GenScript Biotech to Host Global Forum on Cell and Gene Therapy and the Booming China Market During JPM Week – PRNewswire

NANJING, China, Dec. 16, 2019 /PRNewswire/ -- GenScript Biotech Corp., one of the leadingbiotechnology companies inChina, today announcedits inaugural GenScript Biotech Global Forum on Jan. 14 in San Francisco, coinciding with the JP Morgan Healthcare Conference week. The Forum, exploring the theme "Cell and Gene Therapy and the Booming China Market," will feature gene and cell therapy leaders in industry, academia and the investment community and is expected to draw several hundred attendees.

"Advancements in cell and gene therapy have attracted global attention in recent years, as the promise of bringing life-changing treatments to cancer patients and others comes closer to reality," said Frank Zhang, PhD., founder and CEO of GenScript. "GenScript's Global Forum aims to foster closer collaborations among scientists, regulators, and industry, not just in the booming China market but around the globe. We hope that by working together we can advance the industry and accelerate drug development."

GenScript's Global Forum, will take place from 1:30 p.m. to 5:30 p.m. at the Grand Hyatt San Francisco. Highlights of the agenda include:

For more information about the Forum and to register for the event please visit hereor https://www.genscript.com/biotech-global-forum-2020.html.

About GenScript Biotechnology

GenScript Biotech Corporation (Stock Code: 1548.HK) is a global biotechnology group. GenScript's businesses encompass four major categories based on its leading gene synthesis technology, including operation as a Life Science CRO, enzyme and synthetic biology products, biologics development and manufacturing, as well as cell therapy.

Founded in 2002 and listed on the Hong Kong Stock Exchange in 2015, GenScript has an established global presence across Greater China, North America, the EU, and Asia Pacific. Today, over 300,000 customers from over 160 countries and regions around the world have used GenScript's premier, convenient, and reliable products and services.

GenScript currently has more than 2900 employees globally, 34% of whom hold master's and/or Ph.D. degrees. In addition, GenScript has a number of leading commercial technologies, including more than 100 patents and over 270 patent applications. As of June 2019, GenScript's products and services have been cited by 40,300 scientific papers worldwide.

GenScript is committed to striving towards its vision of being the most reliable biotech company in the world to make humans and nature healthier through biotechnology.

For more information, please visit https://www.genscript.com/

Contact:

Corporate:Fiona CheCorporate Communication Manager, GenScript+86 -025-58897288-6321Fiona.che@genscript.com

Media Susan ThomasPrincipal, Endpoint Communications(619) 540-9195susan@endpointcommunications.net

SOURCE GenScript Biotech Corp.

https://www.genscript.com

Read more:

GenScript Biotech to Host Global Forum on Cell and Gene Therapy and the Booming China Market During JPM Week - PRNewswire

The gene therapy research that could save a family of four – News – The University of Sydney

Neveah Taouk, 4

At last, when Mary was seven and Neveah three, new developments in whole-genome sequencing enabled specialists to identify the disorder. The diagnosis gave the Taouks information but not hope. They knew what the problem was, but there was no treatment and no cure.

Desperate, Charlie contacted specialists around the world. I must have spoken to at least fifty people scientists, doctors, professors, he says. Most of them had never heard of the condition.

His search eventually led to Dr Wendy Gold, a specialist in rare genetic disorders in children, based at the University of Sydney and the Childrens Hospital at Westmead. We arranged to talk, says Charlie. To be honest, I wasnt expecting much. But then she said, Have you heard of gene therapy?

Gene therapy is a new and rapidly evolving field of research. One of the therapys forms involves adding new genes to a patients cells to replace missing or malfunctioning genes. The new genes are typically delivered to the appropriate cells in the body using a benign virus as a carrier. Gene therapy is already being used to treat diseases including spinal muscular atrophy. It could also be a promising treatment for Parkinsons disease. Dr Gold believed there was a chance it could help the Taouk girls.

Read more here:

The gene therapy research that could save a family of four - News - The University of Sydney

Waning treatment is a warning for all ‘one-and-done’ therapies – STAT

As a new mother, she didnt know to look for blue-tinged lips. She could just tell her babys color was off. On a chest X-ray, the clean, white-against-dark curves of his ribs were obscured, clouded by fluid. Pneumonia. That tipped Ray Ballards physicians off: He had a form of severe combined immunodeficiency SCID, for short a genetic mutation that hampered the growth of crucial immune cells, leaving him utterly vulnerable to infection.

The best fix was a transplant of his mothers bone marrow. The attitude was that in three to six months, you should be able to go back to normal life, recalled his mom, Barb Ballard.

That was true at least sort of. He got two more booster transplants before he hit 10. An antibiotic left him with hearing loss, and a virus with digestive tract damage. His lack of B cells meant he needed regular injections of other peoples antibodies, and his T cell counts were never ideal. But he was healthy enough to go to public school, to move through the hallways high-fiving half the guys, to slowly inhale and take aim during rifle team practice.

advertisement

His T cells had to be working well enough that he wasnt coming down with everything that walked into the classroom, Ballard said.

Then, when Ray was around 18, his immunity began to wane. For him, it came in the form of a norovirus he couldnt shake. For others with the same rare disease, it appears as pneumonia or gastrointestinal trouble or an unexpected T cell decline. Over the last 10 years, the trend has become increasingly clear: The bone marrow transplants that kept certain babies with SCID alive sometimes stop working after years or decades of providing fairly reliable immune defenses.

Now, to patient advocates, this has become an urgent lesson in the language people use to talk about treatment and not just for SCID. They see their communitys experience as a cautionary tale for anyone developing or receiving a therapy thats marketed as potentially curative.

Theres an expectation and a hope: When they hear about bone marrow transplants, it sounds like a lifetime deal, a forever fix, said John Boyle, president and CEO of the Immune Deficiency Foundation. Weve discovered, as a result of this issue, that bone marrow transplant ended up not being the forever fix we thought it was.

Experts have known for years that some of these transplants wouldnt provide full immune protection over the course of a SCID patients entire life. They say clinicians should have avoided the word cure. But even scientific papers that hinted at such complications called the treatment curative. Just this year, an Immune Deficiency Foundation employee was given the unenviable task of sifting through the organizations thousands of pages of online material, scrubbing out every cure that popped up. It was only there a handful of times sometimes in quotes from clinicians, Boyle said but it was there and it needed to be removed.

The language patients hear can sometimes even change their outcomes. Weve heard of cases where, years later, they realized their immune system isnt as healthy as they thought, but nobody was tracking that because they hadnt maintained a relationship with the physician, or the physician didnt maintain a relationship with them, explained Ballard. The word cure, it gives them a false sense of security.

At a time when seemingly every biotech is promoting the idea of one-and-done therapies and setting prices accordingly these advocates hope companies, too, will be more wary. One of the things Im trying to make them very aware of is the need for lifelong follow-up, said Heather Smith, who runs the SCID Angels for Life foundation. For her, its personal: This summer, her son took part in a clinical trial for a gene therapy in the hope that it would provide the immune protection that his decades-old bone marrow transplant no longer could. My son will be followed for 15 years, she said. But what about after that?

Part of the issue with bone marrow transplants from one person to another is the natural genetic variation between us, particularly in the proteins that help our bodies distinguish its own cells from foreign ones. Receiving cells from someone whose proteins dont match yours could cause a civil war within you. Thats why bone marrow transplants began back in the 1950s with identical twins: Sharing those genes meant increasing the likelihood of harmony between the body and the graft.

But the vast majority of people dont have a protein-matched sibling, let alone an identical twin. So researchers set about figuring out how to transplant bone marrow from a parent to a child in spite of only sharing half of their genes and from a matched unrelated donor to a stranger. Like cooks intent on refining recipes to their taste, the doctors who adapted the technique for SCID often did so slightly differently from one another. Over the past 35 years, those idiosyncrasies have hardened into habits. Right now, everybody transplants their patients their way, said Dr. Sung-Yun Pai, an immune deficiency researcher and co-director of the gene therapy program at Boston Childrens Hospital.

Perhaps the most vociferous controversy has been about whether to use chemotherapy to wipe out the existing stem cells within a recipients bone marrow to make room for the donors. The doctors who do use chemo before a transplant might prescribe different doses; others forego it entirely.

The arguments were sound on both sides. On the one hand, the toxic drugs could clean out the niches within our bone and increase the chances that the donors cells take root. On the other, these chemicals could hamper growth, brain development, and fertility, could make an infant who was already sick even sicker, and could increase the likelihood of certain cancers later in life. Its like being exposed to a bunch of X-rays and sunlight, or other DNA-damaging agents, Pai explained.

Because SCID is so rare the most common subtype is thought to occur in 1 out of every 50,000 to 100,000 newborns and because every hospital was doing transplants slightly differently, it was hard for physicians to systematically study what was working best. But even early on, they could tell that some of the infants whod gotten no chemo were developing incomplete immune systems. They didnt produce their own B cells, for instance, and so needed regular injections of antibodies collected from other peoples blood.

In healthy infants, stem cells migrate from the crevices of the skeleton to an organ in the chest called the thymus, where theyre trained to become T cells. In these infants, the T cell counts grew after transplant but it wasnt necessarily because the sludge was securely taking hold in the niches of their bones. Rather, immunologists say, the donors progenitor cells were only transient. Some were able to head toward the thymus for schooling. Some graduated and started fighting off infections. But as those populations were depleted with age, there werent robust reserves of stem cells in the bone marrow that could arrive to produce more. To Pai, its like trying to fill a kindergarten class in a neighborhood where no ones having babies.

You and I continue to have a slow trickle of new T cells coming out, said Dr. Harry Malech, a senior investigator at the National Institutes of Health, who sits on the board of a gene therapy company, Orchard Therapeutics (ORTX), but does not receive any financial compensation. Instead of a torrent becoming slower, in these patients it goes from a trickle to practically nothing.

Thats why immunity starts to wane in kids like Ray Ballard. To many immunologists, it isnt a surprise, though they still arent sure why chemo-less transplants last longer for some of these kids than others. They can also understand how some families and clinicians might have viewed this treatment as a lifetime fix.

As Malech put it, If I said to you, Your child, instead of dying in infancy, will likely get to adulthood, go to school, have a normal life, you might think the word cure in your mind.

Even for parents who knew the protection might not last forever, the failure of a long-ago bone marrow transplant puts them in a bind. If they do nothing, their child will once again be vulnerable to any passing infection, which could prove fatal. They can try another round of the same procedure, though booster transplants sometimes come with added complications. Or they can try getting their child into a research trial for gene therapy, which comes with the risks of any experimental treatment.

Some feel an irrational guilt when the bone marrow they donated to their child stops functioning. Its your cells, and if it doesnt work, you failed them, said Ballard, who lives in Clifton, Va., about a 40-minute drive from Washington, D.C. Her son Ray had already had three transplants as a child. When his immune system started to fail again in early adulthood, gene therapy at the NIH seemed like the only reasonable choice.

That would involve researchers removing cells from his bone marrow, using an engineered virus as a kind of molecular syringe to slip in a healthy copy of the gene in which he had a defect, and then threading these corrected cells back into his veins a bone marrow transplant to himself. But preparing a virus can be tricky, and there were delays.

Meanwhile, Rays condition was getting worse. His norovirus was preventing him from absorbing much nutrition, and as Ballard put it, his bone structure was just crumbling at that point. His doctors told her he had the skeleton of an 85-year-old.

He died this past February, at 25 years old. One friend got his birth and death dates tattooed onto her shoulder. Another painted a portrait of him for Ballard, in which his arms are crossed, his lips pressed together in a wry smile.

At Boston Childrens, Pai is now helping to lead a randomized trial to better understand what dose of chemo works best for SCID patients receiving transplants. Over the last decade or so, she, Malech, and many other clinicians have also teamed up to track the long-term results of immune deficient patients whove received someone elses bone marrow.

Pai is hopeful that knowing about the phenomenon of waning immunity will give gene therapies a better shot at becoming a durable fix. They probably have a better chance of achieving a one-time, lifelong cure, but its never wrong to be humble, she said. Only after decades more and hundreds or thousands of patients will we know for sure.

Patient advocates point out that even then, these patients will still have the capacity of passing on their SCID-causing gene to future generations, and so the word cure is overly optimistic. Thats why I like the word remission, said Smith. That still gives you the hope. If you were given a cancer diagnosis, you wouldnt go through treatment and then just forget about it for the rest of your life.

As Boyle put it, Weve seen the promise and then weve seen the reality. Everyone who is looking at a transformational therapy should be optimistic, but also realistic, and not assume that this is truly one and done. (Boyles foundation has received financial support from Orchard Therapeutics, which is developing a gene therapy for a form of SCID.)

To Amy Saada, of South Windsor, Conn., that isnt theoretical. Her son Adam is now 12, and the immunity from the bone marrow transplant he got as a baby is wearing off. He isnt yet sick, but his parents know they need to decide between gene therapy or another transplant soon. She has a very clear memory of how long and uncertain the recovery from treatment felt. In some ways, she wishes she didnt know quite as much as she does; that way, she would feel less trepidation about what lies ahead.

Your heart kind of sinks, she said. Youve already been through it once, and it was hell. Its harder the second time.

Original post:

Waning treatment is a warning for all 'one-and-done' therapies - STAT

Would you pay $1M to partake in an anti-aging gene therapy trial? – Fox Business

Fox News senior judicial analyst Judge Andrew Napolitano on the potential fallout from reports DNA-testing company Family TreeDNA will share data with the FBI in an effort to solve crimes.

Libella Gene Therapeutics is charging volunteers $1 million to undergo clinical trials of a treatment it is working on that is designed to prevent, delay or even reverse aging.

However, participants will be required to go to a small clinic in Cartagena, Colombia, to participate, which the Kansas-based company said was the easiest site among eight different countries it looked into, calling it the path of least resistance.

In a press release, a company executive said traditional clinical trials in the U.S. take years and millions or even billions of dollars.

The treatment would be delivered intravascularly and participants will be monitored over the course of a year, according to the company's website. Gene therapy treatments are intended to be one-off treatments, attacking the problem at its source.

PETE FRATES, THE ICE BUCKET CHALLENGE DRIVER COMBATTING ALS DIES AT AGE 34

MERCK TO BUY CANCER DRUG DEVELOPER ARQULE FOR $2.7B IN CASH

The technology focuses on lengthening telomeres, which are structures found at the end of chromosomes. Their main function is to protect DNA during cell division.

Every time a cell divides, a part of the telomere is lost until it becomes too short and the cell dies. Some believe that as cells age, so does the body.

Telomerase is an enzyme that lengthens telomeres and thus prevents the cell from dying.

Libellas technology rebuilds the ends of telomeres, andthereby affects the aging process.

I know what were trying to do sounds like science fiction, but I believe its a science reality, Jeff Mathis, CEO of Libella Gene Therapeutics, said in an interview with OneZero.

The treatment may potentially treat other diseases, like cancer and Alzheimers.

GET FOX BUSINESS ON THE GO BY CLICKING HERE

Not everyone, however, agrees that lengthening telomeres will have any effect on the aging process. For example, researchers at the University of Utah were unable to conclude whether shorter telomeres were simply a sign of aging or actually a contributor to the process.

Dr. Andrew Stern, who is one of the founders of Libella Gene Therapeutics, was also one of the principal discoverers of portions of human telomerase.

In order to be eligible for the trial, individuals must be 45 years or older. So far the company has recruited two people, according to the OneZero interview published on Medium.

The study will look into the change in the length of telomeres, and into the incidence of serious adverse events.

The FDA declined to comment specifically on Libella Gene Therapeutics and its decision to hold its trial outside of the U.S. It does, however, accept foreign clinical data and results so long as certain conditions are met.

A spokesperson for Libella Gene Therapeutics did not return FOX Business request for comment.

CLICK HERE TO READ MORE ON FOX BUSINESS

View original post here:

Would you pay $1M to partake in an anti-aging gene therapy trial? - Fox Business

Pfizer to bring gene therapy production in-house – BioPharma-Reporter.com

Pfizer moved into gene therapies earlier than some of its peers, partnering with Spark Therapeutics in 2014 and paying close to $200m (180m) upfront to acquire Bamboo Therapeutics two years later. The Bamboo takeover gave Pfizer ownership of a manufacturing facility in North Carolina, US.

Earlier this year, Pfizer doubled down on in-house production of gene therapies, committing $500m to expand its footprint in North Carolina.

Talking at a recent investor conference, Mikael Dolsten, chief scientific officer at Pfizer, said the spending commitment is, in part, a reflection of a belief that keeping production in-house will deliver better results than relying on third parties.

Dolsten said, When we compare that with what we get from other companies, we think we can really improve the yield, the purity and the characterization of the product.

Across the industry, poor yields have exacerbated capacity constraints created by the rapid expansion of the gene therapy pipeline, turning quality manufacturing capacity into a sought after resource.

A desire to possess in-house manufacturing capacity was a factor in many of the recent acquisitions of gene therapy companies, such as Astellas $3bn takeover of Audentes Therapeutics.

Gene therapy startups, such as Audentes and Bamboo, bypassed the limitations of contract capacity by establishing internal capabilities. Those capabilities enabled the companies to advance their gene therapies and, ultimately, to attract takeover offers, but their creation required the sort of upfront investments in infrastructure that many venture-backed startups typically try to avoid.

Through its $500m gene therapy investment, Pfizer thinks it can provide an alternative for startups that are struggling to access high-quality contract capacity but are unable or unwilling to build their own facilities.

Dolsten said, We think it's a competitive advantage, not just for our product, but for companies that want to partner with Pfizer that may allow them to have an easier and more high-end dialogue with regulators across the globe about this new field and a new type of product.

If Dolsten is right, the North Carolina manufacturing capacity could give Pfizer an edge when it tries to partner with gene therapy startups that have other options open to them, such as alliances with rival drugmakers and contract manufacturing organizations.

More:

Pfizer to bring gene therapy production in-house - BioPharma-Reporter.com

Buyer beware of this $1 million gene therapy for aging – MIT Technology Review

Its said that nothing is certain except death and taxes. But doubt has been cast over the former since the 1970s, when scientists picked at the seams of one of the fundamental mysteries of biology: the molecular reasons we get old and die.

The loose thread they pulled had to do with telomeresmolecular timepieces on the ends of chromosomes that shorten each time a cell divides, in effect giving it a fixed life span. Some tissues (such as the gut lining) renew almost constantly, and it was found that these have high levels of an enzyme called telomerase, which works to rebuild and extend the telomeres so cells can keep dividing.

That was enough to win Elizabeth Blackburn, Carol Greider, and Jack Szostak a Nobel Prize in 2009. The obvious question, then, was whether telomerase could protect any cell from agingand maybe extend the life of entire organisms, too.

While telomere-extending treatments in mice have yielded intriguing results, nobody has demonstrated that tweaking the molecular clocks has benefits for humans. That isnt stopping one US startup from advertising a telomere-boosting genetic therapyat a price.

Libella Gene Therapeutics, based in Manhattan, Kansas, claims it is now offering a gene therapy to repair telomeres at a clinic in Colombia for $1 million a dose. The company announced on November 21 that it was recruiting patients into what it termed a pay-to-play clinical trial.

Buyer beware, though: this trial is for an unproven, untested treatment that might even be harmful to your health.

Sign up for The Download your daily dose of what's up in emerging technology

The company proposes to inject patients with viruses carrying the genetic instructions cells need to manufacture telomerase reverse transcriptase, a molecule involved in extending the length of telomeres.

The dangers are enormous, says Jerry Shay, a world expert on aging and cancer at the University of Texas Southwestern Medical Center. Theres a risk of activating a pre-cancerous cell thats got all the alterations except telomerase, especially in people 65 and over.

For years now, people involved in the company have made shifting claims about the study, raising uncertainty about who is involved, when it might start, and even where it would occur. Trial listings posted in October to clinicaltrials.gov currently show plans for three linked experiments, each with five patients, targeting critical limb ischemia, Alzheimers, and aging, respectively.

Jeff Mathis, president of Libella, told MIT Technology Review that two patients have already paid the enormous fee to take part in the study: a 90-year-old-woman and a 79-year-old man, both US citizens. He said they could receive the gene therapy by the second week of January 2020.

The decision to charge patients a fortune to participate in the study of an experimental treatment is a red flag, say ethics experts. Whats the moral justification for charging individuals with Alzheimers? asks Leigh Turner, at the University of Minnesotas Center for Bioethics. Why charge those bearing all the risk?

The telomere study is occurring outside the US because it has not been approved by the Food and Drug Administration. Details posted to clincaltrials.gov indicate that the injections would be carried out at the IPS Arcasalud SAS medical clinic in Zipaquir, Colombia, 40 kilometers (25 miles) north of Bogot.

It takes a lot longer, is a lot more expensive, to get anything done in the US in a timely fashion, Mathis says of Libellas choice to go offshore.

To some promoters of telomerase gene therapy, urgency is justified. Heres the ethical dilemma: Do you run fast and run the risk of low credibility, or move slowly and have more credibility and global acceptancebut meanwhile people have died? says Mike Fossel, the president of Telocyte, a company planning to run a study of telomerase gene therapy for Alzhheimer's in the US if it can win FDA signoff.

Our reporting revealed a number of unanswered questions about the trial. According to the listings, the principal investigatorwhich is to say the doctor in charge--is Jorge Ulloa, a vascular surgeon rather than an expert in gene transfer. I dont see someone with relevant scientific expertise, says Turner.

Furthermore, Bill Andrews, who is listed as Libellas chief scientific officer, says he does not know who Ulloa is, even though on Libellas website, the mens photos appear together on the list of team members. He said he believed that different doctors were leading the trial.

Turner also expressed concerns about the proposed 10-day observation period described in the posting for the overseas study: If someone pays, shows up, has treatment, and doesnt stick around very long, how are follow-up questions taking place? Where are they taking place?

Companies seeking to try the telomere approach often point to the work of Maria Blasco, a Spanish scientist who reported that telomere-lengthening gene therapy benefited mice and did not cause cancer. Blasco, director of the Spanish National Centre for Cancer Research, says she believes many more studies should be done before trying such a gene experiment on a person.

This isnt the first time Libella has announced that its trial would begin imminently. It claimed in late 2017 that human trials of the telomerase therapy would begin in the next few weeks. In 2016, Andrews (then partnered with biotech startup BioViva) claimed that construction of an age reversal clinic on the island nation of Fiji would be complete before the end of the year. Neither came to pass.

Similar questions surround Libellas most recent claims that it has two paying clients. Pedro Fabian Davalos Berdugo, manager of Arcasalud, said three patients were awaiting treatment in December. But Bioaccess, a Colombian contract research organization facilitating the Libella trial, said that no patients had yet been enrolled.

Also unclear is where Libella is obtaining the viruses needed for the treatment. Virovek, a California biotech company identified by several sources as Libellas manufacturer, did not answer questions about whether any treatment had been produced.

Read more from the original source:

Buyer beware of this $1 million gene therapy for aging - MIT Technology Review

Dr. James Wilson, a scientific pioneer, on the future of gene therapy – STAT

Dr. James Wilson is a pioneer in gene therapy. That does not mean he is necessarily impressed with the current state of affairs.

In five years, when we look back on the way were executing on gene therapy now, were going to realize that things are going to be very different, Wilson said at the STAT Summit in Cambridge, Mass., recently. The way in which were going to treat Duchenne muscular dystrophy, potentially cure it, is not the way in which its being evaluated in the clinic now.

Unlock this article by subscribing to STAT Plus. To get you started, enjoy 50% off your first 3 months!

STAT Plus is STAT's premium subscription service for in-depth biotech, pharma, policy, and life science coverage and analysis.Our award-winning team covers news on Wall Street, policy developments in Washington, early science breakthroughs and clinical trial results, and health care disruption in Silicon Valley and beyond.

More:

Dr. James Wilson, a scientific pioneer, on the future of gene therapy - STAT

The Rise Of Patent Wars In Europe’s Gene Therapy Space – Law360

Law360 (December 11, 2019, 1:28 PM EST) -- The gene therapy industry is in an exciting phase of growth, undergoing significant mergers and acquisitions activity, product sales and new marketing authorizations that are being issued with increasing regularity globally.

Recent reports have estimated that the market is likely to be almost four times its current value by 2025[1], with up to 20 new product approvals expected every year[2].

This rapid growth brings inevitable challenges. Significant issues relating to regulatory standards in manufacturing plants, establishing acceptable reimbursement policies and antitrust investigations are among a few.

The intellectual property landscape has been lower profile, with the exception of the ongoing CRISPR...

In the legal profession, information is the key to success. You have to know whats happening with clients, competitors, practice areas, and industries. Law360 provides the intelligence you need to remain an expert and beat the competition.

TRY LAW360 FREE FOR SEVEN DAYS

Read more:

The Rise Of Patent Wars In Europe's Gene Therapy Space - Law360

Pfizer cites competitiveness of inhouse gene therapy – Bioprocess Insider – BioProcess Insider

With a surge of gene therapies coming through the clinic and a lack of CDMO capacity, having inhouse capabilities is driving investment and M&A activity.

As increasing numbers of gene therapies progress through the clinic and towards commercialization, it is no secret that demand for production capabilities is high.

The complexity and cost of making viral vector means is a problem, but a biopharma with its own capabilities holds a major advantage, it would appear, something Pfizer CSO Mikael Dolsten claimed at the Evercore ISI 2nd Annual HealthCONx Conference last week.

Image: iStock/syahrir maulana

The Big Biopharma firm has a site in Sanford, North Carolina, supporting its gene therapy pipeline. In August this year, the firm made a $500 million (450 million) investment at the site to construct a manufacturing plant based on its recombinant adeno-associated virus (rAAV) vector platform for gene therapies and viral vaccines.

We think thats a very versatile flexible manufacturing platform, Dolsten said, adding it will be used both for Pfizers own manufacturing needs and for its partners.

Its a competitive advantage, not just for our product, but for companies that wants to partner with Pfizer that may allow them to have an easier and more high-end dialogue with regulators across the globe about this new field and a new type of product.

His comments came the same week that Astellas entered an agreement to buy Audentes for $3 billion. The firm cited a viral vector plant in San Francisco, California as a major driver in the deal which, management said, allows Astellas to gain a competitive advantage in the gene therapy business.

The other option for gene therapy developers is to use contract development and manufacturing organizations (CDMOs). However, the relatively little capacity available means gene therapy developers are having to reserve space years in advance and be subject to high-demand, low-supply price pressures.

But it is helping to shape the sector as third-parties look to acquisitions and expansions to take advantage of the demand. Thermo Fisher and Catalent have both bought their way into the market in the past year, buying Brammer Bio and Paragon, respectively.

Meanwhile, CDMOs like Fujifilm, Aldevron, and Viralgen have all invested in their capacity to help feed demand within the past few months.

Some CDMOs, have done both: Lonza, for example, acquired Dutch firm PharmaCell in 2017 and has built out its own capabilities in Pearland, Texas.

Read more from the original source:

Pfizer cites competitiveness of inhouse gene therapy - Bioprocess Insider - BioProcess Insider

Investment in UK cell and gene therapy manufacturing set to continue – European Pharmaceutical Review

An additional 6,000m2 of cell and gene therapy manufacturing space is expected to become available within the next 12 months, according to new data.

New data shows that a 60 percent increase in cell and gene manufacturing space reported in 2018 has since become fully functional, reports Cell and Gene Therapy Catapult (CGT Catapult).

This growth is also reflected in a surge in jobs in the cell and gene therapy manufacturing industry; numbers have expanded from 150 in 2014, to 500 in 2018 and doubling to over 1,000 staff in 2019, found the researchers.

With significant additional capacity planned, it is essential that skilled personnel are available

The manufacturing capacity in the UK is due to increase even further in 2020, with around 6,000m2 becoming available. Oxford Biomedica and the CGT Catapult are the main contributors, with 4,200m2 opening at Oxford Biomedicas new Oxbox facility and a 1,200m2 expansion of the CGT Catapult. Additional space is set to come from expansions at Great Ormond Street, Cobra Biologics, The Rayne Cell Therapy facility at Kings College London, NHS Blood and Transplant (NHSBT) and Scottish National Blood Transfusion Service (SNBTS).

Further extensions are also expected in 2021 from RoslinCT and in 2022 from The University of Birmingham and the Rayne Cell Therapy Facility at Kings College London. With more plans likewise being announced by Karoo Therapeutics, Exmoor Pharma, University of Oxford CBF, MeiraGTx and Immetacyte, cell and gene therapy manufacturing growth is set to continue.

These facilities coming on stream now are evidence of the acceleration of cell and gene therapies towards commercialisation. With significant additional capacity planned, it is essential that skilled personnel are available. The Advanced Therapies Apprenticeship Community, designed specifically to train and upskill individuals for the sector, setup in partnership with the Medicines Manufacturing Industry Partnership (MMIP), will become increasingly important, claimed Keith Thompson, Chief Executive Officer CGT Catapult.

Link:

Investment in UK cell and gene therapy manufacturing set to continue - European Pharmaceutical Review

Biomanufacturing and Supply Chain Standardization Key to Success in Cell and Gene Therapy Industry Boom – BioBuzz

The Wild West. Like changing the engine of acar while driving down the highway.

This was how several cell and gene therapy industry leaders characterized the fields rapidly developing Biomanufacturing and supply chain environment at this years Maryland Tech Council (MTC) BIO Conference held in the BioHealth Capital Region (BHCR).

Cell and gene therapy is so new that itsmanufacturing and supply chain processes and best practices are stillcalcifying, leaving many organizations to learn on the fly as they attempt tobuild the efficiency and standardization necessary for the industry to trulytake off.

Put simply, cell and gene therapy companiesare doing something thats basically never been done before. Only a handful ofcompanies have successfully taken a cell and gene therapy product to market.Gene and cell therapy manufacturing and supply chain is truly a new frontierthat is just starting to be explored and mapped.

Earlier this year at the Bio Innovation Conference during a panel entitled, New Frontiers of Biomanufacturing, had a vigorous discussion about the evolving state of cell and gene therapy manufacturing and innovation. Panelists included Vigenes Chief Manufacturing Officer Jeffrey Hung, Ph.D.; Aaron Vernon, VP of Engineering and Supply Chain at Autolus; John Rowley, Ph.D., Founder, and Chief Product Officer at Rooster Bio; Chris McDonald, VP of Manufacturing at Kite Pharma and Robert Lindblad, Chief Medical Officer at Emmes Corporation, and was moderated by John Walker, Manufacturers Extension Liaison at NIIMBL (National Institute for Innovation in Manufacturing Biopharmaceuticals).

When asked, What keeps you up at night?,Jeffrey Hung of Vigene perfectly captured the conundrum facing those operatingin the cell and gene therapy field: What keeps me awake at night is thecontinued demand for clinical trial materials and commercial product while wekeep having to innovate at a fast pace. Its like trying to change a carsengine while driving it down the highway.

Other panelists cited what seemed likeinherent contradictions faced by a nascient cell and gene therapy industry. Inessence, these companies are learning on the fly without an established set ofrules to follow or even question. Production needs conflict with innovation;personalization is anathema to standardization; and being cutting edge oftenmeans they lack the tools, materials and the well-worn paths to regulatoryapproval already established in other biotech sectors.

As a supporter of manufacturerswhat we see is that everyone wants to innovate but at some point, you have to just bite the bullet and lock down your process to get reliable manufacturing techniques to move it along the regulatory pathway. Every tweak you do requires a lot of other work. You can work on innovation in the second stage of your product, stated Robert Lindblad of Emmes.

In the new frontier space, there are no reagents and no GMP reagents. You cant source GMP reagents so you have to qualify reagents just for your product and your indication, which is not adequate to get a certificate of analysis from the FDA. As you are on the cutting edge, you dont have the equipment to create a closed system, you dont have the reagents you need to have GMP manufacturing, so you have to be creative and work with the agencies to get through the regulatory pathways to commercialization, he added.

The personalized nature of cell and genetherapy also creates challenges for manufacturing standardization and supplychain. The one batch, one patient equation of autologous cell therapy makes ita unique and highly challenging manufacturing process.

When you think about designing and building aplant you cant build inventory. Biologic manufacturing allows for 2 or 3 yearsof inventory. For us, you can never take the plant down, stated Chris McDonaldof Kite Pharma. He added that in many ways building a cell therapymanufacturing plant is a lot easier than running one due to the challengespresented by personalization, constant production, lack of inventory and theoverall newness of the industry.

Rooster Bio has built its business model around solving some of the fields efficiency and standardization issues. Rooster is making great strides in its efforts to standardize parts of the manufacturing and supply chain processes by becoming the Intel of cell banking. By creating off-the-shelf, high-quality media and cells-similar in concept to what the Intel microchip did for the computer industry-Rooster hopes to help standardize an important segment of cell and gene therapy manufacturing process and supply chain, thereby increasing manufacturing efficiency while lowering the cost of cell and gene therapy costs to patients.

One bad reagent going into a cell bank thats supposed to last for a few years can be really debilitating. This is what makes the Rooster Bio business model possible. Innovation cant happen without quality. On the innovation side were in the middle of the process of living cells transitioning from being just a tool for research into technology itself, stated John Rowley of Rooster Bio.

He also cited Moores Law as an apt parallel for whats currently developing in the cell and gene therapy field right now. Moores Law states that the capacity of microchips would likely double every year while computers would decrease in cost. Rowley drew a link between Moores Law, the rapid increase in monoclonal antibody manufacturing capacity and cost reductions of the 1990s and what is going on now in cell and gene therapy manufacturing and supply chain.

While improving the manufacturing and supply chain is critical, Aaron Vernon of Autolus reminded the audience of the real-world impact of cell and gene therapy development failure or success. He emphasized the need for stronger cell and gene therapy manufacturing and supply standardization because of the direct link between personalized therapies and impacts on individual patients.

We have to have zero tolerance for manufacturing failures because of their direct impact on patients. There are a lot of moving parts and things get more complex over time. This doesnt scale easily, he stated. We want to innovate all the time but we dont decisions made early in the research process that hamper supply chain for a very long time.

Because personalized medicine is tailored for specific patients-i.e. one batch, one patient-the stake, while always high in biotech manufacturing, are higher in cell and gene therapy manufacturing and supply chain.

This makes solving the industrysmanufacturing and supply chain questions even more pressing. Having morecompanies successfully commercialize their cell and gene therapy products andincreased information sharing, even among competing companies, are critical tothe industrys future.

Theres a huge amount of knowledge out therebut theres a black box that only gives us information about whats workedand what hasnt really late in the game. We only learn from the FDA after thefact, stated McDonald.

Instead of relying on the FDA, Walker wonderedabout the possibility of sharing successes and failures among cell and genetherapies competing for market share.

Walker offered the following thoughts to thepanel, Different companies know whats working and whats not but because ofIP no one is sharing. As cell therapy is trying to move forward everyone istrying to protect their own space so they are not sharing failures. If youretrying to move the field forward scientifically thats one thing, but right noweveryone is thinking commercially and everyone is in their silo, which istotally understandable

Vernon noted that the Standards Coordinating Body and other organizations are working to develop manufacturing and supply chain standards for the industry and are actively seeking input from companies in the space.

What Ive learned more than anything recentlyis that these organizations need more industry engagement. There are certainthings-how we qualify shipping lanes, logistics, freezing, microbial testing,method validation-that are absolutely inefficient when we are reinventing thewheel all the time at different companies, stated Vernon.

Because this industry is so new-we only have4 or 5 approved cell and gene therapy approved commercial products-its reallyjust too early to be able to standardize, added Hung.

Because it is in fact too early tostandardize, cell and gene therapy organizations find themselves confronting aCatch-22. Manufacturing demand will compete with the need to innovate. Thepersonalized nature of cell and gene therapy will be at odds with the push tostandardize manufacturing and supply chain best practices. The push to beat thecompetition to market will inherently limit the data sharing necessary touplift the entire industry.

While these manufacturing and supplychallenges appear daunting, they always are when it comes to revolutionizingmedicine. Its the energy created by these contradictions that will driveprogress and foment innovation; its the immense challenges of frontierindustries like cell and gene therapy that will ensure the very best of thebest rise to success to pave the way forward for the organizations thatfollow. And its success that will breedmore success, as the conflict between these seemingly opposing forces will onlyresolve itself over time as more companies take therapies to market and thestories of their struggles and successes become public knowledge.

It seems like the Wild West now but conquering new territory is always complex and messy. The car will eventually have time to slow down and get in the shop to fine-tune its engine, offering a smoother, more efficient and faster ride to its destination.

The BHCR regions burgeoning cell and gene therapy cluster, as represented by those on the New Frontiers in Biomanfucturing panel, will clearly play a leading role in fulfilling the promise of cell and gene therapies to deliver high-quality therapies and cures to patients in need while driving down costs over time.

Learn more about working at Kite from Chris McDonald, VP of Manufacturing and Site Lead.

Steve has over 20 years experience in copywriting, developing brand messaging and creating marketing strategies across a wide range of industries, including the biopharmaceutical, senior living, commercial real estate, IT and renewable energy sectors, among others. He is currently the Principal/Owner of StoryCore, a Frederick, Maryland-based content creation and execution consultancy focused on telling the unique stories of Maryland organizations.

More here:

Biomanufacturing and Supply Chain Standardization Key to Success in Cell and Gene Therapy Industry Boom - BioBuzz

Research targets gene therapy for exudative AMD patients – Modern Retina

Abstract / Synopsis:

Two anti-VEGF gene therapies are being investigated in clinical trials of patients with exudative age-related macular degeneration. Initial efficacy and safety results are encouraging.

Anti-VEGF gene therapy for exudative age-related macular degeneration (AMD) has transformative potential for reducing treatment burden and improving patient outcomes, according to Szilrd Kiss, MD.

Two investigational anti-VEGF gene therapies are currently being investigated in clinical trialsRGX-314 (Regenxbio) and ADVM-022 (Adverum). Dr. Kiss described the two technologies and reviewed some preliminary clinical trial results that support their promise for providing sustained benefit with a single injection.

Considering the treatment burden of anti-VEGF therapy for other ocular diseases, we can imagine that exudative AMD is just the first indication that will be targeted for anti-VEGF gene therapy, said Dr. Kiss, chief, Retina Service, associate professor of ophthalmology, and associate dean at Weill Cornell Medical College, New York, NY.

RGX-314 delivers a gene for an anti-VEGF fab protein that is similar to ranibizumab. It uses adeno-associated virus-8 (AAV8) as a vector and is administered in the operating room as a subretinal injection.

AAV is the most common viral vector carrier used for gene therapy. Different AAV serotypes have different tissue selectivity, Dr. Kiss explained. AAV8 is a wild type AAV that has the propensity for greater transfection of retinal cells compared with AAV2 following subretinal gene therapy delivery.

RELATED:AAO 2019: Encouraging results revealed from early trial of subretinal gene therapy for wet AMD

Disclosures:

Szilrd Kiss, MDe: [emailprotected]This article was adapted from Dr. Kiss presentation at the 2019 meeting of the American Academy of Ophthalmology. Dr. Kiss is a consultant to RegenxBio and Spark Therapeutics and is a consultant and equity owner in Adverum.

Read the original here:

Research targets gene therapy for exudative AMD patients - Modern Retina

Magenta Therapeutics Demonstrates First-ever Successful Gene Therapy Transplant Without Chemotherapy in Primates Using a Single Dose of Antibody-drug…

CAMBRIDGE, Mass.--(BUSINESS WIRE)--Magenta Therapeutics (NASDAQ: MGTA), a clinical-stage biotechnology company developing novel medicines to bring the curative power of immune reset to more patients, today announced that new results from its CD117-ADC patient preparation program were presented at the 61st Annual Meeting of the American Society of Hematology (ASH). These results, which were highlighted in an oral presentation at ASH by John Tisdale, M.D., Director, Molecular and Clinical Hematology Section, National Institutes of Health, showed the first-ever successful transplant of gene-modified cells in non-human primates using a targeted, single-agent antibody-drug conjugate (ADC), without the use of chemotherapy or radiation.

Todays conditioning regimens involve high doses of chemotherapy, often paired with radiation, to remove the disease-causing cells. As a result, patients undergoing gene therapy or stem cell transplant are all faced with a difficult choice: whether to endure severe toxicity and risk infertility and cancer for the chance for a cure. Magentas portfolio of targeted ADCs represents an extremely promising new option to prepare patients for gene therapy or transplant with no need for toxic chemotherapy or radiation, said Dr. Tisdale. The results presented today show that a single dose of single agent CD117-ADC achieves the same level of depletion as four doses of busulfan chemotherapy to enable successful engraftment and persistence of stem cells modified with the -globin gene, the gene that causes sickle cell disease and -thalassemia when mutated. Importantly, the animals undergoing preparation with CD117-ADC showed none of the damaging toxicities associated with busulfan conditioning.

Magenta is the only company with the people, platforms and a product engine committed to comprehensively transforming immune and blood system reset, which includes revolutionizing the toxic methods that are used to prepare patients for gene therapy and transplant today. said Jason Gardner, D.Phil., Chief Executive Officer and President, Magenta Therapeutics. The gene therapy field has learned that higher levels of stem cell depletion, which meant higher doses of busulfan, were needed to ensure long-term engraftment of the gene-modified cells and persistence of gene therapy. Across all the modalities we have tested, we have seen that ADCs are most effective at achieving these high levels of stem cell depletion without chemotherapy to enable engraftment and long-term durability of the transplant. Todays impressive results provide important validation of the ADC approach as well as the CD117 target for patient preparation and underscore Magentas leadership in the field of conditioning.

Results from the CD117-ADC Patient Preparation Program

Title: A Single Dose of CD117 Antibody Drug Conjugate Enables Autologous Gene-Modified Hematopoietic Stem Cell Transplant (Gene Therapy) in Nonhuman Primates (Abstract #610)Presenter: John Tisdale, M.D., Director, Molecular and Clinical Hematology Section, National Institutes of Health, Bethesda, Md.

Magentas most advanced patient preparation program, CD117-ADC, targets CD117, a protein expressed on hematopoietic stem cells. CD117-ADC is designed to remove the genetically mutated cells in the bone marrow that cause certain genetic diseases, such as sickle cell disease, enabling curative stem cell transplant or gene therapy.

Results presented by Dr. Tisdale showed:

About Magenta Therapeutics

Magenta Therapeutics is a clinical-stage biotechnology company developing medicines to bring the curative power of immune system reset through stem cell transplant to more patients with autoimmune diseases, genetic diseases and blood cancers. Magenta is combining leadership in stem cell biology and biotherapeutics development with clinical and regulatory expertise, a unique business model and broad networks in the stem cell transplant world to revolutionize immune reset for more patients.

Magenta is based in Cambridge, Mass. For more information, please visit http://www.magentatx.com.

Follow Magenta on Twitter: @magentatx.

Forward-Looking Statement

This press release may contain forward-looking statements and information within the meaning of The Private Securities Litigation Reform Act of 1995 and other federal securities laws. The use of words such as may, will, could, should, expects, intends, plans, anticipates, believes, estimates, predicts, projects, seeks, endeavor, potential, continue or the negative of such words or other similar expressions can be used to identify forward-looking statements. The express or implied forward-looking statements included in this press release are only predictions and are subject to a number of risks, uncertainties and assumptions, including, without limitation risks set forth under the caption Risk Factors in Magentas Registration Statement on Form S-1, as updated by Magentas most recent Quarterly Report on Form 10-Q and its other filings with the Securities and Exchange Commission. In light of these risks, uncertainties and assumptions, the forward-looking events and circumstances discussed in this press release may not occur and actual results could differ materially and adversely from those anticipated or implied in the forward-looking statements. You should not rely upon forward-looking statements as predictions of future events. Although Magenta believes that the expectations reflected in the forward-looking statements are reasonable, it cannot guarantee that the future results, levels of activity, performance or events and circumstances reflected in the forward-looking statements will be achieved or occur. Moreover, except as required by law, neither Magenta nor any other person assumes responsibility for the accuracy and completeness of the forward-looking statements included in this press release. Any forward-looking statement included in this press release speaks only as of the date on which it was made. We undertake no obligation to publicly update or revise any forward-looking statement, whether as a result of new information, future events or otherwise, except as required by law.

View post:

Magenta Therapeutics Demonstrates First-ever Successful Gene Therapy Transplant Without Chemotherapy in Primates Using a Single Dose of Antibody-drug...

GenEdit and Editas Medicine Enter into Exclusive License and Collaboration Agreement for Nanoparticle Gene Therapy Delivery – Business Wire

BERKELEY, Calif.--(BUSINESS WIRE)--GenEdit, Inc., a developer of a novel polymer nanoparticle technology platform for non-viral- and non-lipid-based delivery of gene therapies, today announced that it has entered into a worldwide, exclusive license and collaboration agreement with Editas Medicine, Inc., a leading genome editing company. GenEdit has developed a comprehensive delivery system for CRISPR-based therapeutics, including gene knockout and gene repair therapies, to enable safer delivery options with improved efficiency.

"This license and collaboration agreement further validates the strength of our intellectual property portfolio and the potential of GenEdits technology," said Kunwoo Lee, Ph.D., co-founder and chief executive officer of GenEdit. "We are pleased to establish our relationship with Editas Medicine as they leverage our technology to develop potential genomic medicines."

Under the terms of the agreement, GenEdit has granted Editas Medicine an exclusive worldwide license, with rights to sublicense, to GenEdits Cpf1-based technologies. In return for these rights, GenEdit will receive undisclosed upfront and development milestone payments, including royalties on net sales of products incorporating the licensed intellectual property. In addition, GenEdit and Editas Medicine will collaborate on evaluating delivery of Cpf1-based technologies with GenEdits nanoparticle platform. Editas Medicine will provide research funding and have an option to continue development after the initial collaboration period.

GenEdits nanoparticle platform consists of a proprietary non-viral, non-lipid library of polymers that efficiently encapsulate and deliver cargo [RNA, DNA, protein and/or ribonucleic acid-protein complexes (RNP)] to specific tissues. The company screens the library to identify initial hits and then uses computational analysis and medicinal chemistry for iterative lead optimization. The company has used this platform to identify multiple candidate polymers for efficient and specific delivery of gene editing to a range of tissues.

"Compared to viral vectors and lipid-based nanoparticles, our approach has the potential for better targeting, more cargo, and lower manufacturing cost," said Timothy Fong, Ph.D., chief scientific officer of GenEdit. "In particular, our approach has the potential to enable in vivo gene editing of multiple tissues with CRISPR and expand the potential of gene therapies to treat more diverse sets of diseases."

About GenEdit

GenEdit was founded to transform the delivery of gene and gene editing therapies. We have synthesized the NanoGalaxy library of polymers that can encapsulate RNA, DNA, protein and/or RNP. Through advanced screening methods, computational analysis and iterative medicinal chemistry, we have demonstrated efficient delivery of gene editing cargo to specific tissues. We seek development partnerships for specific tissues and/or gene targets while advancing our internal pipeline of gene editing therapies.

For more information, please visit http://www.genedit.com.

Read more:

GenEdit and Editas Medicine Enter into Exclusive License and Collaboration Agreement for Nanoparticle Gene Therapy Delivery - Business Wire

First 2 Adults with Severe Hemophilia A Respond Well to Gene Therapy BAY 2599023 in Clinical Trial – Hemophilia News Today

Bayersinvestigationalgene therapy BAY 2599023 safely and effectively increased the levels ofclotting factor VIII (FVIII) and prevented or lessened bleeding in the first two people with severe hemophilia A treated ina Phase 1/2 clinical trial, preliminary data show.

The ongoing trial (NCT03588299; 2017-000806-39) is enrolling up to 30 eligible adult patients. More information, including recruiting sites in the U.S. and Europe, is availablehere.

These early results will be presented in the poster, First-in-human Gene Therapy Study of AAVhu37 Capsid Vector Technology in Severe Hemophilia A, at the 61st American Society of Hematology (ASH) Annual Meeting & ExpositionrunningDec. 710 in Orlando, Florida.

BAY 2599023 initially by Dimension Therapeutics as DTX201 is being developed by Bayer in collaboration with Ultragenyx Pharmaceuticals. The potential gene therapy aims to promote a sustained production of FVIII and overcome its deficit in hemophilia A patients, reducing or eliminating the need for prophylatic, or preventive, FVIII replacement therapy and the occurrence of bleeding events.

Administered as a single infusion, the therapy uses a modified and harmless version of the adeno-associated virus (AAV), called AAVhu37, to deliver a shorter but functionalcopy of the FVIII gene to liver cells, where clotting factors are produced. This version of the FVIII gene is known as B-domain deleted FVIII gene.

Preclinical studies showed that AAVhu37 effectively delivered the FVIII gene to liver cells, had a favorable distribution, and induced a durable FVIII production.

In addition, preclinical data showed that BAY 2599023 had a good safety profile, and the potential to promote FVIII production to levels considered to be therapeutic over a long period of time.

The ongoing, dose-establishingPhase 1/2 trial (NCT03588299; 2017-000806-39) is evaluating the safety, tolerability and early effectiveness of three ascending doses of BAY 2599023 in adult men with severe hemophilia A who have been previously treated with FVIII products.

It is the first clinical trial to evaluate a gene therapy based on the AAVhu37.

Up to 30 enrolled patients will be given a single intravenous infusion of one of three doses of BAY 2599023. The studys primary goal is to measure safety through reports of adverse events. Secondary goals include measuring FVIII activity and assessing the number of patients who reach more than 5% of FVIII production at six and 12 months after treatment at the different doses.

Data on the first two men treated at BAY 2599023s starting dose (0.5 x 1013 gene copies/kg) will be presented at the meeting. These men had more than 150 days of treatment with FVIII products, no history of FVIII inhibitors, and no detectable immune response against AAVhu37.

No adverse events were reported after more than 15 weeks of safety evaluations (about four months). Blood levels of liver enzymes also remained within a normal range, and either of these patients needed to be treated with corticosteroids.

The first man reached a stable FVIII production of around 5%, and was free of bleeding events or a need for prophylactic treatment for six weeks. The second patient, who had 99 bleeds in the year before receiving the gene therapy, reached a stable FVIII production of around 17%, and has been bleed-free for more than 5.5 months (at the time of data collection).

These preliminary data suggest that BAY 2599023 is safe and effective in promoting the production of FVIII and in reducing or preventing the occurrence of bleeding events and the need for prophylactic treatment, the researchers wrote.

Overall, data generated from this first dose cohort demonstrate that successful translation from pre-clinical to clinical development and proof-of-mechanism for BAY 2599023 was achieved, they concluded.

Marta Figueiredo holds a BSc in Biology and a MSc in Evolutionary and Developmental Biology from the University of Lisbon, Portugal. She is currently finishing her PhD in Biomedical Sciences at the University of Lisbon, where she focused her research on the role of several signalling pathways in thymus and parathyroid glands embryonic development.

Total Posts: 121

Margarida graduated with a BS in Health Sciences from the University of Lisbon and a MSc in Biotechnology from Instituto Superior Tcnico (IST-UL). She worked as a molecular biologist research associate at a Cambridge UK-based biotech company that discovers and develops therapeutic, fully human monoclonal antibodies.

Go here to read the rest:

First 2 Adults with Severe Hemophilia A Respond Well to Gene Therapy BAY 2599023 in Clinical Trial - Hemophilia News Today

New Anti-Aging Clinical Trial Begins. For $1 Million, You Can Be a Participant. – Livescience.com

An American biotech company has launched clinical trials in Colombia to test a new therapy designed to reverse the aging process, and in turn, treat age-related diseases, according to news reports.

But to steal a sip from this purported fountain of youth, participants in the trial must first fork over $1 million a fee that seems even more astronomical when you consider that most clinical trials are either free or provide participants with financial compensation, according to a report by OneZero, a Medium publication about tech and science.

The pricey trial is being run by Libella Gene Therapeutics, a Kansas-based company whose website proclaims that "the future is here." The company announced its intention to test its anti-aging remedies in Cartagena, Colombia, in 2018, and began recruiting for the trials in October of this year. Using a single-gene therapy, Libella aims to "prevent, delay, or even reverse" the general effects of aging, as well as treat diseases that emerge in old age, such as Alzheimer's, according to ClinicalTrials.gov.

In fact, in its own press release, the company boasted, without evidence, that its gene therapy "may be the world's first cure for Alzheimer's disease." The bold claim raises an obvious question: Will the treatment actually work?

Short answer: No one really knows, but the fact that Libella shipped its operation beyond the reach of the U.S. Food and Drug Administration (FDA) doesn't inspire confidence, experts told OneZero.

Related: 5 Reasons Not to Fear Getting Older

Unlike anti-aging face creams that soften the superficial signs of aging, the Libella therapy aims to reverse aging from the ground up, so to speak, starting at the level of our genes. Specifically, the gene therapy is intended to lengthen patients' telomeres structures that cap the tips of chromosomes and prevent the genetic material inside from fraying. Telomeres grow shorter each time a cell divides, and when the structures reach a critical length, cells either stop dividing or perish, according to Stanford Medicine.

The theory goes, if you rebuild the body's shortened telomeres, the process of aging might be thrown in reverse. This is not a new idea. Several studies in mice suggest that using gene therapy to lengthen telomeres can reverse certain signs of aging in the animals. A 2015 study from Stanford prompted similar effects in isolated human cells; the treatment lengthened cells' telomeres by fiddling with a close cousin of DNA, called RNA, which helps cells build proteins.

The Libella therapy aims to help cells rebuild telomeres by activating a gene in their DNA that would normally be switched "off." The gene, called TERT, contains instructions to build a protein called "telomerase," an enzyme that adds molecules to the end of telomeres and prevents the structures from shortening during cell replication, according to a 2010 report in the journal Biochemistry.

Libella's lead scientific officer, molecular biologist William Andrews, originally helped identify the human telomerase enzyme at the biotech firm Geron. Later, he licensed a gene therapy based on the finding to Libella, according to OneZero. "I can't say [telomere shortening is] the only cause of aging, but it plays a role in humans," Andrews told the publication.

Related: 8 Tips for Healthy Aging

Andrews' therapies will soon be put to the test in Colombia, where one 79-year-old will receive the anti-aging treatment in next month, according to OneZero. The anti-aging trial will include four more participants over age 45 and focus on verifying that the treatment is "safe and tolerable," meaning it does not harm patients or cause unacceptable side effects.

Two more trials will use the same therapy but aim to "prevent, delay, or even reverse the development" of Alzheimer's disease and critical limb ischemia, an age-related condition in which a person's arteries become severely obstructed. Participants in these trials must already be diagnosed with the disorders.

After treatment, participants in all three trials will remain in the clinic for 10 days for further monitoring, and then return at regular intervals for checkups over the following year.

Libella's gene therapy involves a one-time injection delivered through an IV; the Alzheimer's therapy uses the same formula but doctors inject the product into the patient's spinal fluid. Within the product, a modified virus carries the TERT gene into cells and injects the genetic material into their DNA. The modified viruses cannot transmit diseases to people, but in high enough doses, the germs could provoke a harmful immune response in the patient, according to a 2018 animal study. Libella representatives declined to say how high a dose their clinical trial participants will receive.

"All I can say is, it's a lot," Andrews told OneZero.

Potential side effects aside, the fact that the Libella treatment will be administered beyond the purview of the FDA is telling, according to one expert. Leigh Turner, a bioethicist at the University of Minnesota, told OneZero that "even though the company is based in the United States, they've managed to find a way to evade U.S. federal law by going to a jurisdiction where it's easier to engage in this activity."

The $1 million entry fee is also alarming, Turner said, given that most clinical trials don't charge patients anything to enter. Andrews told OneZero that the fee is justified because it costs the company hundreds of thousands of dollars to make enough product to treat just one person.

The appearance of the trials on ClinicalTrials.gov, an official registry maintained by the National Institutes of Health, does not boost their credibility, she added. The automated database can be easily manipulated and "can basically be used as a marketing platform," she said.

Other stakeholders in the telomere-lengthening business are concerned, too. Michael Fossel, founder and president of the biotech startup Telocyte, told OneZero that his company's own therapy is similar to the Libella treatment the difference is that Telocyte is seeking approval through the FDA. "We're afraid that something will go wrong [with the Libella trials], whether it's from a safety or efficacy standpoint," he said.

Related: Extending Life: 7 Ways to Live Past 100

But even in a best case scenario, wherein no patients come to harm, the Libella therapy still might not deliver any notable health benefits. Some research suggests that no link exists between telomere length and aging.

For instance, a study published this year examined more than 261,000 people between age 60 and 70, and found no correlation between participants' telomere lengths and their age-related health outcomes, including their overall cognitive function, muscular integrity and the age of their parents. Long telomeres were associated with a lowered risk of coronary heart disease as compared with short telomeres, but longer telomere length was also linked to a heightened risk of cancer.

"Telomere lengthening may offer little gain in laterlife health status" and lead to an increased risk of cancer, the authors noted.

It remains to be seen whether Libella has truly tapped the fountain of youth, but given the dubious nature of their clinical trials, potential participants may want to exercise caution before relocating to Colombia and shelling out $1 million for a chance to live longer.

Originally published on Live Science.

Read the rest here:

New Anti-Aging Clinical Trial Begins. For $1 Million, You Can Be a Participant. - Livescience.com

Watch out, Keytruda. Ferring’s bladder cancer gene therapy rival has new dataand they look competitive – FiercePharma

On the heels of an FDA speedy review for Keytrudas potential use in non-muscle invasive bladder cancer (NMIBC), its close rival, a gene therapy by Ferring Pharmaceuticals spinout FerGene, has posted late-stage data. By the looks of it, the two drugs are up for a fight.

Among patients with high-risk NMIBC superficial disease thats unresponsive to standard-of-care Bacillus Calmette-Gurin (BCG), nadofaragene firadenovec eliminated tumors in 53%, or 55 of 103 patients,at month three in a phase 3 study, FerGene unveiled Thursday at the Society of Urologic Oncology meeting.

By comparison, in Keytrudas own registrational trial on the same target patient population, the Merck & Co. PD-1 completely cleared tumors in 41.2%, or 42 of 102 patients, after three months, according to an update at the European Society for Medical Oncology annual meeting in September.

Simplify and Accelerate Drug R&D With the MarkLogic Data Hub Service for Pharma R&D

Researchers are often unable to access the information they need. And, even when data does get consolidated, researchers find it difficult to sift through it all and make sense of it in order to confidently draw the right conclusions and share the right results. Discover how to quickly and easily find, synthesize, and share informationaccelerating and improving R&D.

The length of time responses lasted appeared similar between the two drugs in their separate studies. For Keytruda, 24 patients (23.5%) continued to show no signs of disease after a year. As for nadofaragene firadenovec, 24.3%, or 25 patients, were still tumor-free at month 12.

In terms of safety, Keytruda recorded Grade 3/4 side effects in12.7% of patients, while FerGene said there were no Grade 4/5 events in its study.

We are pleased with these Phase 3 data results, including the complete response rates and favorable safety profile seen with nadofaragene firadenovec, Nigel Parker, scientific founder of FKD Therapies, said in a statement. The data have also helped FKD'snew drug application earn an FDA priority review.

RELATED:Merck's Keytruda is bound for new bladder cancer territory. But can it hold up against gene therapy?

Ferring recently gained commercial rights to the gene therapy from FKD, and, with $400 million in help from Blackstone Life Sciences, spun it into FerGene. Interestingly, it was Merck that licensed the drugout to FKD in the first place in 2011 in return for an equity stake in the then-newly formed Finnish company.

Priority reviews in hand, the two companies could be looking at FDA approvals soon. The burning question is, how does FerGene plan to price a gene therapy, which belongs to a class of drug thats notoriously costly? In a statement sentto FiercePharma, Ferring said it's too early to discuss pricing, that its top priority is still to get nadofaragene firadenovec approved andinvest into R&Dto study the product in more indications.

Keytruda is meant to be given ata fixed dose every three weeks. Nadofaragene firadenovec, which uses an adenovirus vector to deliver the gene interferon alfa-2b to stimulate an innate immune response to fight cancer, is administered into the bladder every three months.

Merck does have an upper hand against FerGene. The Big Pharma has been the sole supplier of BCG in the U.S. and several other key markets globally for several years now. So, it could offer BCG and Keytruda as a one-two punch for NMIBC, similar to the wayBayer is billing Nexavar and Stivarga as a part of the same continuumin first- and second-line liver cancer.

RELATED:Merck limits orders for bladder cancer drug as demand outstrips supply

There are other players eyeing the same patient population. Sesen Bio has Vicinium, an antibody-drug conjugate that targets epithelial cell adhesion molecule antigens on the surface of tumor cells to deliver a toxin payload. In its own phase 3 trial dubbed Vista also in high-risk, BCG-unresponsive NMIBC, Vicinium eradicated tumors in 40% of 89 patients at month three, according to an update the company provided in August. However, its response seems to wane over time more quickly than its rivals', as only 17% of patients showed no signs of tumor activity after 12 months.

The Cambridge, Massachusetts-based biotech recently held two meetings with the FDA and confirmed a submission process, including the design for a post-marketing confirmatory trial. It would enroll BCG-refractory patients who, because of supply constraints, haven't received an optimal BCG dose, which the company said represents a broader patientpopulation in light of anongoing shortage.

Sesen now expects to submit a biologics license application under rolling review by year-end with potential approval in 2020.

As for its pricing, during a presentation at the H.C. Wainwright investor conference in September, Sesens president and CEO Thomas Cannell pointed out that PD-1/L1s would cost about $150,000 to $200,000 per patient per year in NMIBC.

Weve done two rounds of market research with payers, and they think thats reasonable, he said. They think at those levels, there will probably be minimal prior authorization or step edits in terms of restricting a treatments use.

Assuming an official launch in 2021, Jefferies analysts, in a Nov. 12 note to clients, pegged $167.5 million for Viciniums U.S. sales in 2024. Before the priority designation, SVB Leerinks Daina Graybosch predicted a Keytruda launch in NMIBC in 2022 and forecastU.S. sales of $250 million in the indication for the Merck PD-1 inhibitor in 2025.

Editor's Note: The story has been updated with a statement from Ferring Pharma.

Read more here:

Watch out, Keytruda. Ferring's bladder cancer gene therapy rival has new dataand they look competitive - FiercePharma

Solid Biosciences Stock Crashes Over Safety Concerns About Its Gene Therapy – Barron’s

Text size

Solid Biosciences showed signs Tuesday morning of facing serious setbacks for its Duchenne muscular dystrophy gene therapy, sending the biotechs shares down about 70% in early trading.

Solid (ticker: SLDB) said the Food and Drug Administration had put its Phase I/II study of its experimental gene therapy treatment for Duchenne muscular dystrophy on clinical hold after one of the six patients dosed with the treatment suffered acute kidney injury, among other serious side effects.

This is the second clinical hold placed on this study. In March 2018, the FDA held the study after a patient in the low-dose cohort was hospitalized.

We are encouraged that this patient is recovering, Solid Biosciences CEO Ilan Ganot said in a statement. We remain committed to bringing meaningful new therapies to the Duchenne community and continue to believe in the differentiated construct of SGT-001 and the potential benefits it may offer to patients.

Solid is one of a number of companies seeking to be the first to bring to market a gene therapy to cure Duchenne muscular dystrophy, a genetic disorder that produces muscle weakness and dramatically shortens the life expectancy of people who suffer from it. Wall Street has increasingly seen Sarepta Therapeutics (SRPT) as having the leading Duchenne muscular dystrophy gene therapy candidate, after Solid released disappointing data earlier this year.

Pfizer (PFE) is also developing a competing gene therapy.

Ganot founded the company after his son was diagnosed with the disease. Safety concerns have long dogged Solid. In January of 2018, gene therapy pioneer James Wilson resigned from the companys scientific advisory board, according to a company filing, over emerging concerns about the possible risks of high systemic dosing of AAV, the viral vector used to deliver the gene therapy.

In its Tuesday morning statement, Solid said three patients given a lower dose of the experimental gene therapy continue to do well, as do two of the three patients given a higher dose. But one of the patients who received the higher dose fell ill.

The third patient...dosed in late October, experienced a serious adverse event (SAE) deemed related to the study drug that was characterized by complement activation, thrombocytopenia [low blood platelet count], a decrease in red blood cell count, acute kidney injury, and cardio-pulmonary insufficiency, the company said.

In a note out Tuesday morning, SVB Leerink analyst Joseph P. Schwartz noted that the new adverse event resembles the one from March 2018.

The safety profile of SGT-001 will most likely be under increased scrutiny, Schwartz wrote.

Solid Biosciences stock was recently trading 68.6% lower at $3.45.

Write to Josh Nathan-Kazis at josh.nathan-kazis@barrons.com

Visit link:

Solid Biosciences Stock Crashes Over Safety Concerns About Its Gene Therapy - Barron's

Solid’s Duchenne gene therapy trial halted after patient suffers toxicity – STAT

The Food and Drug Administration has halted a clinical trial involving a Duchenne muscular dystrophy gene therapy from Solid Biosciences (SLDB) after a patient suffered serious kidney and blood-related injuries, the company said Tuesday.

This is the third time that the Cambridge, Mass.-based Solid has run into a serious safety problem with its gene therapy, called SGT-001. The FDA placed similar clinical holds on the same clinical trial after each prior incident, but later allowed the company to proceed with patient dosing.

SGT-001 uses an inactivated virus to deliver a miniaturized but functional version of the dystrophin gene to muscle cells. The gene therapy is designed to be a one-time and potentially curative treatment for all Duchenne patients, regardless of the mutation that causes their disease.

advertisement

Sarepta Therapeutics (SRPT) and Pfizer (PFE) are also developing their own gene therapies targeted at Duchenne.

Six patients have been dosed with SGT-001, starting with three at a lower dose; interim results in those patients were previously reported and found to be disappointing. Three more patients were then treated at a higher dose of SGT-001.

The sixth patient became ill soon after being treated in October, experiencing an over-activation of the immune system, an acute kidney injury, reductions in platelets and red blood cells, and cardio-pulmonary insufficiency, Solid said.

All of the toxicities were deemed related to SGT-001 by the patients treating doctor. The patient is being treated and is recovering, Solid said.

Solid reported the patients status to the FDA, which then placed the clinical trial on hold. In a statement, the company said it will work with the FDA in an effort to resolve the hold and determine next steps for the clinical trial.

Pfizers Duchenne gene therapy has also been tied to similar immune system over-activation and related kidney toxicity, although its clinical trial remains active.

Go here to read the rest:

Solid's Duchenne gene therapy trial halted after patient suffers toxicity - STAT

Gene Therapy in Neurology: 2019 Overview & Forecast Report – Yahoo Finance

Dublin, Nov. 12, 2019 (GLOBE NEWSWIRE) -- The "Gene Therapy in Neurology" report has been added to ResearchAndMarkets.com's offering.

Gene therapy is an evolving area in healthcare that promises to revolutionize the treatment landscapes across various therapy areas.

In this report, the focus will be on neurology indications. The report provides an analysis of the overall gene therapy pipeline that is being developed for various neurology indications with an emphasis on late-stage pipeline products. In addition to pipeline analysis, the report also focuses on trends observed in clinical trials in this area, unmet needs and challenges, as well as partnership strategies adopted by pharmaceutical companies to keep up with developments in the field of gene therapies.

Recently approved gene therapies for spinal muscular atrophy have reinvigorated the potential of such therapies to transform patient care. While various methodologies can be adopted in order to deliver therapeutic benefits of gene therapy including gene augmentation, gene suppression, and gene editing, an important component of gene therapy is whether to use viral or non-viral vectors in order to deliver such therapies to the point of care.

Ongoing collaborations between different industry players and a buildup of real-world evidence establishing safety and efficacy are expected to drive the growth of gene therapies for neurology indications. Of the 38 pipeline products that are currently in development, 45% are adeno-associated virus (AAV) based delivery platforms. Other types include Lentiviral, which accounts for 13%.

A majority of the current pipeline products are in Phase II development and the most common neurology indications - for which gene therapies are currently being evaluated - include Parkinson's disease, pain and amyotrophic lateral sclerosis. The dominance of viral vectors is expected to continue as such platforms account for the bulk of these pipeline products, with adeno-associated virus being the most common among the viral vectors.

In terms of completed, ongoing and planned clinical trials, academic institutes account for 21% of these trials, despite industry sponsors being most dominant. A deeper analysis of these clinical trials also suggest that across most indications, the average trial duration for a viral based product is longer compared to a non-viral based product such as oligonucleotides or plasmid DNA.

There are also challenges associated with the development of gene therapies, most prominent being their high price points. Key opinion leaders (KOLs) interviewed highlighted the need to create sustainable funding solutions so that such therapies become accessible to patients everywhere irrespective of where patients are located. In terms of unmet needs, KOLs highlighted the need for a favorable route of administration that is both sustainable in terms of usage of healthcare resources and favorable from a patient perspective.

While development of gene therapies are expected to pick up pace, the next wave of such therapies are expected to be ones that target diseases that are more frequent. While monogenic rare diseases are the obvious first-to-go choice for which gene therapies can be developed, targeting more frequent diseases will need a holistic approach in order to address a wider mechanism of action. If gene therapies for frequent diseases do become available, then that will result in a more pronounced effect on healthcare not only in terms of providing better treatment options for patients but also test the ability of healthcare organizations to adapt with high price points of these therapies.

Scope

Reasons to Buy

Key Topics Covered

1 Preface

2 Executive Summary2.1 Key Findings2.2 KOL Insights on Competitive Landscape for Gene Therapy for Neurology Indications

3 Overview - Gene Therapy in Neurology3.1 Objectives of Gene Therapy 3.2 Gene Therapy Versus Conventional Therapies3.3 Optimization of Gene Expression3.4 Gene Transfer Methods and Vectors Used for Gene Therapy3.5 Classifications of Gene Therapy3.6 Sources

4 Gene Therapy in the 8MM4.1 Global Regulatory Agencies' Definitions of Gene Therapy4.2 Gene Therapy in the US 4.3 Gene Therapy in the EU4.4 Gene Therapy in Japan4.5 Gene Therapy in China4.6 Currently Marketed Gene Therapies in Neurology4.7 Sources

5 Pipeline Assessment in the 8MM 5.1 Pipeline Overview 5.2 Pipeline Products - Phase III5.3 Pipeline Products - Phase II5.4 Orchard Therapeutics' OTL-200 5.5 Biogen's Tofersen Sodium5.6 Roche's RG-5.7 Sylentis' Tivanisiran5.8 ViroMed's Donaperminogene Seltoplasmid5.9 Sources

6 Clinical Trials Mapping and Design6.1 Clinical Trial Mapping for all Pipeline Products by Phase, by Sponsor, and by Location6.2 Clinical Trial Mapping for all Pipeline Products by Status and by Indication6.3 Clinical Trial Mapping by Phase and Indication for Phase III Therapies6.4 Clinical Trial Mapping by Phase for Phase II Therapies6.5 Clinical Trial Duration by Indication for Phase III Therapies (By Types of Molecules)6.6 Clinical Trial Duration by Indication for Phase II Therapies (By Types of Molecules)6.7 Ongoing Clinical Development of Phase III Gene Therapies

7 Unmet Needs, Barriers, and Key Company Strategies 7.1 Unmet Needs Within Gene Therapy for CNS Indications7.2 Challenges and Other Factors to Consider During Different Stages of Product Development7.3 Key Company Strategies: Acquisitions7.4 Key Company Strategies: Strategic Partnerships7.5 Sources

8 Payer Perspective on Gene Therapies in Neurology8.1 Current Neurology Space8.2 Challenges Associated with Reimbursement of Novel Gene Therapies8.3 Cost of Gene Therapies8.4 Strategies to Tackle the Cost of Gene Therapies8.5 Innovative Reimbursement Models and Clinical Comparators

9 Market Outlook9.1 Phase III Gene Therapy Pipeline for Neurology9.2 Key Launch Dates for Phase III Gene Therapy Pipeline Products

Companies Mentioned

Story continues

For more information about this report visit https://www.researchandmarkets.com/r/7amvqe

Research and Markets also offers Custom Research services providing focused, comprehensive and tailored research.

CONTACT: ResearchAndMarkets.comLaura Wood, Senior Press Managerpress@researchandmarkets.comFor E.S.T Office Hours Call 1-917-300-0470For U.S./CAN Toll Free Call 1-800-526-8630For GMT Office Hours Call +353-1-416-8900

Visit link:

Gene Therapy in Neurology: 2019 Overview & Forecast Report - Yahoo Finance