HIV iPSCs toward the hematopoietic lineage, a large number of colony-forming CD133+ HSCs were acquired. These cells were distinguished further into functional end-stage macrophages with a normal phenotypic profile. Upon viral challenge, the anti-HIV iPSC-derived macrophages displayed good protection against HIV-1 infection. Researchers have clearly shown how iPSCs can establish into HIV-1 resistant immune cells and explain their prospective use in HIV gene and cellular therapies.120

Some other similar titles of the studies reported on the effectiveness of IPSCs on HIV/AIDS managements are as follows: Generation of HIV-Resistant Macrophages from IPSCs by Using Transcriptional Gene Silencing and Promoter-Targeted RNA,121 Generation of HIV-1-infected patients gene-edited induced pluripotent stem cells using feeder-free culture conditions,122 A High-Throughput Method as a Diagnostic Tool for HIV Detection in Patient-Specific Induced Pluripotent Stem Cells Generated by Different Reprogramming Methods,123 Genetically edited CD34+ cells derived from human iPS cells in vivo but not in vitro engraft and differentiate into HIV-resistant cells,124 Engineered induced-pluripotent stem cell-derived monocyte extracellular vesicles alter inflammation in HIV humanized mice,125 Sustainable Antiviral Efficacy of Rejuvenated HIV-Specific Cytotoxic T Lymphocytes Generated from Induced Pluripotent Stem Cells.126

Recently, one HIV patient appeared to be virus-free after having undergone a stem-cell transfusion in which their WBCs were changed with HIV-resistant variations.84 Timothy Ray Brown also noted as the Berlin patient, who is still virus-free, was the first individual to undertake stem-cell transplantation a decade earlier. The most recent patient, like Brown, had a type of leukaemia that was vulnerable to chemo treatments. They required a bone marrow transplantation, which involved removing their blood cells and replacing them with stem cells from a donor cell.5,31,34,41,127130 Rather than simply choosing a suitable donor, Ravindra Gupta et al chose one who already had 2 copies of a mutant within the CCR5 gene,128,131 which provides resistance to HIV infection.3

Additionally, this gene encodes for a specific receptor of white blood cells that are assisted in the bodys immunological responses. The transplant, according to Guptas team, completely replaced the clients White cells with HIV-resistant forms.41,83 Cells in the patients blood disrupted expressing the CCR5 receptor, making it unfeasible for the clients form of HIV to infect the above cells again. The scientists determined that the virus had been cleared from the patients blood after the transplantation. Besides that, after 16 months, the client has withdrawn antiretroviral treatment. The infection was not detected in the most recent follow-up, which occurred 18 months after the treatment was discontinued. Adam, also known as the London patient, was the second person to be cured of HIV as a result of a stem cell transfusion. This discovery is an important step forward in HIV research because it may aid in the detection of potential future therapeutic interventions. It must be noted, but even so, that this is not an extensively used HIV treatment. For HIV-infected patients, antiretroviral drugs have been the foremost therapeutic option.3,31,41,94,129,130 It also encourages many investigators and clinicians to look at the use of stem cells in the treatment of a wide range of serious medical conditions. The reprogramming abilities of stem cells, as well as their accessibility, have created a window of opportunity in medical research. The clinical utility of stem cells is forecast to expand rapidly in the coming years.

On Feb 15, 2022, scientific researchers confirmed that a woman had become the 3rd person in history to be successfully treated for HIV, the virus that causes AIDS, after just receiving a stem-cell transfusion that has used cells from cord blood. Within those transplant recipients, adult hematopoietic stem cells have been used; these are stem cells that eventually develop into all blood cell types, which include white blood cells, these are a vital component of the immune framework. Even so, the woman who had fairly recently been completely cured of HIV infection had a more unique experience than that of the 2 men who were actually cured before her.132

The clients physician, Dr. JingMei Hsu of Weill Cornell Medicine in New York, informed them that, she had been discharged from the hospital just 17 days after her procedure was performed, even with no indications of graft vs host ailment. The woman was HIV-positive but also had acute myeloid leukaemia, a blood cancer of the bone marrow that affects blood-forming cells. She had likely received cord blood as a successful treatment for both her cancer and HIV once her doctors decided on a potential donor well with HIV-blocking gene mutation. Cord blood comprises a high accumulation of hematopoietic stem cells; the blood is obtained during a childs birth and donated by the parents.132

The patients donor was partly nearly matched, and she received stem cells from a close family member to enhance her immune function after the transfusion. The procedure was performed on the woman in August of 2017. She chose to discontinue taking antiretroviral drugs, the standardized HIV intervention, 37 months upon her transfusion. After more than 14 months, there is no evidence of the viral infection or antibodies against it in her blood. Umbilical cord blood, in reality, is much more commonly accessible and simpler to try to match to beneficiaries than bone marrow. Perhaps, some research suggests that the method could be more available to HIV patients than bone marrow transplantation. Nearly 38 million people worldwide are infected with HIV. The potential for using partly matched umbilical cord blood transplantation increases the chances of choosing appropriate suitable donors for these clients considerably.132

It is really exciting to see the earlier terminally ill diseases of being effectively treated. In recent times, there has been a surge of focus on stem cell research.3 Stem cell therapy advancements in inpatient care are receiving a growing amount of attention.20 HIV/AIDS has been and remains a significant health concern around the world. Effective control of the HIV pandemic will necessitate a thorough understanding of the viruss transmission.32

Despite concerns about full compliance and adverse reactions, HAART has demonstrated to be able to succeed and is a sign specifically targeted form of treatment against HIV advancement. As illustrated by the first case of HIV infection relapse attained by bone marrow transplant, anti-HIV HPSC-based stem cell treatment and genotype technology have established a possible future upcoming technique to try to combat HIV/AIDS.

Investigators have conducted experiments with engineering distinct anti-HIV genetic traits trying to target different phases of HIV infection utilizing advanced scientific modalities. In numerous in vivo and in vitro animal studies, HSPCs and successive mature cells were secured from HIV infection by trying to target genetic factors in the infection. Anti-HIV gene engineering of HSPCs is safe and efficacious.15

The number of stem-cell-based research trials has risen in recent years. Thousands of studies claiming to use stem cells in experimental therapies have been registered worldwide. Despite some promising results, the majority of clinical stem cell technologies are still in their early life. These achievements have drawn attention to the possibility of the potential and advancement of various promising stem cell treatments currently in development.11

HIV remains a major danger to humanity. This virus has developed the ability to evade antiretroviral medication, resulting in the death of individuals. Scientists are constantly looking for a treatment for HIV/AIDS that is both effective and efficient.52 The 1st treatments in HIV+ clients were conducted in the early 1980s, even though they were cognizant of their viral disease. Following these early cases, allogeneic SCT was used to treat HIV+ patients with associated cancer or other haematological disorders all over the world. Stem cell transplantation developments have also stimulated the improvement of innovative HIV therapeutic approaches, especially for large goals like eradication and relapse.60

Numerous stem cell therapy progressions have been recognized with autologous and allogeneic hematopoietic stem cell transplantation, as well as umbilical cord blood mesenchymal stem cell transplant in AIDS immunologic non-responders. Whereas this sector continues to advance and distinguishing directives for these cells become much more effective, totipotent stem cells such as hESC and the recently reported induced pluripotent stem cells (iPSC) could be very useful for genetic engineering methods to counter hematopoietic abnormalities such as HIV disease.133135

Immunocompromised people are at a higher risk of catching life-threatening diseases. The perseverance of latently infected cells, which is formed by viral genome inclusion into host cell chromosomes, is a significant challenge in HIV-1 elimination. Stem cell therapy is producing impressive patient outcomes, illustrating not only the broad relevance of these strategies but also the huge potential of cell and gene treatment using adult stem cells and somatic derivative products of pluripotent stem cells (PSCs).

Stem cells have enormous regeneration capacity, and a plethora of interesting therapeutic uses are on the frontier. This is a highly interdisciplinary scientific field. Evolutionary biologists, biological technicians, mechanical engineers, and others that have evolved novel concepts and decided to bring them to medical applications are required to make important contributions. Further to that, recent advancements in several different research areas may contribute to stem cell application forms that are novel. Several hurdles must be conquered, however, in the advancement of stem cells. On the other hand, this discipline appears to be a promising and rapidly expanding research area.

Stem cell-based approaches to HIV treatment resemble an innovative approach to trying to rebuild the ravaged bodys immune system with the utmost goal of eliminating the virus from the body. We will probably see effective experiments from the next new generation of stem cell-based strategies shortly, which will start serving as a base for the further development and use of these techniques in a range of treatment application areas for other chronic diseases.

My immense pleasure was mentioned to family members and friends, who supported and encouraged me in every activity.

There was no funding for this work.

The authors declare that they have no conflicts of interest in relation to this work.

1. Zakrzewski W, Dobrzyski M, Szymonowicz M, Rybak Z. Stem cells: past, present, and future. Stem Cell Res Ther. 2019;10:68. doi:10.1186/s13287-019-1165-5

2. Nadig RR. Stem cell therapy hype or hope? A review. J Conserv Dent JCD. 2009;12:131138. doi:10.4103/0972-0707.58329

3. Tasnim KN, Adrita SH, Hossain S, Akash SZ, Sharker S. The prospect of stem cells for HIV and cancer treatment: a review. Pharm Biomed Res. 2020;6:1726.

4. Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science. 2000;287:14421446. doi:10.1126/science.287.5457.1442

5. Pernet O, Yadav SS, An DS. Stem cellbased therapies for HIV/AIDS. Adv Drug Deliv Rev. 2016;103:187201. doi:10.1016/j.addr.2016.04.027

6. Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respir Int Rev Thorac Dis. 2013;85:310.

7. Ebrahimi A, Ahmadi H, Ghasrodashti ZP, et al. Therapeutic effects of stem cells in different body systems, a novel method that is yet to gain trust: a comprehensive review. Bosn J Basic Med Sci. 2021;21:672701. doi:10.17305/bjbms.2021.5508

8. Introduction stem cells. Available from: https://www.dpz.eu/en/platforms/degenerative-diseases/research/introduction-stem-cells.html. Accessed December 19, 2021.

9. Hu J, Chen X, Fu S. Stem cell therapy for thalassemia: present and future. Chin J Tissue Eng Res. 2018;22:3431.

10. Aly RM. Current state of stem cell-based therapies: an overview. Stem Cell Investig. 2020;7:8. doi:10.21037/sci-2020-001

11. Chari S, Nguyen A, Saxe J. Stem cells in the clinic. Cell Stem Cell. 2018;22:781782. doi:10.1016/j.stem.2018.05.017

12. De Luca M, Aiuti A, Cossu G, Parmar M, Pellegrini G, Robey PG. Advances in stem cell research and therapeutic development. Nat Cell Biol. 2019;21:801811. doi:10.1038/s41556-019-0344-z

13. Hipp J, Atala A. Sources of stem cells for regenerative medicine. Stem Cell Rev. 2008;4:311. doi:10.1007/s12015-008-9010-8

14. Bobba S, Di Girolamo N, Munsie M, et al. The current state of stem cell therapy for ocular disease. Exp Eye Res. 2018;177:6575. doi:10.1016/j.exer.2018.07.019

15. Khalid K, Padda J, Fernando RW, et al. Stem cell therapy and its significance in HIV infection. Cureus. 2021;13. doi: 10.1038/d41586-019-00798-3

16. Gq D, Morrell CN, Tarango C. Stem cells: roadmap to the clinic. J Clin Invest. 2010;121:120. doi:10.1172/JCI39828

17. Prentice DA. Adult Stem Cells. Circ Res. 2019;124:837839. doi:10.1161/CIRCRESAHA.118.313664

18. McKee C, Chaudhry GR. Advances and challenges in stem cell culture. Colloids Surf B Biointerfaces. 2017;159:6277. doi:10.1016/j.colsurfb.2017.07.051

19. Prez Lpez S, Otero Hernndez J. Advances in stem cell therapy. In: Lpez-Larrea C, Lpez-Vzquez A, Surez-lvarez B, editors. Stem Cell Transplantation. New York, NY: Springer US; 2012:290313.

20. Zhang F-Q, Jiang J-L, Zhang J-T, Niu H, X-Q F, Zeng -L-L. Current status and future prospects of stem cell therapy in Alzheimers disease. Neural Regen Res. 2020;15:242250. doi:10.4103/1673-5374.265544

21. Hu L, Zhao B, Wang S. Stem-cell therapy advances in China. Hum Gene Ther. 2018;29:188196. doi:10.1089/hum.2017.224

22. Tadlock D Stem cell basics introduction; 19.

23. Poulos J. The limited application of stem cells in medicine: a review. Stem Cell Res Ther. 2018;9:1. doi:10.1186/s13287-017-0735-7

24. Madl CM, Heilshorn SC, Blau HM. Bioengineering strategies to accelerate stem cell therapeutics. Nature. 2018;557:335342. doi:10.1038/s41586-018-0089-z

Follow this link:

PROMISING STEM CELL THERAPY IN THE MANAGEMENT OF HIV & AIDS | BTT - Dove Medical Press

Sio Gene Therapies Inc. (NASDAQ:SIOX) Short Interest Up 33.4% in June – Defense World

Sio Gene Therapies Inc. (NASDAQ:SIOX Get Rating) was the recipient of a significant increase in short interest in the month of June. As of June 15th, there was short interest totalling 239,800 shares, an increase of 33.4% from the May 31st total of 179,800 shares. Approximately 0.5% of the companys shares are short sold. Based on an average daily volume of 825,400 shares, the days-to-cover ratio is currently 0.3 days.

A number of large investors have recently added to or reduced their stakes in the stock. Suvretta Capital Management LLC increased its position in Sio Gene Therapies by 7.7% during the fourth quarter. Suvretta Capital Management LLC now owns 5,914,000 shares of the companys stock worth $7,629,000 after acquiring an additional 425,000 shares during the period. Privium Fund Management UK Ltd acquired a new stake in Sio Gene Therapies during the fourth quarter worth about $2,367,000. Clearline Capital LP grew its stake in Sio Gene Therapies by 79.7% during the first quarter. Clearline Capital LP now owns 392,691 shares of the companys stock worth $263,000 after buying an additional 174,185 shares in the last quarter. Finally, Marshall Wace LLP acquired a new stake in Sio Gene Therapies during the third quarter worth about $103,000.

NASDAQ SIOX opened at $0.37 on Friday. The firm has a market capitalization of $26.92 million and a P/E ratio of -0.43. The firms fifty day moving average price is $0.34 and its two-hundred day moving average price is $0.69. Sio Gene Therapies has a 1 year low of $0.23 and a 1 year high of $2.74.

Sio Gene Therapies Company Profile (Get Rating)

Sio Gene Therapies, Inc, a clinical-stage company, focuses on developing gene therapies to radically transform the lives of patients with neurodegenerative diseases. The company develops AXO-Lenti-PD, in vivo lentiviral gene therapy, which is in Phase II clinical trials for the treatment of Parkinson's disease; AXO-AAV-GM1, an investigational gene therapy , which is in Phase I/II clinical trials for the treatment of GM1 gangliosidosis; and AXO-AAV-GM2, an investigational gene therapy, which is in Phase I/II clinical trials for the treatment of GM2 gangliosidosis.

See Also

Receive News & Ratings for Sio Gene Therapies Daily - Enter your email address below to receive a concise daily summary of the latest news and analysts' ratings for Sio Gene Therapies and related companies with MarketBeat.com's FREE daily email newsletter.

See the original post:

Sio Gene Therapies Inc. (NASDAQ:SIOX) Short Interest Up 33.4% in June - Defense World

Adverum Biotechnologies Presents Research Pipeline Data Supporting Utility of its Proprietary Platform and AAV.7m8 Capsid in Ocular Gene Therapy -…

REDWOOD CITY, Calif., May 19, 2022 (GLOBE NEWSWIRE) -- Adverum Biotechnologies, Inc. ( ADVM), a clinical-stage gene therapy company targeting unmet medical needs in ocular and rare diseases, today will announce new research pipeline data supporting the utility of its proprietary adeno-associated virus (AAV) vector platform in ocular gene therapy. These new data will be featured in oral presentations during the American Society of Gene and Cell Therapy (ASGCT) 2022 Annual Meeting in Washington, D.C. and virtually.

Adverum is an industry leader in the development of adeno-associated virus ocular gene therapy, including cassette engineering and vectorizing therapeutic proteins, and we are pleased to have multiple presentations highlighting our platform at ASGCT. As we continue to prepare for the initiation of a Phase 2 trial of ADVM-022 for wet AMD in the third quarter of 2022, we are also advancing other research programs toward the clinic and expanding our pipeline in ocular gene therapy by building on the potential of a single in-office intravitreal injection with our proprietary AAV.7m8 capsid, said Brigit Riley, Ph.D., chief scientific officer at Adverum Biotechnologies. We are excited to present non-clinical data on ADVM-062 (AAV.7m8-L-opsin) for blue cone monochromacy, which received Orphan Drug Designation by the U.S. Food and Drug Administration in January 2022, and continue to advance this program toward an investigational new drug application submission. Adverum continues the technical advances of our in-house adeno-associated virus manufacturing processes. Finally, we are maturing a portfolio of proprietary vectors with specific ocular cell tropism and are excited to showcase our innovative work on LSV1, a novel capsid for ocular gene therapy.

ADVM-062 for Blue Cone Monochromacy (BCM) Data Highlights

LSV1 Data Highlights

About Blue Cone Monochromacy

BCM is an X-linked recessive hereditary condition caused by the absence of function in the L and the M opsin genes and can manifest in loss of visual acuity, photosensitivity, myopia and infantile nystagmus that can persist into adulthood. Consequently, individuals with BCM have visual impairments to important aspects of daily living such as facial recognition, learning, reading, and daylight vision. Currently, BCM affects approximately 1 to 9 in 100,000 males, worldwide and there is no cure for BCM.

About ADVM-062 Gene Therapy

ADVM-062 (AAV.7m8-L-opsin) is a novel gene therapy product candidate being developed to deliver a functional copy of the OPN1LW gene to the foveal cones of patients suffering from blue cone monochromacy (BCM) via a single IVT injection. ADVM-062 utilizes Adverums propriety vector capsid, AAV.7m8. In January 2022, the FDA granted Orphan Drug Designation to ADVM-062.

About Adverum Biotechnologies

Adverum Biotechnologies ( ADVM) is a clinical-stage gene therapy company targeting unmet medical needs in serious ocular and rare diseases. Adverum is evaluating its novel gene therapy candidate, ADVM-022, as a one-time, intravitreal injection for the treatment of patients with neovascular or wet age-related macular degeneration. For more information, please visit http://www.adverum.com.

Forward-looking Statements

Statements contained in this press release regarding events or results that may occur in the future are forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. Actual results could differ materially from those anticipated in such forward-looking statements as a result of various risks and uncertainties, including risks inherent to, without limitation: Adverums novel technology, which makes it difficult to predict the timing of commencement and completion of clinical trials; regulatory uncertainties; the results of early clinical trials not always being predictive of future clinical trials and results; and the potential for future complications or side effects in connection with use of ADVM-022. Additional risks and uncertainties facing Adverum are set forth under the caption Risk Factors and elsewhere in Adverums Securities and Exchange Commission (SEC) filings and reports, including Adverums Quarterly Report on Form 10-Q for the quarter ended March 31, 2022 filed with the SEC on May 12, 2022. All forward-looking statements contained in this press release speak only as of the date on which they were made. Adverum undertakes no obligation to update such statements to reflect events that occur or circumstances that exist after the date on which they were made.

Inquiries

Anand ReddiVice President, Head of Corporate Strategy and External Affairs & EngagementAdverum Biotechnologies, Inc.T: 650-649-1358

Investors

Laurence WattsGilmartin GroupT: 619-916-7620E: [emailprotected]

Media

Megan TalonAssociate Director, Corporate CommunicationsAdverum Biotechnologies, Inc.T: 650-649-1006E: [emailprotected]

View post:

Adverum Biotechnologies Presents Research Pipeline Data Supporting Utility of its Proprietary Platform and AAV.7m8 Capsid in Ocular Gene Therapy -...

A look at prospects for the US gene therapy industry – BioPharma-Reporter.com

Today, you could estimate that one family per day is being treated with and impacted by gene therapy. We want to see that increase to 10s, 100s, 1,000s per day, and reaching that goal comes from investing in research, clinical trials and manufacturing, said Ken Mills, CEO of clinical stage US biotechnology company, Regenxbio.

Regenxbio, said its CEO, has played a pivotal role in the gene therapy industry since its founding in 2008, as a result of research from the lab of gene therapy pioneer, Jim Wilson, University of Pennsylvania.

The company's NAV technology platform consists of over 100 novel adeno-associated virus (AAV) vectors, one of which was used in the US Food and Drug Administration (FDA) approved gene therapy, ZOLGENSMA, for spinal muscular atrophy in children under two years old.

The developer has also licensed out its technology to a growing list of partners and licensees that includes Novartis, Eli Lily and Pfizer and has a robust in-house pipeline of candidates for retinal and rare diseases.

Looking at the US gene therapy regulatory landscape, what are the current roadblocks?

AAV-mediated gene therapies offer the possibility of a one-time administration that could address the underlying disease and change the way critical medicine is delivered to patients, but the regulatory landscape has not evolved as quickly as the innovations of AAV gene therapy.

Weve seen that the FDA is open to working with industry and gene therapy stakeholders to determine the appropriate path forward, to streamline clinical development and get medicines to patients faster. Leveraging accelerated approvals and surrogate endpoints in clinical trials, such as a biomarker, may play a large role, Mills told BioPharma-Reporter.

The Pathway Development Consortium (PDC) launched in 2021 by Regenxbio and Solid Biosciences is working to advance opportunities to leverage the FDAs accelerated approval pathway for gene therapy candidates.

Our mission to bring together patients, industry, regulators, academia, payers and other stakeholders for meaningful scientific and policy discussion, said the CEO.

There is a significant strain on manufacturing capabilities in the gene therapy sector both capacity and reproducibility, but more importantly, talent, commented Mills.

As the sector has grown rapidly and expanded broadly, we have seen these rate-limiting factors continue to persist. In addition, significant strain on supply chains is likely to continue into 2022 and will impact pharma and biotech. Consistent, reliable manufacturing is critical to gene therapy trial development, product approval, and commercialization, so it is crucial to overcome these capabilities challenges.

Contract development and manufacturing organizations (CDMOs) are critical partners, said the executive, and he anticipates continued investment in manufacturing capabilities through in-house facilities and CDMOs next year.

And as the field continues to advance, we will start to see more and more efficiencies that companies like Regenxbio can capitalize upon to allow for rapid manufacturing and formulation development.

Regenxbio has invested in the establishment of a robust suspension cell culture-based manufacturing process and new manufacturing facility at its headquarters in Rockville, Maryland.

We have also invested to ensure the hiring of the right people to make this possible. Five to 10 years ago, you did not see a lot of process development teams, and now they are crucial to drive the scalability of capabilities across clinical and commercial strategy.

Through the expansion of its expert manufacturing team and facility build out, he said the companys researchers and process development team have been able to work side by side to mitigate potential issues early in the development process.

The goal is always to get therapies approved and to patients as quickly as possible, and a reliable, scalable chemistry, manufacturing and controls (CMC) process is crucial in accomplishing this, said Mills.

Our philosophy initially was to develop the best process platform that could be utilized across multiple programs with a highly similar process that could be easily transferred to a CDMO. We also have a platform downstream process developed that works across our programs, giving consistent downstream yields that are appropriate for the current phase of development.

We have developed proprietary formulations that are indication-specific. The formulations are stable at the intended storage conditions over several years and we have ongoing monitoring of product quality during that period to ensure consistent performance.

In terms of the highlights for the biotech this year, Mills said it was a fast paced, high-achieving 12 months for the company.

In September, we announced a partnership with AbbVie to develop and commercialize RGX-314, our gene therapy for the treatment of wet AMD, diabetic retinopathy, and other chronic retinal diseases. Under the terms of the agreement, AbbVie will provide Regenxbio a US$370m upfront payment with the potential for the company to receive up to US$1.38bn in additional development, regulatory and commercial milestones.

We are currently running a pivotal program of RGX-314 for the treatment of wet AMD, and we expect to file a BLA in 2024. We are also conducting additional trials evaluating RGX-314 delivered directly to the suprachoroidal space of the eye for the treatment of wet AMD and diabetic retinopathy. In 2021, we reported initial data from both of those trials.

Regenxbio also announced, early in 2021, a new pipeline candidate for treating Duchenne muscular dystrophy (Duchenne) - RGX-202. That is designed, said Mills, to deliver an optimized microdystrophin transgene with a unique C-terminal domain and a muscle specific promoter to support targeted therapy for improved resistance to muscle damage associated with Duchenne.

We received Orphan Drug Designation from the FDA in November and shared that we expect to submit an Investigational New Drug (IND) application to the FDA for RGX-202 by the end of 2021.

Commercial-scale cGMP material has already been produced at 1,000 liter capacity using our suspension cell culture manufacturing process, and the company's internal cGMP facility is expected to allow for production up to 2,000 liters for the clinical development of RGX-202.

Follow this link:

A look at prospects for the US gene therapy industry - BioPharma-Reporter.com

Taysha Gene Therapies Added to the ICE Biotechnology Index – BioSpace

DALLAS--(BUSINESS WIRE)-- Taysha Gene Therapies, Inc. (Nasdaq: TSHA), a patient-centric, pivotal-stage gene therapy company focused on developing and commercializing AAV-based gene therapies for the treatment of monogenic diseases of the central nervous system (CNS) in both rare and large patient populations, today announced that it has been added to the ICE Biotechnology Index (NYSE:ICEBIO) in accordance with the annual reconstitution of the index, effective prior to the U.S. market open on Monday, December 20, 2021.

Tayshas inclusion in this key biotechnology index provides important validation of our platform and value proposition as a company, said RA Session II, President, Founder and CEO of Taysha. We remain focused on executing our near-term clinical and regulatory milestones, which we believe will continue to increase our visibility within the investment community.

The ICE Biotechnology Index tracks the performance of qualifying U.S.-listed biotechnology companies classified within the Biotechnology Sub-Industry Group of the ICE Uniform Sector Classification schema, which is a multi-asset class industry classification taxonomy developed by ICE. The index includes companies that are engaged in the research and development of therapeutic treatments but are not focused on the commercialization and mass production of pharmaceutical drugs. The index also includes companies that are engaged in the production of tools or systems that enable biotechnology processes.

About Taysha Gene Therapies

Taysha Gene Therapies (Nasdaq: TSHA) is on a mission to eradicate monogenic CNS disease. With a singular focus on developing curative medicines, we aim to rapidly translate our treatments from bench to bedside. We have combined our teams proven experience in gene therapy drug development and commercialization with the world-class UT Southwestern Gene Therapy Program to build an extensive, AAV gene therapy pipeline focused on both rare and large-market indications. Together, we leverage our fully integrated platforman engine for potential new cureswith a goal of dramatically improving patients lives. More information is available at http://www.tayshagtx.com.

View source version on businesswire.com: https://www.businesswire.com/news/home/20211223005097/en/

Read more:

Taysha Gene Therapies Added to the ICE Biotechnology Index - BioSpace