Gene Therapy Net – News, Conferences, Vectors, Literature …

Posted on: 22 March 2018, source: GizmodoOn Tuesday, a 13-year-old boy from New Jersey was at the center of medical history as he became the first person in the US to receive an FDA-approved gene therapy for an inherited disease. The event marks the beginning of a new era of medicine, one in which devastating genetic conditions that we are born with can be simply edited out of our DNA with the help of modern biomedical technologies. The therapy, Luxturna, from Spark Therepeutics, was approved by the FDA in December to treat a rare, inherited form of blindness. Its price tag, set at $850,000or $425,000 per eyemade it the most expensive drug in the US and sparked mass sticker-shock. But the therapy, which in high-profile clinical trials has allowed patients to see the stars for the first times, also offered the almost miraculous possibility of giving sight to the blind.

View post:

Gene Therapy Net – News, Conferences, Vectors, Literature …

Gene Therapy – Sumanas, Inc.

Gene Therapy

A few years ago, a clinical trial began in France in the hope of curing children with a type of genetic immune deficiency called SCID-X1. Children with this disease have a defective gene, called gamma-c, which prevents a subset of the cells of the immune system from forming, and predisposes the children to life-threatening infections. In an attempt to cure the childrenwho would otherwise die at a young agephysicians used gene therapy to provide them with normal gamma-c genes.

This particular trial has had striking success as well as tragedy. Eight of the eleven children are currently thriving. However, in two cases the therapy successfully introduced gamma-c genes, but these children have since developed leukemia. In both children, a gamma-c gene inserted next to another gene, called LMO2. The LMO2 gene has previously been linked to leukemia, and scientists speculate that the insertion of the gamma-c gene next to LMO2 may have overstimulated the gene, causing T cells to proliferate in excess. An LMO2 effect, in combination with the proliferation-inducing effects of the gamma-c gene itself, may be the cause of the leukemia in these two patients. Scientists are still investigating other possible causes.

From this single trial, it is clear that gene therapy holds significant promise, yet it is also clear that it poses significant risks. To learn more about the application of gene therapy in SCID, view the accompanying animation.

Read more:

Gene Therapy – Sumanas, Inc.

Gene Therapy Retrovirus Vectors Explained

A retrovirus is any virus belonging to the viral family Retroviridae. All The genetic material in retroviruses is in the form of RNA molecules, while the genetic material of their hosts is in the form of DNA. When a retrovirus infects a host cell, it will introduce its RNA together with some enzymes into the cell. This RNA molecule from the retrovirus must produce a DNA copy from its RNA molecule before it can be considered part of the genetic material of the host cell. Retrovirus genomes commonly contain these three open reading frames that encode for proteins that can be found in the mature virus. Group-specific antigen (gag) codes for core and structural proteins of the virus, polymerase (pol) codes for reverse transcriptase, protease and integrase, and envelope (env) codes for the retroviral coat proteins (see figure 1). Figure 1. Genome organisation of retroviruses.

The process of producing a DNA copy from an RNA molecule is termed reverse transcription. It is carried out by one of the enzymes carried in the virus, called reverse transcriptase. After this DNA copy is produced and is free in the nucleus of the host cell, it must be incorporated into the genome of the host cell. That is, it must be inserted into the large DNA molecules in the cell (the chromosomes). This process is done by another enzyme carried in the virus called integrase (see figure 2).

Now that the genetic material of the virus is incorporated and has become part of the genetic material of the host cell, we can say that the host cell is now modified to contain a new gene. If this host cell divides later, its descendants will all contain the new genes. Sometimes the genes of the retrovirus do not express their information immediately.

Retroviral vectors are created by removal op the retroviral gag, pol, and env genes. These are replaced by the therapeutic gene. In order to produce vector particles a packaging cell is essential. Packaging cell lines provide all the viral proteins required for capsid production and the virion maturation of the vector. These packaging cell lines have been made so that they contain the gag, pol and env genes. Early packaging cell lines contained replication competent retroviral genomes and a single recombination event between this genome and the retroviral DNA vector could result in the production of a wild type virus. Following insertion of the desired gene into in the retroviral DNA vector, and maintainance of the proper packaging cell line, it is now a simple matter to prepare retroviral vectors (see figure 3).

One of the problems of gene therapy using retroviruses is that the integrase enzyme can insert the genetic material of the virus in any arbitrary position in the genome of the host. If genetic material happens to be inserted in the middle of one of the original genes of the host cell, this gene will be disrupted (insertional mutagenesis). If the gene happens to be one regulating cell division, uncontrolled cell division (i.e., cancer) can occur. This problem has recently begun to be addressed by utilizing zinc finger nucleases or by including certain sequences such as the beta-globin locus control region to direct the site of integration to specific chromosomal sites.

Gene therapy trials to treat severe combined immunodeficiency (SCID) were halted or restricted in the USA when leukemia was reported in three of eleven patients treated in the French X-linked SCID (X-SCID) gene therapy trial. Ten X-SCID patients treated in England have not presented leukemia to date and have had similar success in immune reconstitution. Gene therapy trials to treat SCID due to deficiency of the Adenosine Deaminase (ADA) enzyme continue with relative success in the USA, Italy and Japan.

As a reaction to the adverse events in the French X-SCID gene therapy trial, the Recombinant DNA Advisory Committee (RAC) sent a letter to Principal Investigators Conveying RAC Recommendations in 2003. In addition, the RAC published conclusions and recommendations of the RAC Gene Transfer Safety Symposium in 2005. A joint working party of the Gene Therapy Advisory Committee and the Committee on Safety of Medicines (CSM) in the UK lead to the publication of an updated recommendations of the GTAC/CSM working party on retroviruses in 2005.

Read the original:

Gene Therapy Retrovirus Vectors Explained

Gene Therapy | Pfizer: One of the world’s premier …

Gene therapy is a technology aimed at correcting or fixing a gene that may be defective. This exciting and potentially transformative area of research is focused on the development of potential treatments for monogenic diseases, or diseases that are caused by a defect in one gene.

The technology involves the introduction of genetic material (DNA or RNA) into the body, often through delivering a corrected copy of a gene to a patients cells to compensate for a defective one, using a viral vector.

The technology involves the introduction of genetic material (DNA or RNA) into the body, often through delivering a corrected copy of a gene to a patients cells to compensate for a defective one, using a viral vector.

Viral vectors can be developed using adeno-associated virus (AAV), a naturally occurring virus which has been adapted for gene therapy use. Its ability to deliver genetic material to a wide range of tissues makes AAV vectors useful for transferring therapeutic genes into target cells. Gene therapy research holds tremendous promise in leading to the possible development of highly-specialized, potentially one-time delivery treatments for patients suffering from rare, monogenic diseases.

Pfizer aims to build an industry-leading gene therapy platform with a strategy focused on establishing a transformational portfolio through in-house capabilities, and enhancing those capabilities through strategic collaborations, as well as potential licensing and M&A activities.

We’re working to access the most effective vector designs available to build a robust clinical stage portfolio, and employing a scalable manufacturing approach, proprietary cell lines and sophisticated analytics to support clinical development.

In addition, we’re collaborating with some of the foremost experts in this field, through collaborations with Spark Therapeutics, Inc., on a potentially transformative gene therapy treatment for hemophilia B, which received Breakthrough Therapy designation from the US Food and Drug Administration, and 4D Molecular Therapeutics to discover and develop targeted next-generation AAV vectors for cardiac disease.

Gene therapy holds the promise of bringing true disease modification for patients suffering from devastating diseases, a promise were working to seeing become a reality in the years to come.

Here is the original post:

Gene Therapy | Pfizer: One of the world’s premier …

Gene therapy – Mayo Clinic

Overview

Gene therapy involves altering the genes inside your body’s cells in an effort to treat or stop disease.

Genes contain your DNA the code that controls much of your body’s form and function, from making you grow taller to regulating your body systems. Genes that don’t work properly can cause disease.

Gene therapy replaces a faulty gene or adds a new gene in an attempt to cure disease or improve your body’s ability to fight disease. Gene therapy holds promise for treating a wide range of diseases, such as cancer, cystic fibrosis, heart disease, diabetes, hemophilia and AIDS.

Researchers are still studying how and when to use gene therapy. Currently, in the United States, gene therapy is available only as part of a clinical trial.

Gene therapy is used to correct defective genes in order to cure a disease or help your body better fight disease.

Researchers are investigating several ways to do this, including:

Gene therapy has some potential risks. A gene can’t easily be inserted directly into your cells. Rather, it usually has to be delivered using a carrier, called a vector.

The most common gene therapy vectors are viruses because they can recognize certain cells and carry genetic material into the cells’ genes. Researchers remove the original disease-causing genes from the viruses, replacing them with the genes needed to stop disease.

This technique presents the following risks:

The gene therapy clinical trials underway in the U.S. are closely monitored by the Food and Drug Administration and the National Institutes of Health to ensure that patient safety issues are a top priority during research.

Currently, the only way for you to receive gene therapy is to participate in a clinical trial. Clinical trials are research studies that help doctors determine whether a gene therapy approach is safe for people. They also help doctors understand the effects of gene therapy on the body.

Your specific procedure will depend on the disease you have and the type of gene therapy being used.

For example, in one type of gene therapy:

Viruses aren’t the only vectors that can be used to carry altered genes into your body’s cells. Other vectors being studied in clinical trials include:

The possibilities of gene therapy hold much promise. Clinical trials of gene therapy in people have shown some success in treating certain diseases, such as:

But several significant barriers stand in the way of gene therapy becoming a reliable form of treatment, including:

Gene therapy continues to be a very important and active area of research aimed at developing new, effective treatments for a variety of diseases.

Explore Mayo Clinic studies testing new treatments, interventions and tests as a means to prevent, detect, treat or manage this disease.

Dec. 29, 2017

See the article here:

Gene therapy – Mayo Clinic

Litecoin Price Forecast: LTC HODLers Must Stay Sane as Bitcoin’s Mt. Gox Drama Plays Out

Daily Litecoin News Update
Bitcoin (BTC) prices have now dipped to a new year-to-date low, with the market—as always—mirroring this drop.

Litecoin prices are holding out against this drop. Yet, there is a growing concern that the fear, uncertainty, and doubt (FUD) spreading across the Bitcoin world will sooner or later engulf baby-Bitcoin—that is, Litecoin (LTC).

The bullish bone in me repudiates this notion outright, but, in some tiny corner of my gut, there’s a slight tingle that maybe Litecoin will succumb to this pressure. At least, in the short run.

The strong affinity between the prices of the two cryptocurrencies cannot be disregarded. So it’s best that.

The post Litecoin Price Forecast: LTC HODLers Must Stay Sane as Bitcoin’s Mt. Gox Drama Plays Out appeared first on Profit Confidential.

Originally posted here:

Litecoin Price Forecast: LTC HODLers Must Stay Sane as Bitcoin’s Mt. Gox Drama Plays Out

Ripple Price Prediction: Q1 Review Shows Korea to Blame for XRP Woes

Ripple News Update
Hopes for an XRP recovery were dashed on Thursday morning as the third-largest cryptocurrency recorded its second consecutive day of losses.

On a more positive note, Ripple was hardly alone. The top 25 cryptocurrencies by market cap plunged as well, with the notable exceptions of TRON and Tether. This downward trend caps off a horrific quarter for XRP prices.

Let’s take a look back over Q1…

At the start of January 2018, the XRP to USD exchange rate reached as high as $3.84. It seems like a distant memory given the bloodbath of the last few months, but it’s important to recap how we arrived at the present situation.

The bearish turn began when.

The post Ripple Price Prediction: Q1 Review Shows Korea to Blame for XRP Woes appeared first on Profit Confidential.

The rest is here:

Ripple Price Prediction: Q1 Review Shows Korea to Blame for XRP Woes

Ripple Price Prediction: What an ICO Says About XRP Independence

Ripple News Update
The myth of Ripple controlling the XRP Ledger has haunted XRP prices for years, but an upcoming initial coin offering (ICO) might shift those perceptions.

What am I talking about?

Well, a small Brazilian company called Allvor is launching its own token on the XRP Ledger. Allvor plans on airdropping five percent of its tokens to XRP holders, with the condition that they have owned XRP before March 27, 2018.

This ICO is similar to the hundreds of tokens that launched on Ethereum’s platform, but it might strike people as odd.

One reason is that XRP hasn’t typically hosted ICOs before. Another is that many investors think Ripple.

The post Ripple Price Prediction: What an ICO Says About XRP Independence appeared first on Profit Confidential.

Read this article:

Ripple Price Prediction: What an ICO Says About XRP Independence

Ethereum Price Forecast: ETH Q1 Review Shows Odd Silver Lining

Ethereum News Update
The first quarter of 2018 was historically bad for ETH prices, according to a recent CoinDesk report, but there’s a silver lining embedded in the data: namely, that ETH recovered from these types of slumps in the past.

For instance, Ethereum prices lost 40% in the fourth quarter of 2016. While that’s not as bad as the 48% it lost this past quarter, it’s still pretty significant. Investor sentiment was at rock-bottom levels. But then, ETH prices skyrocketed 527% over the next three months.

There’s an important lesson here.

Not all quarters will have triple-digit rallies. We should expect months of backsliding or sideways trading as.

The post Ethereum Price Forecast: ETH Q1 Review Shows Odd Silver Lining appeared first on Profit Confidential.

More:

Ethereum Price Forecast: ETH Q1 Review Shows Odd Silver Lining

Litecoin Price Prediction: Litecoin Grossly Undervalued Compared to Ripple and Bitcoin Cash

Daily Litecoin News Update
We’re inching closer and closer to seeing Charlie Lee’s prediction coming true this year. The probability of the “flappening” (Litecoin’s market value surpassing that of Bitcoin Cash’s) has touched its all-time high in the recent week as the cryptocurrency market plunges but Litecoin, to a great extent, circumvents the pressure.

Recall that earlier this year, the Litecoin founder said:
“The flippening (ETH>BTC) will never happen. But the flappening (LTC>BCH) will happen this year.”
(Source: “Twitter post,” Charlie Lee, February 28,.

The post Litecoin Price Prediction: Litecoin Grossly Undervalued Compared to Ripple and Bitcoin Cash appeared first on Profit Confidential.

More:

Litecoin Price Prediction: Litecoin Grossly Undervalued Compared to Ripple and Bitcoin Cash

Ethereum Price Forecast: G20 Regulations Would at Least Bring Certainty

Ethereum News Update
Investors tend to panic when international organizations talk about cryptocurrency regulation, but is that really the nightmare scenario?

What we have at the moment seems worse.

With each country or state striking its own path on crypto regulation, investors are left without a clear sense of direction. “Where is the industry headed?” they keep wondering. All the while, a technology that was supposed to transcend borders becomes limited by them.

Just look at the difference around the world.

In the U.S., you have the head of the Securities and Exchange Commission (SEC) saying that blockchains have “incredible promise,” whereas in China and.

The post Ethereum Price Forecast: G20 Regulations Would at Least Bring Certainty appeared first on Profit Confidential.

See the article here:

Ethereum Price Forecast: G20 Regulations Would at Least Bring Certainty

Ripple Price Forecast: Has the Much-Awaited XRP Rally Started?

XRP Prices: Patience Is Warranted
2017 was a great year for investors, where the market environment was characterized by a constant barrage of new all-time highs, low volatility, and a number of high-flying sectors taking center stage. 2018 is turning out to be a whole different beast; a market correction has currently gripped the markets and all the high-flying sectors that led the market late last year are currently correcting.

Cryptocurrencies were by far the best-performing asset class last year, and it shouldn’t be too shocking that they are the worst-performing asset class this year. For example, Ripple staged an epic advance in 2017, tacking on an incredible 3,216.67%.

The post Ripple Price Forecast: Has the Much-Awaited XRP Rally Started? appeared first on Profit Confidential.

Visit link:

Ripple Price Forecast: Has the Much-Awaited XRP Rally Started?

Ripple Price Prediction: Debate Over XRP Designation Heats Up

Ripple News Update
Although XRP prices are flashing red this morning, Ripple is actually net positive for the weekend. From its Friday lows to the time of this writing, the XRP to USD exchange rate advanced 5.55%.

But that’s not the biggest story in today’s Ripple news update.

No, once again, investors are at odds about XRP. Is it a cryptocurrency? Is it centralized? The questions that have haunted XRP prices for years are back, spread across message boards and forums that support more libertarian digital assets.

These debates may seem crazy to.

The post Ripple Price Prediction: Debate Over XRP Designation Heats Up appeared first on Profit Confidential.

Visit link:

Ripple Price Prediction: Debate Over XRP Designation Heats Up

Litecoin Price Forecast: “Tokyo Whale” Continues to Drive Crypto Sell-Off

Litecoin News Update
Remember when hackers broke into the Mt. Gox exchange? That security breach—which took place several years ago and resulted in the loss of billions in Bitcoin—continues to roil cryptocurrency markets to this day.

In order to understand the story, you have to know the history.

So let’s start with what happened after Mt. Gox was hacked. To begin with, investors were compensated for their loss in fiat currency. Yen instead of Bitcoin, as it were. But then some of the missing Bitcoin were recovered. Over time,.

The post Litecoin Price Forecast: “Tokyo Whale” Continues to Drive Crypto Sell-Off appeared first on Profit Confidential.

Read this article:

Litecoin Price Forecast: “Tokyo Whale” Continues to Drive Crypto Sell-Off

Cryptocurrency Price Forecast: What You Need to Know This Week

Cryptocurrency Rally Holds Strong
Rallies are important, but holding a rally is even more important.

Thankfully, that’s what cryptocurrencies have done over the last two weeks. Our favorites either stuck close to their previous levels or they exploded to the upside.

Siacoin (SC), for example, rose more than 24% in a single trading session, leading to a cumulative gain of 108% since we first recommended it last month.

Not bad, right? There aren’t too many investments that can boast of triple-digit gains in one month.

Speaking of triple-digit winners, Ethereum (ETH) rose above 100% for the first time in six weeks. It almost erased its gains in early April, but the.

The post Cryptocurrency Price Forecast: What You Need to Know This Week appeared first on Profit Confidential.

See the rest here:

Cryptocurrency Price Forecast: What You Need to Know This Week

Gene Therapy and Children – KidsHealth

Gene therapy carries the promise of cures for many diseases and for types of medical treatment that didn’t seem possible until recently. With its potential to eliminate and prevent hereditary diseases such as cystic fibrosis and hemophilia and its use as a possible cure for heart disease, AIDS, and cancer, gene therapy is a potential medical miracle-worker.

But what about gene therapy for children? There’s a fair amount of risk involved, so thus far only seriously ill kids or those with illnesses that can’t be cured by standard medical treatments have been involved in clinical trials using gene therapy.

As those studies continue, gene therapy may soon offer hope for children with serious illnesses that don’t respond to conventional therapies.

Our genes help make us unique. Inherited from our parents, they go far in determining our physical traits like eye color and the color and texture of our hair. They also determine things like whether babies will be male or female, the amount of oxygen blood can carry, and the likelihood of getting certain diseases.

Genes are composed of strands of a molecule called DNA and are located in single file within the chromosomes. The genetic message is encoded by the building blocks of the DNA, which are called nucleotides. Approximately 3 billion pairs of nucleotides are in the chromosomes of a human cell, and each person’s genetic makeup has a unique sequence of nucleotides. This is mainly what makes us different from one another.

Scientists believe that every human has about 25,000 genes per cell. A mutation, or change, in any one of these genes can result in a disease, physical disability, or shortened life span. These mutations can be passed from one generation to another, inherited just like a mother’s curly hair or a father’s brown eyes. Mutations also can occur spontaneously in some cases, without having been passed on by a parent. With gene therapy, the treatment or elimination of inherited diseases or physical conditions due to these mutations could become a reality.

Gene therapy involves the manipulation of genes to fight or prevent diseases. Put simply, it introduces a “good” gene into a person who has a disease caused by a “bad” gene.

The two forms of gene therapy are:

Currently, gene therapy is done only through clinical trials, which often take years to complete. After new drugs or procedures are tested in laboratories, clinical trials are conducted with human patients under strictly controlled circumstances. Such trials usually last 2 to 4 years and go through several phases of research. In the United States, the U.S. Food and Drug Administration (FDA) must then approve the new therapy for the marketplace, which can take another 2 years.

The most active research being done in gene therapy for kids has been for genetic disorders (like cystic fibrosis). Other gene therapy trials involve children with severe immunodeficiencies, such as adenosine deaminase (ADA) deficiency (a rare genetic disease that makes kids prone to serious infection), sickle cell anemia, thalassemia, hemophilia, and those with familial hypercholesterolemia (extremely high levels of serum cholesterol).

Gene therapy does have risks and limitations. The viruses and other agents used to deliver the “good” genes can affect more than the cells for which they’re intended. If a gene is added to DNA, it could be put in the wrong place, which could potentially cause cancer or other damage.

Genes also can be “overexpressed,” meaning they can drive the production of so much of a protein that they can be harmful. Another risk is that a virus introduced into one person could be transmitted to others or into the environment.

Gene therapy trials in children present an ethical dilemma, according to some gene therapy experts. Kids with an altered gene may have mild or severe effects and the severity often can’t be determined in infants. So just because some kids appear to have a genetic problem doesn’t mean they’ll be substantially affected by it, but they’ll have to live with the knowledge of that problem.

Kids could be tested for disorders if there is a medical treatment or a lifestyle change that could be beneficial or if knowing they don’t carry the gene reduces the medical surveillance needed. For example, finding out a child doesn’t carry the gene for a disorder that runs in the family might mean that he or she doesn’t have to undergo yearly screenings or other regular exams.

To cure genetic diseases, scientists must first determine which gene or set of genes causes each disease. The Human Genome Project and other international efforts have completed the initial work of sequencing and mapping virtually all of the 25,000 genes in the human cell. This research will provide new strategies to diagnose, treat, cure, and possibly prevent human diseases.

Although this information will help scientists determine the genetic basis of many diseases, it will be a long time before diseases actually can be treated through gene therapy.

Gene therapy’s potential to revolutionize medicine in the future is exciting, and hopes are high for its role in ;curing and preventing childhood diseases. One day it may be possible to treat an unborn child for a genetic disease even before symptoms appear.

Scientists hope that the human genome mapping will help lead to cures for many diseases and that successful clinical trials will create new opportunities. For now, however, it’s a wait-and-see situation, calling for cautious optimism./p>

Date reviewed: April 2014

Read more:

Gene Therapy and Children – KidsHealth

Gene Therapy Net – News, Conferences, Vectors, Literature …

Posted on: 22 March 2018, source: GizmodoOn Tuesday, a 13-year-old boy from New Jersey was at the center of medical history as he became the first person in the US to receive an FDA-approved gene therapy for an inherited disease. The event marks the beginning of a new era of medicine, one in which devastating genetic conditions that we are born with can be simply edited out of our DNA with the help of modern biomedical technologies. The therapy, Luxturna, from Spark Therepeutics, was approved by the FDA in December to treat a rare, inherited form of blindness. Its price tag, set at $850,000or $425,000 per eyemade it the most expensive drug in the US and sparked mass sticker-shock. But the therapy, which in high-profile clinical trials has allowed patients to see the stars for the first times, also offered the almost miraculous possibility of giving sight to the blind.

See the rest here:

Gene Therapy Net – News, Conferences, Vectors, Literature …

Gene Therapy | Pfizer: One of the world’s premier …

Gene therapy is a technology aimed at correcting or fixing a gene that may be defective. This exciting and potentially transformative area of research is focused on the development of potential treatments for monogenic diseases, or diseases that are caused by a defect in one gene.

The technology involves the introduction of genetic material (DNA or RNA) into the body, often through delivering a corrected copy of a gene to a patients cells to compensate for a defective one, using a viral vector.

The technology involves the introduction of genetic material (DNA or RNA) into the body, often through delivering a corrected copy of a gene to a patients cells to compensate for a defective one, using a viral vector.

Viral vectors can be developed using adeno-associated virus (AAV), a naturally occurring virus which has been adapted for gene therapy use. Its ability to deliver genetic material to a wide range of tissues makes AAV vectors useful for transferring therapeutic genes into target cells. Gene therapy research holds tremendous promise in leading to the possible development of highly-specialized, potentially one-time delivery treatments for patients suffering from rare, monogenic diseases.

Pfizer aims to build an industry-leading gene therapy platform with a strategy focused on establishing a transformational portfolio through in-house capabilities, and enhancing those capabilities through strategic collaborations, as well as potential licensing and M&A activities.

We’re working to access the most effective vector designs available to build a robust clinical stage portfolio, and employing a scalable manufacturing approach, proprietary cell lines and sophisticated analytics to support clinical development.

In addition, we’re collaborating with some of the foremost experts in this field, through collaborations with Spark Therapeutics, Inc., on a potentially transformative gene therapy treatment for hemophilia B, which received Breakthrough Therapy designation from the US Food and Drug Administration, and 4D Molecular Therapeutics to discover and develop targeted next-generation AAV vectors for cardiac disease.

Gene therapy holds the promise of bringing true disease modification for patients suffering from devastating diseases, a promise were working to seeing become a reality in the years to come.

Visit link:

Gene Therapy | Pfizer: One of the world’s premier …

Gene therapy – Mayo Clinic

Overview

Gene therapy involves altering the genes inside your body’s cells in an effort to treat or stop disease.

Genes contain your DNA the code that controls much of your body’s form and function, from making you grow taller to regulating your body systems. Genes that don’t work properly can cause disease.

Gene therapy replaces a faulty gene or adds a new gene in an attempt to cure disease or improve your body’s ability to fight disease. Gene therapy holds promise for treating a wide range of diseases, such as cancer, cystic fibrosis, heart disease, diabetes, hemophilia and AIDS.

Researchers are still studying how and when to use gene therapy. Currently, in the United States, gene therapy is available only as part of a clinical trial.

Gene therapy is used to correct defective genes in order to cure a disease or help your body better fight disease.

Researchers are investigating several ways to do this, including:

Gene therapy has some potential risks. A gene can’t easily be inserted directly into your cells. Rather, it usually has to be delivered using a carrier, called a vector.

The most common gene therapy vectors are viruses because they can recognize certain cells and carry genetic material into the cells’ genes. Researchers remove the original disease-causing genes from the viruses, replacing them with the genes needed to stop disease.

This technique presents the following risks:

The gene therapy clinical trials underway in the U.S. are closely monitored by the Food and Drug Administration and the National Institutes of Health to ensure that patient safety issues are a top priority during research.

Currently, the only way for you to receive gene therapy is to participate in a clinical trial. Clinical trials are research studies that help doctors determine whether a gene therapy approach is safe for people. They also help doctors understand the effects of gene therapy on the body.

Your specific procedure will depend on the disease you have and the type of gene therapy being used.

For example, in one type of gene therapy:

Viruses aren’t the only vectors that can be used to carry altered genes into your body’s cells. Other vectors being studied in clinical trials include:

The possibilities of gene therapy hold much promise. Clinical trials of gene therapy in people have shown some success in treating certain diseases, such as:

But several significant barriers stand in the way of gene therapy becoming a reliable form of treatment, including:

Gene therapy continues to be a very important and active area of research aimed at developing new, effective treatments for a variety of diseases.

Explore Mayo Clinic studies testing new treatments, interventions and tests as a means to prevent, detect, treat or manage this disease.

Dec. 29, 2017

Read the original:

Gene therapy – Mayo Clinic

Gene Therapy – Learn.Genetics

APA format:

Genetic Science Learning Center. (2012, December 1) Gene Therapy.Retrieved April 28, 2018, from http://learn.genetics.utah.edu/content/genetherapy/

CSE format:

Gene Therapy [Internet]. Salt Lake City (UT): Genetic Science Learning Center; 2012[cited 2018 Apr 28] Available from http://learn.genetics.utah.edu/content/genetherapy/

Chicago format:

Genetic Science Learning Center. “Gene Therapy.” Learn.Genetics.December 1, 2012. Accessed April 28, 2018. http://learn.genetics.utah.edu/content/genetherapy/.

Originally posted here:

Gene Therapy – Learn.Genetics