Carmine Therapeutics teams up with Takeda for non-viral gene therapies – BSA bureau

Carmine Therapeutics and Takeda Collaborate to Discover and Develop Rare Disease Gene Therapies Using Novel Red Blood Cell Extracellular Vesicles Platform

Singapore based startup Carmine Therapeutics has announced that it has signed a research collaboration agreement with Japanese firm Takeda Pharmaceutical Company Limited o discover, develop and commercialize transformative non-viral gene therapies for two rare disease targets using Carmines REGENT(TM) technology, based on red blood cell extracellular vesicles. In addition, Takeda has committed a $5M convertible loan in support of the development of Carmines novel REGENT platform.

Under the terms of the agreement, Carmine will receive an upfront payment, research funding support, and is eligible for over $900M in total milestone payments plus tiered royalties.

Takeda has an option to license the programs following the completion of pre-clinical proof of concept studies and would be responsible for clinical development and commercialization.

Carmine Therapeutics is pioneering a novel class of therapeutics based on its REGENT(TM) technology which leverages red blood cell extracellular vesicles (RBCEVs), first published in Nature Communications in 2018.

An initial focus is non-viral gene therapies. Compared to adeno-associated virus (AAV)-based gene therapy, RBCEV-based gene therapy has the potential for repeat dosing, a significantly larger transgene payload capacity in excess of 11KB, and enhanced bio-distribution in selected tissues through RBCEV surface modification.

Read more here:

Carmine Therapeutics teams up with Takeda for non-viral gene therapies - BSA bureau

British biotech Freeline secures 106 million for its curative liver gene therapies – EU-Startups

UK-based Freeline, a biotechnology startup focused on developing curative gene therapies for chronic systemic diseases, has announced the closing ofan around 106 million extended Series C financing. Thisround includes a previously announced 35.4 million from Syncona, in addition to a more recentadditional amount of around 70.8 million led by Novo Holdings A/S, Eventide Asset Management and Wellington Management Company, with additional participation from Cowen Healthcare Investments, Acorn Bioventures and Ample Plus Fund.

Freeline, founded in 2015, aims to create better lives for people suffering from chronic, debilitating diseases. Combining innovation with an entrepreneurial spirit, they aim for life-changing impact by developing and commercialising innovative gene therapies. At the centre of their work is the goal to create functional cures for a wide range of liver-based diseases, which have previously been underserved and incurable.

The Stevenage-based biotech startup will use the funds to bring its lead programme in Haemophilia B into a pivotal trial, as well as to continue its Phase 1/2 clinical programme for Fabry Disease and further progress its pipeline programmes for Gaucher Disease and Haemophilia A. Additionally, Freeline expects to use the proceeds from the financing to further develop its proprietary gene therapy platform using next-generation AAV technology and expand its manufacturing capabilities.

The potential of gene therapy to change patients lives has never been greater and we are delighted to have leading US and European biotechnology investors join us in this extended Series C financing, said Theresa Heggie, CEO of Freeline. It comes at an exciting time for Freeline with our lead programme in Haemophilia B progressing through clinical development, and with promising programmes behind that, including a gene therapy treatment for Fabry Disease in the clinic and for Gaucher Disease and Haemophilia A in late preclinical development.

Our investment strategy is to identify and invest in US and European life science companies which are true leaders in their area of expertise, developing innovative product candidates that significantly advance patient care, said Thomas Dyrberg, Managing Partner, Novo Ventures, Novo Holdings A/S. We have been impressed by the Freeline platform and its scientific co-founders, as well as their experienced management team, and we are delighted to support Freeline as they continue to build momentum.

In connection with the financing, Freeline will appoint Thomas Dyrberg of Novo Holdings A/S to its Board of Directors.

Read the original post:

British biotech Freeline secures 106 million for its curative liver gene therapies - EU-Startups

Gene Therapy Market Size By Types, By Application, By Region, And Forecast 20202027 – Owned

New Jersey, United States,- The Gene Therapy Market report upholds the future market predictions related to Gene Therapy market size, revenue, production, Consumption, gross margin, and other substantial factors. It also examines the role of the prominent Gene Therapy market players involved in the industry including their corporate overview. While emphasizing the key driving factors for the Gene Therapy market, the report also offers a full study of the future trends and developments of the market.

The recently documented report on the Gene Therapy market is a detailed analysis of this business landscape and contains important details regarding the present market trends, current revenue, market size, industry share, periodic deliverables, alongside the profit anticipation and growth rate registered during the estimated timeframe.

A thorough inference pertaining to the performance of the Gene Therapy market over the forecast period, along with the key factors driving the market growth is enclosed in the report. It also delivers information about the market dynamics and focusses on the challenges encountered by the business vertical while providing a brief about the growth opportunities prevailing in the market over the analysis timeline.

Key highlights of the Gene Therapy market report:

The essence of the regional bifurcation of the business sphere presented in the report:

Top key players of industry are covered in Gene Therapy Market Research Report:

Gene Therapy Market Classification by Types:

Bytype1

Gene Therapy Market Size by End-user Application:

Byapplication1

Additional insights about the competitive landscape of the Gene Therapy market:

Factors defining the competitive landscape included in the report are:

The Gene Therapy market report encompasses a comprehensive analysis of the key facets including market concentration ratio.

The objective of the Gene Therapy Market Report:

Cataloging the competitive terrain of the Gene Therapy market:

Unveiling the geographical penetration of the Gene Therapy market:

The report of the Gene Therapy market is an in-depth analysis of the business vertical projected to record a commendable annual growth rate over the estimated time period. It also comprises of a precise evaluation of the dynamics related to this marketplace. The purpose of the Gene Therapy Market report is to provide important information related to the industry deliverables such as market size, valuation forecast, sales volume, etc.

Major Highlights from Table of contents are listed below for quick lookup into Gene Therapy Market report

About us:

Verified Market Research is a leading Global Research and Consulting firm servicing over 5000+ customers. Verified Market Research provides advanced analytical research solutions while offering information enriched research studies. We offer insight into strategic and growth analyses, Data necessary to achieve corporate goals, and critical revenue decisions.

Our 250 Analysts and SMEs offer a high level of expertise in data collection and governance use industrial techniques to collect and analyze data on more than 15,000 high impact and niche markets. Our analysts are trained to combine modern data collection techniques, superior research methodology, expertise, and years of collective experience to produce informative and accurate research.

Contact us:

Mr. Edwyne Fernandes

US: +1 (650)-781-4080UK: +44 (203)-411-9686APAC: +91 (902)-863-5784US Toll-Free: +1 (800)-7821768

Email: [emailprotected]

Our Trending Reports

Furniture Logistics Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Outsourced Semiconductor Assembly And Test (OSAT) Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Pine Pollen Powder Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

HVAC Equipment Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Data Governance Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026

Read the original here:

Gene Therapy Market Size By Types, By Application, By Region, And Forecast 20202027 - Owned

Gene Therapy For CNS Disorders Market Size By Product Analysis, Application, End-Users, Regional Outlook, Competitive Strategies And Forecast Up To…

New Jersey, United States,- Latest update on Gene Therapy For CNS Disorders Market Analysis report published with extensive market research, Gene Therapy For CNS Disorders Market growth analysis, and forecast by 2026. this report is highly predictive as it holds the overall market analysis of topmost companies into the Gene Therapy For CNS Disorders industry. With the classified Gene Therapy For CNS Disorders market research based on various growing regions, this report provides leading players portfolio along with sales, growth, market share, and so on.

The research report of the Gene Therapy For CNS Disorders market is predicted to accrue a significant remuneration portfolio by the end of the predicted time period. It includes parameters with respect to the Gene Therapy For CNS Disorders market dynamics incorporating varied driving forces affecting the commercialization graph of this business vertical and risks prevailing in the sphere. In addition, it also speaks about the Gene Therapy For CNS Disorders Market growth opportunities in the industry.

Gene Therapy For CNS Disorders Market Report covers the manufacturers data, including shipment, price, revenue, gross profit, interview record, business distribution etc., these data help the consumer know about the competitors better. This report also covers all the regions and countries of the world, which shows a regional development status, including Gene Therapy For CNS Disorders market size, volume and value, as well as price data.

Gene Therapy For CNS Disorders Market competition by top Manufacturers:

Gene Therapy For CNS Disorders Market Classification by Types:

Gene Therapy For CNS Disorders Market Size by End-user Application:

Listing a few pointers from the report:

The objective of the Gene Therapy For CNS Disorders Market Report:

Cataloging the competitive terrain of the Gene Therapy For CNS Disorders market:

Unveiling the geographical penetration of the Gene Therapy For CNS Disorders market:

The report of the Gene Therapy For CNS Disorders market is an in-depth analysis of the business vertical projected to record a commendable annual growth rate over the estimated time period. It also comprises of a precise evaluation of the dynamics related to this marketplace. The purpose of the Gene Therapy For CNS Disorders Market report is to provide important information related to the industry deliverables such as market size, valuation forecast, sales volume, etc.

Major Highlights from Table of contents are listed below for quick lookup into Gene Therapy For CNS Disorders Market report

About Us:

Market Research Intellect provides syndicated and customized research reports to clients from various industries and organizations with the aim of delivering functional expertise. We provide reports for all industries including Energy, Technology, Manufacturing and Construction, Chemicals and Materials, Food and Beverage, and more. These reports deliver an in-depth study of the market with industry analysis, the market value for regions and countries, and trends that are pertinent to the industry.

Contact Us:

Mr. Steven Fernandes

Market Research Intellect

New Jersey ( USA )

Tel: +1-650-781-4080

Read more:

Gene Therapy For CNS Disorders Market Size By Product Analysis, Application, End-Users, Regional Outlook, Competitive Strategies And Forecast Up To...

Retinal Gene Therapy Market Set to Surpass US$XX Million by the end of 2019 2029 – 3rd Watch News

The research study presented here is a brilliant compilation of different types of analysis of critical aspects of the global Retinal Gene Therapy market. It sheds light on how the global Retinal Gene Therapy market is expected to grow during the course of the forecast period. With SWOT analysis and Porters Five Forces analysis, it gives a deep explanation of the strengths and weaknesses of the global Retinal Gene Therapy market and different players operating therein. The authors of the report have also provided qualitative and quantitative analyses of several microeconomic and macroeconomic factors impacting the global Retinal Gene Therapy market. In addition, the research study helps to understand the changes in the industry supply chain, manufacturing process and cost, sales scenarios, and dynamics of the global Retinal Gene Therapy market.

Each player studied in the report is profiled while taking into account its production, market value, sales, gross margin, market share, recent developments, and marketing and business strategies. Besides giving a broad study of the drivers, restraints, trends, and opportunities of the global Retinal Gene Therapy market, the report offers an individual, detailed analysis of important regions such as North America, Europe, and Asia Pacific. Furthermore, important segments of the global Retinal Gene Therapy market are studied in great detail with key focus on their market share, CAGR, and other vital factors.

Request Sample Report @ https://www.futuremarketinsights.co/reports/sample/REP-GB-10246

Regional Wise Outlook

Geographically, the retinal gene therapy market is segmented into seven regions viz. South Asia, East Asia, North America, Latin America, Oceania, Europe, and Middle East and Africa. The North America retinal gene therapy market is the leader in the concerned global retinal gene therapy market. The only product approved is from a US based manufacturer, which reflects to the current market share for North America. The retinal gene therapy is also available in Europe from Spark Therapeutics. The deal is such that Novartis has exclusive rights to commercialize and distribute Luxturna in Europe and in all other countries outside the US, when regularized for use. So, clearly the current market for retinal gene therapy is consolidated in these two region.

The only player involved in this market of retinal gene therapy is Spark Therapeutics, Inc. The present market structure of retinal gene therapy is expected to change with efforts and research present in clinical phase.

The report is a compilation of first-hand information, qualitative and quantitative assessment by industry analysts, inputs from industry experts and industry participants across the value chain. The report provides in-depth analysis of parent market trends, macro-economic indicators and governing factors along with market attractiveness as per segments.

The report also maps the qualitative impact of various market factors on market segments and geographies.

Regional analysis of the Retinal Gene Therapy market report includes

Request Methodology On This Report @ https://www.futuremarketinsights.co/askus/REP-GB-10246

Table of Contents Covered In Retinal Gene Therapy Market Are:

Industry Overview: The first section of the research study touches on an overview of the global Retinal Gene Therapy market, market status and outlook, and product scope. Additionally, it provides highlights of key segments of the global Retinal Gene Therapy market, i.e. regional, type, and application segments.

Competition Analysis: Here, the report brings to light important mergers and acquisitions, business expansions, product or service differences, market concentration rate, the competitive status of the global Retinal Gene Therapy market, and market size by player.

Company Profiles and Key Data: This section deals with the company profiling of leading players of the global Retinal Gene Therapy market on the basis of revenue, products, business, and other factors mentioned earlier.

Market Size by Type and Application: Besides offering a deep analysis of the size of the global Retinal Gene Therapy market by type and application, this section provides a study on top end users or consumers and potential applications.

North America Market: Here, the report explains the changes in the market size of North America by application and player.

Europe Market: This section of the report shows how the size of the Europe market will change in the next few years.

China Market: It gives analysis of the China market and its size for all the years of the forecast period.

Rest of Asia Pacific Market: The Rest of Asia Pacific market is analyzed in quite some detail here on the basis of application and player.

Central and South America Market: The report explains the changes in the size of the Central and South America market by player and application.

MEA Market: This section shows how the size of the MEA market will change during the course of the forecast period.

Market Dynamics: Here, the report deals with the drivers, restraints, challenges, trends, and opportunities of the global Retinal Gene Therapy market. This section also includes the Porters Five Forces analysis.

Research Findings and Conclusion: It gives powerful recommendations for new as well as established players for securing a position of strength in the global Retinal Gene Therapy market.

Methodology and Data Source: This section includes the authors list, a disclaimer, research approach, and data sources.

We offer tailor-made solutions to fit your requirements, request[emailprotected] https://www.futuremarketinsights.co/customization-available/REP-GB-10246

Key Questions Answered in Retinal Gene Therapy Market Report are:

Research Methodology of Retinal Gene Therapy

Retinal Gene Therapy Market Report uses trustworthy primary and secondary research sources to compile its reports. It also relies on latest research techniques to prepare highly detailed and accurate research studies such as this one here. It uses data triangulation, top down and bottom up approaches, and advanced research processes to come out with comprehensive and industry-best market research reports.

See original here:

Retinal Gene Therapy Market Set to Surpass US$XX Million by the end of 2019 2029 - 3rd Watch News

The Wilderness of Rare Genetic Diseases and the Parents Navigating It – The New York Times

A confirmed diagnosis may take time.

Diagnosis represents the first step on this rare disease journey. Sometimes doctors will notice something off about the child during a newborn screening, and a genetic test will identify a known mutation in the DNA. But not all conditions are so quickly detected, and it can take several years for parents to get a confirmed diagnosis.

About half of all children never get that far, according to Marshall Summar, M.D., the director of the Rare Disease Institute at Childrens National Hospital in Washington, D.C. When you sequence someones DNA, you are going to find a lot of changes, Dr. Summar said. Figuring out which change might be the one that is causing it is a tremendous challenge.

Genetic counselors warn parents beforehand that they may not get a definitive answer as to what condition their child could have. They may have to check back each year. Dr. Summar estimates that between five and 10 new rare diseases are described in the scientific literature every week, making it challenging for the medical field to keep up.

Meanwhile, the realization that a child may have a debilitating, lifelong condition weighs heavily. Some parents, particularly mothers, blame themselves, said Lemuel Pelentsov, Ph.D., a nurse who studies the needs of rare disease families at the University of South Australia, in Adelaide. In a 2016 study by Dr. Pelentsov and his colleagues, about 40 percent of the 300 rare parents surveyed reported being treated for depression and an equal number for anxiety. One of the things they do to combat that, he said, is get very invested in the childs disease.

When parents reach out to other parents, they are not simply looking for emotional support or advice. They are rebuilding a social life, one that will revolve around their childs disease. Many rare diseases have their own support groups. Global Genes is an umbrella group that supports 600 disease-specific foundations, as well as parents of children whose diseases are so rare they have no foundation.

We encourage folks to work together, said Kimberly Haugstad, the organizations executive director whose son has a rare form of hemophilia, a condition in which the blood doesnt clot normally. The parent is going to come from such different places in their own walk of life.

Each year, Global Genes hosts a Rare Boot Camp to mentor and teach parents how to set up a nonprofit, create patient registries and fund research. After attending the boot camp, the Van Wyks and other parents founded GACI Global, an organization that connects families affected by GACI, along with medical professionals.

Here is the original post:

The Wilderness of Rare Genetic Diseases and the Parents Navigating It - The New York Times

Gene Therapy Market : Facts, Figures and Analytical Insights 2020 2029 – 3rd Watch News

The research study on Global Gene Therapy market 2019 presents an extensive analysis of current Gene Therapy market size, drivers, trends, opportunities, challenges, as well as key Gene Therapy market segments. Further, it explains various definitions and classification of the Gene Therapy industry, applications, and chain structure.In continuation of this data, the Gene Therapy report covers various marketing strategies followed by key players and distributors. Also explains Gene Therapy marketing channels, potential buyers and development history. The intent of global Gene Therapy research report is to depict the information to the user regarding Gene Therapy market forecast and dynamics for the upcoming years. The Gene Therapy study lists the essential elements which influence the growth of Gene Therapy industry. Long-term evaluation of the worldwide Gene Therapy market share from diverse countries and regions is roofed within the Gene Therapy report. Additionally, includes Gene Therapy type wise and application wise consumption figures.

The Final Report will cover the impact analysis of COVID-19 on this industry.

Download Sample of This Strategic Report:https://www.kennethresearch.com/sample-request-10225591

After the basic information, the global Gene Therapy Market study sheds light on the Gene Therapy technological evolution, tie-ups, acquisition, innovative Gene Therapy business approach, new launches and Gene Therapy revenue. In addition, the Gene Therapy industry growth in distinct regions and Gene Therapy R;D status are enclosed within the report.The Gene Therapy study also incorporates new investment feasibility analysis of Gene Therapy. Together with strategically analyzing the key micro markets, the report also focuses on industry-specific drivers, restraints, opportunities, and challenges in the Gene Therapy market.

Global Gene Therapy Market Segmentation 2019: Gene TherapyThe study also classifies the entire Gene Therapy market on basis of leading manufacturers, different types, various applications and diverse geographical regions. Overall Gene Therapy market is characterized by the existence of well-known global and regional Gene Therapy vendors. These established Gene Therapy players have huge essential resources and funds for Gene Therapy research as well as developmental activities. Also, the Gene Therapy manufacturers focusing on the development of new Gene Therapy technologies and feedstock. In fact, this will enhance the competitive scenario of the Gene Therapy industry.

The Leading Players involved in global Gene Therapy market are:

By Gene Therapy Type (Germline Gene Therapy and Somatic Gene Therapy)

By Type of Vector (Viral Vector and Non-viral Vector)

By Disease Indication (Cardio Vascular Diseases, Cancer, Genetic Disorders, Neuro Disorders, Infectious Diseases, and Others)

By Region (North America, Europe, Asia Pacific, Latin America, Middle East, and Africa)

Download Sample of This Strategic Report:https://www.kennethresearch.com/sample-request-10225591

Worldwide Gene Therapy Market Different Analysis:Competitors Review of Gene Therapy Market: Report presents the competitive landscape scenario seen among top Gene Therapy players, their company profile, revenue, sales, business tactics and forecast Gene Therapy industry situations. Production Review of Gene Therapy Market: It illustrates the production volume, capacity with respect to major Gene Therapy regions, application, type, and the price. Sales Margin and Revenue Accumulation Review of Gene Therapy Market: Eventually explains sales margin and revenue accumulation based on key regions, price, revenue, and Gene Therapy target consumer. Supply and Demand Review of Gene Therapy Market: Coupled with sales margin, the report depicts the supply and demand seen in major regions, among key players and for every Gene Therapy product type. Also interprets the Gene Therapy import/export scenario. Other key reviews of Gene Therapy Market: Apart from the above information, correspondingly covers the company website, number of employees, contact details of major Gene Therapy players, potential consumers and suppliers. Also, the strengths, opportunities, Gene Therapy market driving forces and market restraints are studied in this report.

Highlights of Global Gene Therapy Market Report:* This report provides in detail analysis of the Gene Therapy and provides market size (US$ Million) and Cumulative Annual Growth Rate (CAGR (%)) for the forecast period: 2019 ; 2029. * It also elucidates potential revenue opportunity across different segments and explains attractive investment proposition matrix for world Gene Therapy market. * This study also provides key insights about Gene Therapy market drivers, restraints, opportunities, new product launches, approvals, regional outlook, and competitive strategies adopted by the leading Gene Therapy players. * It profiles leading players in the worldwide Gene Therapy market based on the following parameters ; company overview, financial performance, product portfolio, geographical presence, distribution strategies, key developments and strategies and future plans. * Insights from Gene Therapy report would allow marketers and management authorities of companies to make an informed decision with respect to their future product launches, market expansion, and Gene Therapy marketing tactics. * The world Gene Therapy industry report caters to various stakeholders in Gene Therapy market. That includes investors, device manufacturers, distributors and suppliers for Gene Therapy equipment. Especially incorporates government organizations, Gene Therapy research and consulting firms, new entrants, and financial analysts. *Various strategy matrices used in analyzing the Gene Therapy market would provide stakeholders vital inputs to make strategic decisions accordingly.

Global Gene Therapy Market Report Provides Comprehensive Analysis of Following: ; Gene Therapy Market segments and sub-segments ; Industry size ; Gene Therapy shares ; Gene Therapy Market trends and dynamics ; Market Drivers and Gene Therapy Opportunities ; Supply and demand of world Gene Therapy industry ; Technological inventions in Gene Therapy trade ; Gene Therapy Marketing Channel Development Trend ; Global Gene Therapy Industry Positioning ; Pricing and Brand Strategy ; Distributors/Traders List enclosed in Positioning Gene Therapy Market.

Request For Full Report:https://www.kennethresearch.com/sample-request-10225591

Moreover, the report organizes to provide essential information on current and future Gene Therapy market movements, organizational needs and Gene Therapy industrial innovations. Additionally, the complete Gene Therapy report helps the new aspirants to inspect the forthcoming opportunities in the Gene Therapy industry. Investors will get a clear idea of the dominant Gene Therapy players and their future forecasts.

About Kenneth Research:

Kenneth Research provides market research reports to different individuals, industries, associations and organizations with an aim of helping them to take prominent decisions. Our research library comprises of more than 10,000 research reports provided by more than 15 market research publishers across different industries. Our collection of market research solutions covers both macro level as well as micro level categories with relevant and suitable market research titles. As a global market research reselling firm, Kenneth Research provides significant analysis on various markets with pure business intelligence and consulting services on different industries across the globe. In addition to that, our internal research team always keep a track on the international and domestic market for any economic changes impacting the products demand, growth and opportunities for new and existing players.

Contact Us

Kenneth ResearchEmail: [emailprotected]Phone: +1 313 462 0609

Read more from the original source:

Gene Therapy Market : Facts, Figures and Analytical Insights 2020 2029 - 3rd Watch News

Explore Trending Report On Gene Therapy for Age-related Macular Degeneration Market Along With COVID-19 Updates, Trend, Scope, CAGR, Forecast Till…

The global analysis of Gene Therapy for Age-related Macular Degeneration Market and its upcoming prospects have recently added by HealthCare Intelligence Markets to its extensive repository. It has been employed through the primary and secondary research methodologies. This market is expected to become competitive in the upcoming years due to the new entry of a number of startups in the market. Additionally, it offers effective approaches for building business plans strategically which helps to promote control over the businesses.

This report highlights the business cost structure that includes cost of raw material as well as manpower. It throws light on various internal and external factors that are driving or restraining the Gene Therapy for Age-related Macular Degeneration Market. To enlarge the businesses rapidly, it offers some significant ways to discover the wide-ranging global opportunities.

Request Sample Copy of this [emailprotected]: https://www.healthcareintelligencemarkets.com/request_sample.php?id=79492

Reportedly, by anlayzing the increasing demand and desirable resources estimated by the remarkable vendors, the worldwide Gene Therapy for Age-related Macular Degeneration industry has been assessed and predicts the upcoming industrial growth rates of the market. Besides this, the report on the Gene Therapy for Age-related Macular Degeneration Market segments the global market into distinct categories like product types, applications, topological regions, well-established industry players.

Major Key Vendors: RetroSense Therapeutics, REGENXBIO, AGTC

Competitive landscape of global Gene Therapy for Age-related Macular Degeneration Market has been studied to understand the competitive products and services across the globe. For effective global regional outlook analysts of the report examines global regions such as, North America, Latin America, Japan, Asia-Pacific, and India on the basis of productivity.

Reasonable Discount on this Premium Report @: https://www.healthcareintelligencemarkets.com/ask_for_discount.php?id=79492

Finally, all aspects of the Global Gene Therapy for Age-related Macular Degeneration Market are quantitatively as well qualitatively assessed to study the Global as well as regional market comparatively. This market study presents critical information and factual data about the market providing an overall statistical study of this market on the basis of market drivers, limitations and its future prospects. The report supplies the international economic competition with the assistance of Porters Five Forces Analysis and SWOT Analysis.

Prime Objectives that are Covered In this Report are as follows:

Enquiry Before Buying: https://www.healthcareintelligencemarkets.com/enquiry_before_buying.php?id=79492

If you have any customized requirement need to be added, we will be happy to include this free of cost to enrich the final research study.

About US:

HealthCare Intelligence Markets Reports provides Market intelligence and consulting services to global customers in 145 countries.Being a B2B company, we help businesses respond boldly to evolving Market challenges.Create customized syndicated Market research reports to help Market players build strategies to change games.In addition, reports on the pharmaceutical development, clinical and healthcare IT industries provide future trends and future Market prospects.

Contact Us:

Marvella Lit

Phone number: + 44-753-712-1342

Address: 90 State Office Center

90 State Street Suite 700, Albany, NY 12207

[emailprotected]

View post:

Explore Trending Report On Gene Therapy for Age-related Macular Degeneration Market Along With COVID-19 Updates, Trend, Scope, CAGR, Forecast Till...

Cancer Gene Therapy Market The New Ways to Win in Emerging Markets In COVID-19 Crisis Forecast to 2020-2027 with GSK, Bluebird bio, Merck, Celgene,…

The market report examined the current COVID-19 situation in the Cancer Gene Therapy Industry and the segments future prospects thoroughly. Furthermore, key market strategies are discussed, including product developments, partnerships, mergers and acquisitions, etc. Research study helps to perceive the real condition, major players and drivers in the market. It also analyzes demand from up-stream raw materials and equipment. This report includes a thorough study of the Cancer Gene Therapy Market using SWOT analysis, The Cancer Gene Therapy Market Report also provides a comprehensive analysis of key market players based on the organizations goals such as production quantity, profiling, product outline, the organizations required raw materials, and others growth factors .

Download Free Sample PDF@ https://www.alliedmarketresearch.com/request-sample/2605

Covid-19 Impact on the Global Cancer Gene Therapy Market:

Cancer Gene Therapy Market Report provides an overview of the market based on key parameters such as market size, sales, sales analysis and key drivers. The market size of the market is expected to grow on a large scale during the forecast period (2019-2026). This report covers the impact of the latest COVID-19 on the market. The coronavirus epidemic (COVID-19) has affected all aspects of life around the world. This has changed some of the market situation. The main purpose of the research report is to provide users with a broad view of the market. Initial and future assessments of rapidly.

Cancer Gene Therapy MarketCompetitive Analysis:

Leading market players Genelux Corporation, Cell Genesys, Advantagene, GenVec, BioCancell, Celgene, Epeius Biotechnologies, Introgen Therapeutics, Ziopharm Oncology, Shenzhen SiBiono GeneTech, and Altor Bioscience., Provided in this report. These players have adopted various strategies including expansions, mergers & acquisitions, joint ventures, new product launches, and collaborations to gain a strong position in the industry.

The Covid-19 (corona virus) pandemic is impacting society and the overall economy across the world. The impact of this pandemic is growing day by day as well as affecting the supply chain. The COVID-19 crisis is creating uncertainty in the stock market, massive slowing of supply chain, falling business confidence, and increasing panic among the customer segments. The overall effect of the pandemic is impacting the production process of several industries, and many more. Trade barriers are further restraining the demand- supply outlook. As government of different regions have already announced total lockdown and temporarily shutdown of industries, the overall production process being adversely affected; thus, hinder the overall Cancer Gene Therapy market globally.

Get detailed COVID-19 impact analysis on the Cancer Gene Therapy [emailprotected] https://www.alliedmarketresearch.com/request-for-customization/2605?reqfor=covid

COVID-19 Scenario:

Cancer Gene Therapy MarketSegmentation:

The research offers a detailed segmentation of the global Cancer Gene Therapy market. Key segments analyzed in the research by Product, by Type, by End User and geography. Extensive analysis of sales, revenue, growth rate, and market share of each for the historic period and the forecast period is offered with the help of tables.

Cancer Gene Therapy MarketRegional Analysis:

The market is analyzed based on regions and competitive landscape in each region is mentioned. Regions discussed in the study include North America (United States, Canada and Mexico), Europe (Germany, France, UK, Russia and Italy), Asia-Pacific (China, Japan, Korea, India and Southeast Asia), South America (Brazil, Argentina, and Colombia), Middle East and Africa (Saudi Arabia, UAE, Egypt, Nigeria and South Africa). These insights help to devise strategies and create new opportunities to achieve exceptional results.

Read [emailprotected] https://www.alliedmarketresearch.com/cancer-gene-therapy-market

About Us:

Allied Market Research (AMR) is a market research and business-consulting firm of Allied Analytics LLP, based in Portland, Oregon. AMR offers market research reports, business solutions, consulting services, and insights on markets across 11 industry verticals. Adopting extensive research methodologies, AMR is instrumental in helping its clients to make strategic business decisions and achieve sustainable growth in their market domains. We are equipped with skilled analysts and experts, and have a wide experience of working with many Fortune 500 companies and small & medium enterprises.

Contact:

David Correa

Portland, OR, United States

USA/Canada (Toll Free): +1-800-792-5285, +1-503-894-6022, +1-503-446-1141

UK: +44-845-528-1300

Hong Kong: +852-301-84916

India (Pune): +91-20-66346060

Fax: +1(855)550-5975

[emailprotected]

Web: https://www.alliedmarketresearch.com

Follow Us on LinkedIn: https://www.linkedin.com/company/allied-market-research

See more here:

Cancer Gene Therapy Market The New Ways to Win in Emerging Markets In COVID-19 Crisis Forecast to 2020-2027 with GSK, Bluebird bio, Merck, Celgene,...

Abeona Therapeutics Announces Two Presentations Related to Its RDEB Clinical Program at the Society for Pediatric Dermatology 45th Annual Meeting -…

NEW YORK and CLEVELAND, July 10, 2020 (GLOBE NEWSWIRE) -- Abeona Therapeutics Inc. (Nasdaq: ABEO), a fully-integrated leader in gene and cell therapy, today announced that two poster presentations related to its clinical program for recessive dystrophic epidermolysis bullosa (RDEB) were featured at the Society for Pediatric Dermatology (SPD) 45th Annual Meeting. The first poster includes a detailed analysis of patients with RDEB in the EB-101 Phase 1/2a trial showing that wound healing following EB-101 treatment was associated with improved long-term pain relief. A separate poster provides insights on the significant disease burden associated with RDEB, highlighting data from a literature review on the clinical characteristics, humanistic consequences and economic impact of living with RDEB on patients and their families.

The large wounds of RDEB cause substantial pain, and only palliative treatments are currently available, said Joo Siffert, M.D., Chief Executive Officer of Abeona. The data presented at SPD showed that EB-101 treatment of large, chronic wounds resulted in considerable and durable reduction in wound burden, which was associated with long-term pain relief for up to five years. The second poster at SPD helps to characterize the disease burden and management of RDEB, providing an important reminder of the extraordinary toll RDEB takes on quality of life, and underscores the need for therapies that reduce wound burden and the associated humanistic and economic impact.

EB-101 Treatment of Large, Chronic Wounds Is Associated with Durable Healing and Pain Reduction in Patients with Recessive Dystrophic Epidermolysis Bullosa (RDEB)

Jean Tang, M.D., Ph.D., Professor of Dermatology, Stanford University Medical Center and Principal Investigator of the EB-101 pivotal Phase 3 VIITALTM study, presented long-term outcomes following EB-101 treatment for large, chronic wounds in patients with RDEB. EB-101 treatment resulted in considerable and durable reduction in wound burden in the range of three to five years in a Phase 1/2a study. Wound healing of 50% or greater following EB-101 treatment was associated with no pain at treated sites at three years, four years and five years post-treatment, compared with presence of pain in 53% of wound sites at baseline. The ongoing VIITALTM study will further characterize the relationship between reduction of wound burden and pain relief following EB-101 treatment.

The Full Burden of Recessive Dystrophic Epidermolysis Bullosa (RDEB)

M. Peter Marinkovich, M.D., Bullous Disease Clinic Director, Stanford University Medical Center, and Investigator in the VIITALTM study, presented findings from a literature review of 65 studies that provide new insights on the disease burden from the perspective of patients with RDEB and their families. Key observations of the clinical, humanistic and economic burden of RDEB include:

Abeonas posters from the SPD 45th Annual Meeting are available on the News/Events page under the Investors & Media section of Abeonas website at http://www.abeonatherapeutics.com.

About Recessive Dystrophic Epidermolysis BullosaRecessive dystrophic epidermolysis bullosa (RDEB) is a rare connective tissue disorder characterized by severe skin wounds that cause pain and can lead to systemic complications impacting the length and quality of life. People with RDEB have a defect in the COL7A1 gene, leaving them unable to produce functioning type VII collagen, which is necessary to anchor the dermal and epidermal layers of the skin. There is currently no approved treatment for RDEB.

About EB-101EB-101 is an autologous, gene-corrected cell therapy currently being investigated in the pivotal Phase 3 VIITALTM study for the treatment of recessive dystrophic epidermolysis bullosa (RDEB), a rare connective tissue disorder without an approved therapy. The EB-101 VIITALTM study is a multi-center, randomized clinical trial enrolling 10 to 15 RDEB patients with approximately 30 large, chronic wound sites treated in total. Treatment with EB-101 involves using gene transfer to deliver COL7A1 genes into a patients own skin cells (keratinocytes and their progenitors) and transplanting them back to the patient to enable normal Type VII collagen expression and facilitate wound healing. Abeona produces EB-101 for the VIITALTM study at its fully-functional gene and cell therapy manufacturing facility in Cleveland, OH. In a Phase 1/2a clinical trial, EB-101 provided durable wound healing for RDEB patients lasting 2+ to 5+ years, including for the largest, most challenging wounds that affect the majority of the RDEB population. More information on the clinical trials of EB-101 can be found at https://www.abeonatherapeutics.com/clinical-trials/rdeb and ClinicalTrials.gov (Identifier: NCT04227106).

About Abeona Therapeutics Abeona Therapeutics Inc. is a clinical-stage biopharmaceutical company developing gene and cell therapies for serious diseases. Abeonas clinical programs include EB-101, its autologous, gene-corrected cell therapy for recessive dystrophic epidermolysis bullosa in Phase 3 development, as well as ABO-102 and ABO-101, novel AAV-based gene therapies for Sanfilippo syndrome types A and B (MPS IIIA and MPS IIIB), respectively, in Phase 1/2 development. The Companys portfolio of AAV-based gene therapies also features ABO-202 and ABO-201 for CLN1 disease and CLN3 disease, respectively. Abeonas novel, next-generation AIM capsids have shown potential to improve tropism profiles for a variety of devastating diseases. Abeonas fully functional, gene and cell therapy GMP manufacturing facility produces EB-101 for the pivotal Phase 3 VIITALTM study and is capable of clinical and commercial production of AAV-based gene therapies. For more information, visit http://www.abeonatherapeutics.com.

Forward-Looking StatementsThis press release contains certain statements that are forward-looking within the meaning of Section 27A of the Securities Act of 1933, as amended, and Section 21E of the Securities Exchange Act of 1934, as amended, and that involve risks and uncertainties. These statements include statements about the Companys clinical trials and its products and product candidates, future regulatory interactions with regulatory authorities, as well as the Companys goals and objectives. We have attempted to identify forward looking statements by such terminology as may, will, believe, estimate, expect, and similar expressions (as well as other words or expressions referencing future events, conditions or circumstances), which constitute and are intended to identify forward-looking statements. Actual results may differ materially from those indicated by such forward-looking statements as a result of various important factors, numerous risks and uncertainties, including but not limited to the potential impacts of the COVID-19 pandemic on our business, operations, and financial condition, continued interest in our rare disease portfolio, our ability to enroll patients in clinical trials, the outcome of any future meetings with the U.S. Food and Drug Administration or other regulatory agencies, the impact of competition, the ability to secure licenses for any technology that may be necessary to commercialize our products, the ability to achieve or obtain necessary regulatory approvals, the impact of changes in the financial markets and global economic conditions, risks associated with data analysis and reporting, and other risks as may be detailed from time to time in the Companys Annual Reports on Form 10-K and quarterly reports on Form 10-Q and other periodic reports filed by the Company with the Securities and Exchange Commission. The Company undertakes no obligation to revise the forward-looking statements or to update them to reflect events or circumstances occurring after the date of this presentation, whether as a result of new information, future developments or otherwise, except as required by the federal securities laws.

Investor Contact:Greg GinVP, Investor RelationsAbeona Therapeutics+1 (646) 813-4709ggin@abeonatherapeutics.com

Media Contact:Scott SantiamoDirector, Corporate CommunicationsAbeona Therapeutics+1 (718) 344-5843ssantiamo@abeonatherapeutics.com

See more here:

Abeona Therapeutics Announces Two Presentations Related to Its RDEB Clinical Program at the Society for Pediatric Dermatology 45th Annual Meeting -...

Global Gene Therapy Industry – PRNewswire

NEW YORK, July 9, 2020 /PRNewswire/ --

Global Gene Therapy Market to Reach US$4.2 Billion by the Year 2027 Amid the COVID-19 crisis, the global market for Gene Therapy estimated at US$701.2 Million in the year 2020, is projected to reach a revised size of US$4.2 Billion by 2027, growing at a CAGR of 29.3% over the analysis period 2020-2027.Lentivirus, one of the segments analyzed in the report, is projected to grow at a 21.7% CAGR to reach US$130.1 Million by the end of the analysis period.After an early analysis of the business implications of the pandemic and its induced economic crisis, growth in the AAV segment is readjusted to a revised 24.9% CAGR for the next 7-year period. This segment currently accounts for a 13.5% share of the global Gene Therapy market.

Read the full report: https://www.reportlinker.com/p05817594/?utm_source=PRN

The U.S. Accounts for Over 26.8% of Global Market Size in 2020, While China is Forecast to Grow at a 36.3% CAGR for the Period of 2020-2027 The Gene Therapy market in the U.S. is estimated at US$188.2 Million in the year 2020. The country currently accounts for a 26.84% share in the global market. China, the world second largest economy, is forecast to reach an estimated market size of US$1.1 Billion in the year 2027 trailing a CAGR of 36.3% through 2027. Among the other noteworthy geographic markets are Japan and Canada, each forecast to grow at 23.2% and 26.7% respectively over the 2020-2027 period. Within Europe, Germany is forecast to grow at approximately 25.1% CAGR while Rest of European market (as defined in the study) will reach US$1.1 Billion by the year 2027.

RetroVirus & Gamma RetroVirus Segment Corners a 55.5% Share in 2020 In the global RetroVirus & Gamma RetroVirus segment, USA, Canada, Japan, China and Europe will drive the 28.6% CAGR estimated for this segment. These regional markets accounting for a combined market size of US$293.4 Million in the year 2020 will reach a projected size of US$1.7 Billion by the close of the analysis period. China will remain among the fastest growing in this cluster of regional markets. Led by countries such as Australia, India, and South Korea, the market in Asia-Pacific is forecast to reach US$662.2 Million by the year 2027, while Latin America will expand at a 30.1% CAGR through the analysis period. We bring years of research experience to this 16th edition of our report. The 248-page report presents concise insights into how the pandemic has impacted production and the buy side for 2020 and 2021. A short-term phased recovery by key geography is also addressed.

- Competitors identified in this market include, among others,

Read the full report: https://www.reportlinker.com/p05817594/?utm_source=PRN

I. INTRODUCTION, METHODOLOGY & REPORT SCOPE

II. EXECUTIVE SUMMARY

1. MARKET OVERVIEW Global Competitor Market Shares Gene Therapy Competitor Market Share Scenario Worldwide (in %): 2019 & 2028 Impact of Covid-19 and a Looming Global Recession

2. FOCUS ON SELECT PLAYERS

3. MARKET TRENDS & DRIVERS

4. GLOBAL MARKET PERSPECTIVE Table 1: Gene Therapy Global Market Estimates and Forecasts in US$ Thousand by Region/Country: 2020-2027

Table 2: Gene Therapy Global Retrospective Market Scenario in US$ Thousand by Region/Country: 2012-2019

Table 3: Gene Therapy Market Share Shift across Key Geographies Worldwide: 2012 VS 2020 VS 2027

Table 4: Lentivirus (Vector) World Market by Region/Country in US$ Thousand: 2020 to 2027

Table 5: Lentivirus (Vector) Historic Market Analysis by Region/Country in US$ Thousand: 2012 to 2019

Table 6: Lentivirus (Vector) Market Share Breakdown of Worldwide Sales by Region/Country: 2012 VS 2020 VS 2027

Table 7: AAV (Vector) Potential Growth Markets Worldwide in US$ Thousand: 2020 to 2027

Table 8: AAV (Vector) Historic Market Perspective by Region/Country in US$ Thousand: 2012 to 2019

Table 9: AAV (Vector) Market Sales Breakdown by Region/Countryin Percentage: 2012 VS 2020 VS 2027

Table 10: RetroVirus & Gamma RetroVirus (Vector) Geographic Market Spread Worldwide in US$ Thousand: 2020 to 2027

Table 11: RetroVirus & Gamma RetroVirus (Vector) Region Wise Breakdown of Global Historic Demand in US$ Thousand: 2012 to 2019

Table 12: RetroVirus & Gamma RetroVirus (Vector) Market Share Distribution in Percentage by Region/Country: 2012 VS 2020 VS 2027

Table 13: Modified Herpes Simplex Virus (Vector) World Market Estimates and Forecasts by Region/Country in US$ Thousand: 2020to 2027

Table 14: Modified Herpes Simplex Virus (Vector) Market Historic Review by Region/Country in US$ Thousand: 2012 to 2019

Table 15: Modified Herpes Simplex Virus (Vector) Market Share Breakdown by Region/Country: 2012 VS 2020 VS 2027

Table 16: Adenovirus (Vector) World Market by Region/Country in US$ Thousand: 2020 to 2027

Table 17: Adenovirus (Vector) Historic Market Analysis byRegion/Country in US$ Thousand: 2012 to 2019

Table 18: Adenovirus (Vector) Market Share Distribution in Percentage by Region/Country: 2012 VS 2020 VS 2027

Table 19: Other Applications (Vector) World Market Estimates and Forecasts in US$ Thousand by Region/Country: 2020 to 2027

Table 20: Other Applications (Vector) Market Worldwide Historic Review by Region/Country in US$ Thousand: 2012 to 2019

Table 21: Other Applications (Vector) Market Percentage Share Distribution by Region/Country: 2012 VS 2020 VS 2027

III. MARKET ANALYSIS

GEOGRAPHIC MARKET ANALYSIS

UNITED STATES Market Facts & Figures US Gene Therapy Market Share (in %) by Company: 2019 & 2025 Market Analytics Table 22: United States Gene Therapy Market Estimates and Projections in US$ Thousand by Vector: 2020 to 2027

Table 23: Gene Therapy Market in the United States by Vector: A Historic Review in US$ Thousand for 2012-2019

Table 24: United States Gene Therapy Market Share Breakdown by Vector: 2012 VS 2020 VS 2027

CANADA Table 25: Canadian Gene Therapy Market Estimates and Forecasts in US$ Thousand by Vector: 2020 to 2027

Table 26: Canadian Gene Therapy Historic Market Review by Vector in US$ Thousand: 2012-2019

Table 27: Gene Therapy Market in Canada: Percentage Share Breakdown of Sales by Vector for 2012, 2020, and 2027

JAPAN Table 28: Japanese Market for Gene Therapy: Annual Sales Estimates and Projections in US$ Thousand by Vector for the Period 2020-2027

Table 29: Gene Therapy Market in Japan: Historic Sales Analysisin US$ Thousand by Vector for the Period 2012-2019

Table 30: Japanese Gene Therapy Market Share Analysis by Vector: 2012 VS 2020 VS 2027

CHINA Table 31: Chinese Gene Therapy Market Growth Prospects in US$Thousand by Vector for the Period 2020-2027

Table 32: Gene Therapy Historic Market Analysis in China in US$ Thousand by Vector: 2012-2019

Table 33: Chinese Gene Therapy Market by Vector: Percentage Breakdown of Sales for 2012, 2020, and 2027

EUROPE Market Facts & Figures European Gene Therapy Market: Competitor Market Share Scenario (in %) for 2019 & 2025 Market Analytics Table 34: European Gene Therapy Market Demand Scenario in US$ Thousand by Region/Country: 2020-2027

Table 35: Gene Therapy Market in Europe: A Historic Market Perspective in US$ Thousand by Region/Country for the Period2012-2019

Table 36: European Gene Therapy Market Share Shift by Region/Country: 2012 VS 2020 VS 2027

Table 37: European Gene Therapy Market Estimates and Forecasts in US$ Thousand by Vector: 2020-2027

Table 38: Gene Therapy Market in Europe in US$ Thousand by Vector: A Historic Review for the Period 2012-2019

Table 39: European Gene Therapy Market Share Breakdown byVector: 2012 VS 2020 VS 2027

FRANCE Table 40: Gene Therapy Market in France by Vector: Estimates and Projections in US$ Thousand for the Period 2020-2027

Table 41: French Gene Therapy Historic Market Scenario in US$ Thousand by Vector: 2012-2019

Table 42: French Gene Therapy Market Share Analysis by Vector: 2012 VS 2020 VS 2027

GERMANYTable 43: Gene Therapy Market in Germany: Recent Past, Current and Future Analysis in US$ Thousand by Vector for the Period2020-2027

Table 44: German Gene Therapy Historic Market Analysis in US$ Thousand by Vector: 2012-2019

Table 45: German Gene Therapy Market Share Breakdown by Vector: 2012 VS 2020 VS 2027

ITALY Table 46: Italian Gene Therapy Market Growth Prospects in US$ Thousand by Vector for the Period 2020-2027

Table 47: Gene Therapy Historic Market Analysis in Italy in US$ Thousand by Vector: 2012-2019

Table 48: Italian Gene Therapy Market by Vector: Percentage Breakdown of Sales for 2012, 2020, and 2027

UNITED KINGDOM Table 49: United Kingdom Market for Gene Therapy: Annual Sales Estimates and Projections in US$ Thousand by Vector for thePeriod 2020-2027

Table 50: Gene Therapy Market in the United Kingdom: Historic Sales Analysis in US$ Thousand by Vector for the Period 2012-2019

Table 51: United Kingdom Gene Therapy Market Share Analysis byVector: 2012 VS 2020 VS 2027

SPAIN Table 52: Spanish Gene Therapy Market Estimates and Forecasts in US$ Thousand by Vector: 2020 to 2027

Table 53: Spanish Gene Therapy Historic Market Review by Vector in US$ Thousand: 2012-2019

Table 54: Gene Therapy Market in Spain: Percentage Share Breakdown of Sales by Vector for 2012, 2020, and 2027

RUSSIATable 55: Russian Gene Therapy Market Estimates and Projections in US$ Thousand by Vector: 2020 to 2027

Table 56: Gene Therapy Market in Russia by Vector: A Historic Review in US$ Thousand for 2012-2019

Table 57: Russian Gene Therapy Market Share Breakdown byVector: 2012 VS 2020 VS 2027

REST OF EUROPE Table 58: Rest of Europe Gene Therapy Market Estimates and Forecasts in US$ Thousand by Vector: 2020-2027

Table 59: Gene Therapy Market in Rest of Europe in US$ Thousand by Vector: A Historic Review for the Period 2012-2019

Table 60: Rest of Europe Gene Therapy Market Share Breakdown by Vector: 2012 VS 2020 VS 2027

ASIA-PACIFIC Table 61: Asia-Pacific Gene Therapy Market Estimates and Forecasts in US$ Thousand by Region/Country: 2020-2027

Table 62: Gene Therapy Market in Asia-Pacific: Historic Market Analysis in US$ Thousand by Region/Country for the Period 2012-2019

Table 63: Asia-Pacific Gene Therapy Market Share Analysis by Region/Country: 2012 VS 2020 VS 2027

Table 64: Gene Therapy Market in Asia-Pacific by Vector: Estimates and Projections in US$ Thousand for the Period 2020-2027

Table 65: Asia-Pacific Gene Therapy Historic Market Scenario in US$ Thousand by Vector: 2012-2019

Table 66: Asia-Pacific Gene Therapy Market Share Analysis by Vector: 2012 VS 2020 VS 2027

AUSTRALIA Table 67: Gene Therapy Market in Australia: Recent Past, Current and Future Analysis in US$ Thousand by Vector for the Period 2020-2027

Table 68: Australian Gene Therapy Historic Market Analysis in US$ Thousand by Vector: 2012-2019

Table 69: Australian Gene Therapy Market Share Breakdown byVector: 2012 VS 2020 VS 2027

INDIA Table 70: Indian Gene Therapy Market Estimates and Forecasts in US$ Thousand by Vector: 2020 to 2027

Table 71: Indian Gene Therapy Historic Market Review by Vectorin US$ Thousand: 2012-2019

Table 72: Gene Therapy Market in India: Percentage Share Breakdown of Sales by Vector for 2012, 2020, and 2027

SOUTH KOREA Table 73: Gene Therapy Market in South Korea: Recent Past, Current and Future Analysis in US$ Thousand by Vector for thePeriod 2020-2027

Table 74: South Korean Gene Therapy Historic Market Analysis in US$ Thousand by Vector: 2012-2019

Table 75: Gene Therapy Market Share Distribution in South Korea by Vector: 2012 VS 2020 VS 2027

REST OF ASIA-PACIFIC Table 76: Rest of Asia-Pacific Market for Gene Therapy: Annual Sales Estimates and Projections in US$ Thousand by Vector for the Period 2020-2027

Table 77: Gene Therapy Market in Rest of Asia-Pacific: Historic Sales Analysis in US$ Thousand by Vector for the Period2012-2019

Table 78: Rest of Asia-Pacific Gene Therapy Market Share Analysis by Vector: 2012 VS 2020 VS 2027

LATIN AMERICA Table 79: Latin American Gene Therapy Market Trends by Region/Country in US$ Thousand: 2020-2027

Table 80: Gene Therapy Market in Latin America in US$ Thousand by Region/Country: A Historic Perspective for the Period 2012-2019

Table 81: Latin American Gene Therapy Market PercentageBreakdown of Sales by Region/Country: 2012, 2020, and 2027

Table 82: Latin American Gene Therapy Market Growth Prospects in US$ Thousand by Vector for the Period 2020-2027

Table 83: Gene Therapy Historic Market Analysis in Latin America in US$ Thousand by Vector: 2012-2019

Table 84: Latin American Gene Therapy Market by Vector: Percentage Breakdown of Sales for 2012, 2020, and 2027

ARGENTINA Table 85: Argentinean Gene Therapy Market Estimates andForecasts in US$ Thousand by Vector: 2020-2027

Table 86: Gene Therapy Market in Argentina in US$ Thousand by Vector: A Historic Review for the Period 2012-2019

See the rest here:

Global Gene Therapy Industry - PRNewswire

Cancer Gene Therapy Market Outlook for Major Applications/end Users, Consumption, Share and Growth Rate 2025 – Cole of Duty

Global Cancer Gene Therapy Market: Overview

Cancer could be defined as uncontrolled cell growth in the body leading to organ malfunction. If untreated, it can lead to death. Uncontrolled growth of cell is managed by the body in several ways, one of them is by deploying white blood cells to detect and eradicate these cancerous cells. It has been discovered that the immune system could be manipulated to influence cancerous cells to destroy itself.

Report Overview @

https://www.transparencymarketresearch.com/cancer-gene-therapy-market.html

Radiation and chemotherapy therapy have consistent and reliable effects to decrease cancerous cells in the body. Recently, immunotherapy for hematological cancers has experienced a recognition and is of interest for many researchers Scientists have developed methods to isolate, replicate, and develop cancer-destroying cells from the patients blood cancer and injecting those cells back for the destruction of their cancers, with durable remissions.

New options for the treatment is needed to be developed if order to achieve elimination of cancer suffering and death by 2020. According to NCI, 5-year survival rate for cancers such as lung (15%), glioblastoma (5%), pancreatic (4%), and liver (7%) remains very low. Current available treatments have several side effects, the systemic toxicity due to chemotherapy results in nausea, mild cognitive impairments, and mouth ulcerations, in addition to long-term side effects such as increasing risk of developing other types of cancers. Therefore, new and innovative treatment methods are required to reduce the suffering of cancer patients.

Planning To Lay Down Future Strategy? Request Brochure Of Cancer Gene Therapy Market

https://www.transparencymarketresearch.com/sample/sample.php?flag=B&rep_id=40985

GlobalCancer Gene Therapy Market: Drivers and Restraints

The emerging field of cancer Gene Therapy offers varied potential treatments. Gene therapy involves a range of treatment types, which use genetic material to alter cells (either in vivo or in vitro) to help cure the disease. Cancer Gene Therapy shown efficacy in various in vitro and preclinical testing. Preclinical testing for cancer gene therapy has been performed on glioma, pancreatic cancer, liver cancer, and many other cancers.

Increase in prevalence of cancer, rise in government funding and initiatives, growth in pipeline of cancer gene therapy products, and collaborations to develop and launch gene-therapy products are some factors driving the market. According to NCBI researchers, development of genetically-modified T-cell therapies for treatment of cancer has had maximum clinical impact among other gene therapies. However, high treatment cost is a major limitation in the cancer gene therapy market. The reason behind the huge cost for cancer gene therapy is the necessity of rigorous, exhaustive clinical trials; also treatment by cancer gene therapy differs from person to person depending upon the genetic acceptance of every patient, unlike other drugs thereby limiting the market growth.

To Obtain All-Inclusive Information On Forecast Analysis Of Cancer Gene Therapy Market , Request A Discount

https://www.transparencymarketresearch.com/sample/sample.php?flag=D&rep_id=40985

GlobalCancer Gene Therapy Market: Key Segments

Based on type, the cancer gene therapy market is segmented into gene transfer immunotherapy and oncolytic virotherapy. Immunotherapy uses genetically modified cells and viral particles to stimulate the immune system to destroy cancer cells. Immunotherapy include treatment with either cytokine gene delivery or tumor antigen gene delivery. Oncolytic virotherapy uses viral particles, which replicate within the cancer cell causing the death of the cell. It is an emerging treatment modality that is expected to shows great promise, particularly in metastatic cancer treatment.

It includes treatment with adenovirus, retrovirus, lentivirus, herpes simplex virus, adeno-associated virus, simian virus, alphavirus, and vaccinia virus. Gene transfer is the newest treatment modality that is expected to introduce new modified genes into cancerous cell or associated tissue for destruction of cell or to slow down cancer growth. This technique is flexible as a wide variety of vectors and genes are used for clinical trials with positive outcomes. As gene therapy advance, they could be used alone or in combination with other treatments to control the disease. Gene transfer or gene replacement is performed using naked/plasmid vectors, electroporation, sonoporation, magnetofection, and gene gun.

Request For Covid19 Impact Analysis

https://www.transparencymarketresearch.com/sample/sample.php?flag=covid19&rep_id=40985

Based on region, the global cancer gene therapy market is segmented into North America, Europe, Asia Pacific, Latin America and Middle East & Africa. North America is anticipated to hold the largest market share. The U.S. dominates the cancer gene therapy market owing to its increase in funding for research & development and other government initiatives. Key players in the biotech industry are engaging in research & development of gene therapy products. Moreover, rising demand for DNA vaccines and growing interest of venture capitalists to investment in commercialization of gene-based cancer therapies are likely to propel the market. The cancer gene therapy market in Asia Pacific is anticipated to expand at a rapid pace as in China cancer gene therapy is anticipated to attribute for largest revenue, due to the recent launch of Gendicine and rising healthcare expenditure with strong R&D facilities.

GlobalCancer Gene Therapy Market: Key Players

Key players operating in the global cancer gene therapy market are Adaptimmune, ZioPharm Oncology Altor Bioscience, MolMed, bluebird bio, Shanghai Sunway Biotech company limited , MultiVir, Shenzhen SiBiono GeneTech, Corporation.

See the original post:

Cancer Gene Therapy Market Outlook for Major Applications/end Users, Consumption, Share and Growth Rate 2025 - Cole of Duty

Cancer Gene Therapy Market Is Set to Boom in 2020, Coming Years – Jewish Life News

The global Global Cancer Gene Therapy Market Report 2019-Market Size, Share, Price, Trend and Forecast report is based on comprehensive analysis conducted by experienced and professional experts. The report mentions, factors that are influencing growth such as drivers, restrains of the market. The report offers in-depth analysis of trends and opportunities in the Cancer Gene Therapy Market. The report offers figurative estimations and predicts future for upcoming years on the basis of the recent developments and historic data. For the gathering information and estimating revenue for all segments, researchers have used top-down and bottom-up approach. On the basis of data collected from primary and secondary research and trusted data sources the report offers future predictions of revenue and market share.

The Leading Market Players Covered in this Report are : Adaptimmune,GlaxoSmithKline,Bluebird bio,Merck,Celgene,Shanghai Sunway Biotech .

For Better Understanding, Download FREE Sample Copy of Cancer Gene Therapy Report in Just One Single Step @ https://www.researchmoz.us/enquiry.php?type=S&repid2271992

Key Questions Answered in This Report:

Impact of Covid-19 in Cancer Gene Therapy Market:The utility-owned segment is mainly being driven by increasing financial incentives and regulatory supports from the governments globally. The current utility-owned Cancer Gene Therapy are affected primarily by the COVID-19 pandemic. Most of the projects in China, the US, Germany, and South Korea are delayed, and the companies are facing short-term operational issues due to supply chain constraints and lack of site access due to the COVID-19 outbreak. Asia-Pacific is anticipated to get highly affected by the spread of the COVID-19 due to the effect of the pandemic in China, Japan, and India. China is the epic center of this lethal disease. China is a major country in terms of the chemical industry.

Key Businesses Segmentation of Cancer Gene Therapy MarketOn the basis on the end users/applications,this report focuses on the status and outlook for major applications/end users, sales volume, Cancer Gene Therapy market share and growth rate of Cancer Gene Therapy foreach application, including-

On the basis of product,this report displays the sales volume, revenue (Million USD), product price, Cancer Gene Therapy market share and growth rate ofeach type, primarily split into-

Cancer Gene Therapy Market Regional Analysis Includes: Asia-Pacific(Vietnam, China, Malaysia, Japan, Philippines, Korea, Thailand, India, Indonesia, and Australia) Europe(Turkey, Germany, Russia UK, Italy, France, etc.) North America(the United States, Mexico, and Canada.) South America(Brazil etc.) The Middle East and Africa(GCC Countries and Egypt.)

Key Insights that Study is going to provide: The 360-degree Cancer Gene Therapy market overview based on a global and regional level Market Share & Sales Revenue by Key Players & Emerging Regional Players Competitors In this section, various Cancer Gene Therapy industry leading players are studied with respect to their company profile, product portfolio, capacity, price, cost, and revenue. A separate chapter on Cancer Gene Therapy market Entropy to gain insights on Leaders aggressiveness towards market [Merger & Acquisition / Recent Investment and Key Developments] Patent Analysis** No of patents / Trademark filed in recent years.

Grab Maximum Discount on Cancer Gene Therapy Market Research Report [Single User | Multi User | Corporate Users] @https://www.researchmoz.us/enquiry.php?type=E&repid2271992

Table of Content:Global Cancer Gene Therapy Market Size, Status and Forecast 20261. Report Overview2. Market Analysis by Types3. Product Application Market4. Manufacturers Profiles/Analysis5. Market Performance for Manufacturers6. Regions Market Performance for Manufacturers7. Global Cancer Gene Therapy Market Performance (Sales Point)8. Development Trend for Regions (Sales Point)9. Upstream Source, Technology and Cost10. Channel Analysis11. Consumer Analysis12. Market Forecast 2020-202613. Conclusion

For More Information Kindly Contact: ResearchMozMr. Rohit Bhisey,90 State Street,Albany NY,United States 12207Tel: +1-518-621-2074USA-Canada Toll Free: 866-997-4948Email: [emailprotected]Media Release @ https://www.researchmoz.us/pressreleaseFollow me on Blogger: https://trendingrelease.blogspot.com/

Read more:

Cancer Gene Therapy Market Is Set to Boom in 2020, Coming Years - Jewish Life News

The Wet AMD Gene Therapy Race – Adverum Biotechnologies Vs. Regenxbio – Seeking Alpha

Regenxbio (NASDAQ:RGNX) and Adverum (NASDAQ:ADVM) are both developing gene therapies for wet AMD. Phase I data is now available that shows both companies may have viable products. It is still very early, and small cohorts make it challenging to evaluate whether RGX-314 or ADVM-022 will be superior. Adverum's stock is priced as if it will deliver a product that is far superior to Regenxbio's. That outcome is far from certain. Investors should consider that Regenxbio's stock provides a wide margin of safety while offering tremendous upside if future data is positive.

Wet age-related macular degeneration, wet AMD, usually occurs in the elderly and accounts for 90 percent of the cases of legal blindness. In this condition, abnormal blood vessels in the retina begin to leak fluid. This results in scarring of the macula and vision loss. Symptoms include wavy, spotted or blurred vision. According to the Mayo Clinic, medications may help stop the growth of new blood vessels by blocking the effects of growth signals the body sends to generate new blood vessels. A protein called VEGF causes these abnormal blood vessels to grow. The current treatments are injections of anti-VEGF proteins into the eye which stop the growth of new blood vessels. These injections are required every four to eight weeks, and patients tend not to adhere to this difficult schedule and thus suffer vision loss.

These drugs are considered the first line treatment for all stages of wet macular degeneration. The most commonly prescribed injections are Avastin (Genentech) (OTCQX:RHHBY), Lucentis (Genentech) and Eylea (Regeneron (REGN)). A longer acting version that can last 12 weeks, brolucizumab, was approved in 2019, but it may cause occlusive retinal vasculitis, a rare but serious complication that can cause vision loss, which may make ophthalmologists hesitant to use it.

Wet AMD is a disease where the biology is well understood. More specifically, it is well understood that anti-VEGF proteins such as Avastin, Lucentis and Eylea are effective at preventing these "bad blood vessels" from growing. There is extensive proof that if you maintain anti-VEGF activity in the eye, which gene therapy seeks to achieve, you can prevent a loss of vision in wet AMD. Both Regenxbio and Adverum have gene therapy candidates in clinical trials which seek to provide a consistent level of anti-VEGF activity.

Wet AMD is not thought to be caused by a genetic defect but a one time gene therapy injection can provide a treatment option. This involves inserting a transgene, which would produce the anti-VEGF proteins, into a viral vector which can be delivered to the eye. The result is that the eye turns into a factory that produces the needed protein. Since the cells in the eye make their own protein, patients have no need or a reduced need for repeated injections. The goal is for these treatments to be durable enough to last a lifetime and reduce the enormous treatment burden of requiring frequent injections. A report in Science Daily, citing the American Academy of Ophthalmology as their source, noted that researchers believe that, "It's not just about convenience; a more consistent treatment may also help people keep more of their vision." Gene therapy seeks to achieve this by delivering a steady daily dose of anti-VEGF.

Globally, $10 billion is expected to be spent on treatments for this disorder by 2024. There are more than 1.2 million patients with wet AMD in the US and a total of 3 million globally. There is a large market opportunity for both players, but it is important to note that gene therapy is unlikely to take over the entire market as there are long acting anti-VEGF treatments in clinical trials that may also reduce the treatment burden. In addition, patients may have the option of a port delivery systems that can be refilled. Given these potential options, gene therapy may take a large market share, but it is unlikely to be one hundred percent of the market. According to Dr. Peter Campochiaro, MD, Director of the Retinal Cell and Molecular Laboratory at Johns Hopkins, who is a RGX-314 investigator, the main competitor to gene therapy will be ports.

Regenxbio has their own internal pipeline, including RGX-314 in the treatment of wet AMD. In an article published in Retina Today, Drs. Allen Ho and Robert Avery describe the nature of the treatment.

"RGX-314 is a non-replicating, recombinant AAV serotype 8 (AAV8) vector encoding for a soluble anti-VEGF Fab protein, which binds to retinal pigment epithelial cells to produce a therapeutic anti-VEGF protein. The gene encodes for an anti-VEGF fragment of an antibody that is similar to ranibuzumab."

Simply put, RGX-314 is a harmless virus which will direct the eye to produce an anti-VEGF medication, which is similar to an FDA approved drug.

Regenxbio has been using subretinal injections which require a surgical procedure in their Phase I studies to date. Going forward, they will also concurrently be testing a micro injector that targets the suprachoroidal space. This approach is being tested based on research done at Johns Hopkins that indicates that this approach, which could be done in the office, could be equally effective. From the physician and patient's standpoint, an in-office delivery would be superior to a surgical procedure.

Regenxbio is licensing the micro injector for suprachoroidal injections from Clearside Biomedical (CLSD) and will begin testing it in a Phase II trial of RGX-314. Regenxbio will be advancing both the subretinal and suprachoroidal approach into Phase II during the second half of 2020. In an article published in Molecular Therapy, researchers noted differences in the cells that have shown transduction depending on the route of administration.

"We found that suprachoroidal AAV8 delivery produced diffuse, peripheral transduction of mostly RPE, while subretinal injection using transscleral microneedles led to a robust, but localized area of gene transfer to multiple retinal cell types."

An article written by Peter Campochiaro, MD of Johns Hopkins noted that,

"Total transgene expression after a single suprachoroidal injection of AAV8 vector is comparable to that seen after subretinal injection of the same vector dose, and can be increased by multiple suprachoroidal vector injections."

This research supports that the more convenient suprachoroidal administration can be effective at producing the needed protein. Clearside Biomedical has a product through Phase 3 trials that validates the efficacy of suprachoroidal administration.

Adverum has a competing gene therapy product in the clinic. According to the company,

"ADVM-022 uses a proprietary capsid (AAV.7m8) to deliver a proprietary expression cassette which expresses aflibercept. ADVM-022 is administered as a single intravitreal injection and is designed to minimize the treatment burden of repeated anti-VEGF injections."

This gene therapy can be a straightforward one time injection which can be performed in the office. According to Dr. David Brown of Baylor College of Medicine, some studies show aflibercept is probably the best drying agent. However, intravitreal injections of AAVs can have negative side effects. Research published in the journal Molecular Therapy noted that

"Intravitreal AAV causes more intraocular inflammation and elicits a more potent humoral immune response than does subretinal administration."

This inflammation has been managed with oral and topical steroids which have not been required thus far for patients receiving RGX-314.

Regenxbio and Adverum are using different AAV's, different methods of administration and different transgenes. The transgenes used in RGX-314 and ADVM-022 differ in which anti VEGF protein they deliver. In a clinical study of 965 eyes that compared aflibercept (ADVM-022's transgene) to ranibizumab (RGX-314's transgene), they were equally effective in wet AMD. Therefore, it is likely both transgenes are equally effective.

Regenxbio has released two year data on cohorts 1-3 showing safety and efficacy as well as the durability of the treatment. They have dosed all 5 cohorts but long term data is not yet available for cohorts 4 and 5. Adverum has data out to 64 weeks for their first two cohorts and has early data on cohort 3. The last group, cohort 4, was recently dosed. These Phase I/IIa studies are two years in length so Regenxbio has the lead by at least 10 months. Should both treatments show efficacy and safety, RGX-314 is likely to be first to market.

Physicians often use a new product which is first in its class and become comfortable with the risks, benefits, side effects and administration. Unless there is a perception that other products of the same class offer a benefit, they often continue to use the first in class product. If RGX-314 proves to have a favorable profile, the first to market advantage will be significant. It should be acknowledged that gene therapy may be slightly different as these are one time administration products and physicians may wait if they believe a product (such as ADVM-022) that is coming soon will be superior.

Adverum reported that 14/17 patients have not needed rescue injections reflecting an impressive 82 percent rescue free injection rate for patients in cohorts 1-3.

For Regenxbio's cohorts 1 and 2, the dosage used appears to be suboptimal, so it is logical they would not choose these doses going forward. The doses in Cohort 3-5 appear to be more effective. Cohort 3 had 4/5 patients rescue free if you remove data from a patient who had a procedure that failed to deliver a full dosage of the drug. Another patient who initially required rescue injections but later became rescue free can be considered a responder in this cohort. Cohort 4 had 5/12 patients rescue free and cohort 5 currently has 8/11 patients rescue free. The overall rescue free rate for Regenxbio's cohorts 3-5 is 17/28 or only 61 percent.

Adverum's data is clearly better in terms of the number of patients who did not require rescue injections, 82% vs 61%. Adverum had less stringent criteria for when a rescue injection can be given - the loss of 10 letters due to fluid rather than 5 letters which Regenxbio used. Adverum previously guided that no patient would have required rescue injections had the criteria been 5 letters. If larger studies replicate these rescue free rates, it is questionable whether RGX-314 will be competitive.

Some of this differential in the percentage of patients requiring rescue injections could be due to the variability in response to anti-VEGF therapy between individual patients. Dr. Charles Wykoff of Retina Consultants of Houston commented on this variability. Dr. Wykoff noted that

"it's rare to find an individual who has no response to anti-VEGF therapy." However, "a significant number of wet AMD patients are recalcitrant," "We inject them repeatedly, but they continue to show fluid. However, that's not the same as being a 'non responder.'"

In Regenxbio's cohort, 4 only 5/12 patients were rescue free. Some of these patients may be what Dr. Wykoff calls recalcitrant in that even though they have high anti-VEGF protein levels, they still have fluid. The high protein levels in this cohort would support that these particular patients may be very difficult to "dry out." Given that the protein levels were higher in cohort 4 than 3, and cohort 3 patients had an 80 percent rescue free rate, this seems to support that patients in cohort 4 had a very high anti-VEGF demand.

Figure 1: Regenxbio Corporate Presentation

For some patients, gene therapy may be a one time solution. For others, gene therapy may be an adjunctive therapy that reduces the number of injections. The fact that some patients will still need injections will likely be a subject insurers wish to discuss when considering pricing.

Adverum has data for 3 cohorts which included a total of 21 patients at two doses. Of those twelve patients for whom there is at least one year data, only 3 of the 12 had any improvement in BCVA. Looking at the individual data for BCVA gives us a clearer picture. BCVA through December 1, 2019, for Cohort 1 was: +7, -6, -7, +5, -2, -3. BCVA for Cohort 2 was -4, -1, -19, -14, -7, +16. For patients who required very few rescue injections, this is disappointing data for visual acuity. Cohort one and two lost 2.7 and 2.8 letters, respectively, at the last update provided. Short-term results (up to 20 weeks) for cohort 3 showed an increase of 6.8 letters. The lack of individual patient data makes it hard to assess whether the general trend was an improvement in visual acuity. If you average this across all cohorts, there is approximately a 1.3 letter improvement. Cohort 2 and 3 used the same dosage but Cohort 3 used topical steroid drops rather than oral steroids so perhaps this accounts for the improvement in BCVA. Although cohort 3's data is greatly improved in comparison to cohorts 1 and 2, it remains an unanswered question whether Phase II patients will show a similar improvement in vision.

Regenxbio took the approach of 5 cohorts with increasing dosages. For cohort 3, in considering BCVA figures, it is reasonable to remove results from a patient who had a procedure error and did not receive a full dosage of the study drug. That leaves 5 patients with BCVA changes of (+32, +17, +6, +7 and +25). Cohort 4 for which Regenxbio has not released individual patient data had a BCVA improvement of +2 for the twelve patients. The lack of individual patient data makes it hard to assess whether the general trend was an improvement in visual acuity. Early data from Cohort 5 showed that responders saw a +5 letter improvement in BCVA. Combining the Regenxbio data from Cohorts 3-5, with the limitation that we don't have BCVA for those who required rescue injections in cohort 5, gives an approximately +6 letter improvement.

The general trend is that BCVA is superior for RGX-314 when compared to ADVM-022. Visual acuity data for RGX-314 more closely parallels what is seen with the standard of care treatments. Studies of the standard of care drugs such as ranibizumab (RGX-314 transgene) showed a +7.2 mean letter change in BCVA after a year. The same study found that aflibercept (ADVM-022 transgene) produced a +4.9 mean change in BCVA letter score. For context, Adverum's data on BCVA (+1.34 letters) is worse than the data from standard of care studies. Most studies show a maximum of 8-11 letter improvement for wet AMD patients treated with anti-VEGF medications. In this context, Adverum's 1.3 letter improvement is concerning.

It is also possible that some of Adverum's patients fall into the category some retinal specialists call "treatment disappointments," where the fluid is removed but patients fail to have any improvement in vision. Given the small number of patients, it is difficult to extrapolate whether this trend in visual acuity would persist in studies with a large number of patients. Another factor to be considered is that "intravitreal AAVs causes more intraocular inflammation and elicits a more potent humoral immune response than does subretinal administration." It is unknown if this inflammation has any impact on vision but cohort 3, where inflammation was managed with steroid drops, did show an improvement in visual acuity.

Another explanation for the difference in outcome in visual acuity between RGX-314 and ADVM-022 may be that "baseline BCVA is one of the strongest predictors of visual acuity gains." Specifically, patients with "the highest baseline BCVA had lowest BCVA gains." Adverum's patients across all three cohorts had a baseline mean BCVA of approximately 65.5 vs 55.7 for Regenxbio. This could partially explain a difference in gains - Adverum's patients had less to gain. However, 5 of the patients in cohorts 1 and 2 had significant vision loss (-6, -7, -19, -14, -7), and this is highly concerning. There was no patient specific data released for cohort 3, and this is also a concern as one patient with a very impressive gain can conceal the pattern of most patients losing vision. It is encouraging to see positive data for cohort 3, but it is not prudent to ignore the data from the other two cohorts.

Most studies in wet AMD for the standard of care define success as a stabilization of vision loss. However, an article published in Review of Ophthalmology written by ophthalmologists at Barnes Retina Institute of Washington University commented on the evolving goals of treatment. They wrote that "as standards for treatment success are raised, more attention should be focused on visual acuity gains as the primary endpoint." One of the outcomes sought by developers of gene therapy is to provide a continual dose of anti-VEGF therapy that results in improved vision rather than the gradual decline in vision seen in real world studies of standard of care treatments. In this context, ADVM-022's results in visual acuity fall short.

Adverum shares are trading around $20, and the company has a market cap of approximately 1.6 billion reflecting a rich valuation even considering that the company has cash on hand to fund operations through 2022. ADVM-022 is a "one hit wonder", and the company has no other products in clinical trials should ADVM-022 fail or fail to deliver an extraordinary safety and efficacy profile. The current share price of Adverum assumes a very low risk of failure for a product, which is still in Phase I/IIa trials. This valuation also reflects expectations that ADVM-022 will be a superior gene therapy treatment and capture a large percentage of the gene therapy market.

RGNX is trading around $41 and has a market cap of approximately $1.6 billion, the same market cap that Adverum has. Just as Adverum, Regenxbio has cash on hand sufficient to fund their internal pipeline costs through 2022, so dilution is not a near-term risk. Regenxbio is a much more diverse company than Adverum, and the value of their other assets is substantial. Their internal pipeline has 4 products in clinical trials, although RGX-314 has by far the greatest commercial opportunity.

In addition to an internal pipeline, Regenxbio licenses intellectual property to partners who are engaged in 26 different gene therapy programs. This revenue stream is significant and should grow with time. Novartis (NYSE:NVS) sells a gene therapy, Zolgensma, for SMA which uses one of Regenxbio's AAVs. Regenxbio reported that Novartis, which started selling Zolgensma in the second quarter of 2019, has reached $530 million in sales as of the first quarter of 2020. Regenxbio receives approximately ten percent of sales as a royalty payment. This product is likely to exceed a billion dollars in sales by 2021 and perhaps have peak sales as high as $2.5 billion annually providing a secure revenue stream for Regenxbio to pursue their internal pipeline.

Regenxbio is also investing in manufacturing which "will allow for production of NAV Technology-based vectors at scales up to 2,000 liters using REGENXBIO's platform suspension cell culture process." Manufacturing capability is a very undervalued asset considering that "Thermo Fisher paid $1.7 billion last year to buy viral vector contract manufacturer Brammer Bio" and is further investing $180 million to build a new gene therapy plant. Catalent (NYSE:CTLT) last year paid $1.2 billion for Paragon Bioservices to bolster its manufacturing capacity for gene therapies further validating the value of gene therapy manufacturing infrastructure. The licensing revenue, three other products in the pipeline and the intrinsic value of the manufacturing infrastructure provide a margin of safety if RGX-314 disappoints in clinical trials.

There are concerning aspects of both Regenxbio's data (the need for rescue injections) and Adverum's data (the poor outcomes in visual acuity). Should ADVM-022 not prove to give vision improvements, the benefit of reduced rescue injections will not be as meaningful. Wet AMD is treated to prevent blindness and to improve vision. Therefore, it is logical that vision improvement is a goal and perhaps the most important metric of all. Along a similar line of reasoning, if only 60 percent of the patients are rescue injection free, it brings into question whether physicians would administer RGX-314 if ADVM-022 provided a much greater chance of requiring no rescue injections.

Assessing early data is extremely difficult. Trends that appear in Phase I can completely disappear in Phases II and III which involve larger cohorts with a more diverse set of patient characteristics. There is a wide range of responses from individual patients to the same treatment which makes it essential to see responses in large groups. Some side effects or efficacy patterns are not revealed until after FDA approval when a medication is used in even larger patient populations. These truths highlight the difficulty of drawing conclusions based on sample sizes as small as 6 patients in a cohort. Thirty percent of drugs fail in Phase 2 further reinforcing that early data that looked very promising can be misleading when larger cohorts are studied.

In this case, it is so early that NO data is yet available in the suprachoroidal administration of RGX-314. The lack of data in this administration makes it particularly difficult to compare RGX-314 to ADVM-022. Given this would be the preferred route of administration, this data is what is most important to assess in comparison to ADVM-022. In addition, both companies are still assessing varying dosages so it is far from clear at this moment what the final product that physicians would choose from would look like.

Larger data sets will be forthcoming in the next twelve to eighteen months which will provide greater clarity about whether RGX-314, ADVM-022 or both will be viable commercial products. Investors should keep a close eye on larger data sets and critically evaluate how these products compare. Investors considering diving into the wet AMD gene therapy market should also consider the wide margin of safety that Regenxbio's more diverse pipeline, secure licensing revenue and manufacturing assets provide.

Disclosure: I am/we are long ADVM, RGNX. I wrote this article myself, and it expresses my own opinions. I am not receiving compensation for it (other than from Seeking Alpha). I have no business relationship with any company whose stock is mentioned in this article.

Additional disclosure: This article is for information purposes only and does not constitute a recommendation to buy or sell any security.

Visit link:

The Wet AMD Gene Therapy Race - Adverum Biotechnologies Vs. Regenxbio - Seeking Alpha

Cell and gene therapies – Lexology

In recent years, we have seen a trend towards the launch of new gene and cell therapies with record-breaking price tags. Such headline-grabbing launches are becoming more and more frequent, as the pipeline for advanced therapies at all stages of development continues to grow at a rapid pace[1]. We are also seeing industry and payers adopting new innovative pricing models for those products, such as outcome-based reimbursement and annuity payment models. In this article, we discuss these emerging alternative pricing models and consider the impact they may have on related licensing arrangements.

Current trends

In May 2019 AveXis, a subsidiary of pharmaceutical giant Novartis, announced that it had received approval from the US Food and Drug Administration to market its gene therapy Zolgensma for the treatment of paediatric patients with spinal muscular atrophy (SMA). Although this is the first promise of a cure for this debilitating and lethal condition, the media coverage focussed instead on Zolgensmas price tag, which at $2.1 million per patient makes it (currently) the worlds most expensive single-dose medicine.

Zolgensma is illustrative of a general trend in gene and cell therapies that have reached the market in recent years and established a new standard of pricing for single-treatment medicines. While manufacturers point to the relative cost-effectiveness of such treatments (which may offer a one-off cure for severe conditions that otherwise would require several years worth of conventional treatments and care) public and private payers are concerned about this new escalating pricing paradigm.

Health care systems may be able to absorb such high prices for rare diseases with small patient populations. However, the current reimbursement systems will be under severe pressure if (as is hoped) pipelines for advanced cell and gene therapies result in treatments for common conditions such as diabetes or heart disease. The Institute for Clinical and Economic Review in the US has estimated that if gene therapies are developed to treat only one in ten American patients with a genetic condition approximately 1% of the total population the cumulative budget impact could rise to $3 trillion[2]. For comparison, the projected total healthcare spend in the US for 2019 is $3.8 trillion[3].

Alternative Pricing Models

The pharmaceutical industry has sought to counter criticism over the high price tags for gene and cell therapies by coupling these revolutionary therapies with new and unconventional pricing and reimbursement mechanisms.

One alternative structure that has been adopted is an annuity based model which spreads the payment for an expensive treatment over several years in a pre-agreed payment plan, thus minimising the up-front cost to payers.

Another approach adopted by the industry, and perhaps an even clearer way to demonstrate value to payers, has been to tie reimbursement to patient outcomes. The industry has negotiated several of these outcomes-based reimbursement models with public and private payers for cell and gene therapies. Reimbursement payments to the drug maker under this model are conditional upon the patient reaching specific clinical outcomes by set deadlines. Depending on the model, a patients failure to meet the specified clinical outcome can result in the drug maker having to refund payments received and/or forfeit any subsequent payments.

These new models are also being blended to create payment plans which combine annuity-style payments with rebates and outcomes-dependent instalments. We expect that in the years to come other creative payment models will emerge and be adapted from other therapy areas. For example, in Australia, the government has used a subscription style model that allowed it to pay a lump sum to drug makers for unlimited access for patients to curative hepatitis C treatments such as Sovaldi for a period of time.

Example annuity and outcomes-based reimbursement models for cell and gene therapies:

Licensing challenges

Cell and gene therapies often have their roots in academic research laboratories and the main players in this field of treatments have close ties and valuable licensing agreements with academic research institutions. For example, AveXis, the biotech company that developed Zolgensma, started as a spin-out to continue research conducted at the Center for Gene Therapy at Nationwide Childrens Hospital in Columbus, Ohio. To further its spinal muscular atrophy work, the biotech also licensed a patent owned by Martine Barkats, a researcher at the Institut de Myologie, Paris. Shortly after, AveXis was bought by Novartis for $8.7 billion. Cell and gene therapies such as Zolgensma will generally have more constituent parts (such as promoters, viral vectors and cell lines) than other more conventional small molecule therapies. This means that a party commercialising a cell or gene therapy will often need to license in more third party intellectual property or materials than a manufacturer of a conventional small molecule therapy. Most cell and gene therapies reaching the market are therefore likely to be underpinned by one or more licence agreements.Licensing challenges

While much has been said about the impact of alternative pricing and reimbursement mechanisms on drug makers, payers and patients, we want to also consider the impact on licensors of the intellectual property which enables the development and manufacture of a therapy. In particular, how future pricing and reimbursement models can impact the royalties payable by licensees to their licensors. One inherent challenge is that these licences are generally negotiated many years before the commencement of discussions with payers on pricing and reimbursement mechanisms, making it very difficult to predict which scenarios will be relevant down the line. The positions of all of the stakeholders in the pricing debate are also constantly evolving, especially as data on the cost-effectiveness of annuity and outcomes-based models continues to accumulate. One factor which makes things particularly difficult for licensors in forecasting potential future royalty streams for these products is that a licensor would rarely have any involvement in negotiations regarding pricing and reimbursement so will have no control over the model adopted.

Annuity model challenges

Generally a licensor will only receive royalties once the licensee has itself received (or at least invoiced) payment from payers. An annuity payment model is therefore likely to mean that royalties will also be paid in instalments potentially spread over a number of years following treatment of a patient. While in practice this may not be a large change for licensors to adjust to (as annual payments for these high price treatments are not out of line with other orphan drug costs, most of which need to be taken over a long period of time) there are also other factors to consider.

One concern that has been raised with annuity payment models is that there may be an increased risk of non-payment as over time licensees may face difficulties in collecting payments, for example because a payer stops complying with payment schedules or becomes insolvent. This may have the knock-on effect of reducing royalties due to a licensor. Licensors may seek to reduce this non-payment risk by asking that royalties are payable on sums invoiced by a licensee, rather than sums received (although this is likely to be resisted by a licensee or perhaps only accepted with caveats). Annuity-based models are also typically more complicated and more expensive for a licensee to manage administratively and those costs are likely to be deductible from sales totals before a licensors royalties are calculated.

From a legal drafting perspective, care would also need to be taken by the licensor when defining payment terms and the royalty term (which is commonly linked to patent expiry) to ensure that the licensor continued to receive royalties in respect of patients who are treated within the royalty term, notwithstanding the fact that payment may not be received until after the patents and royalty term has expired.

Outcome-based model challenges

In relation to outcome-based models, a fundamental concern for both licensors and licensees is the uncertainty associated with a model which involves an upfront payment of the full treatment price but a refund payable some months or years down the line if the clinical outcomes are not met.

If royalties are payable on net sales of the therapy on a regular basis (e.g. quarterly or annually) then unless the licence includes a mechanism to take account of outcomes-based refunds made by the licensee to payers, the licensee could find itself out of pocket, unable to recover royalties paid to the licensor despite having had to refund the therapy price to the payer. To counter this risk, a licensee may seek to build in a royalty claw back mechanism into the licence, or to delay the point at which royalties are payable until after the relevant patient has met the required outcome. However, a licensor is unlikely to accept a significant delay in payment of royalties, particularly where the licensee has itself been paid. Academic licensors, with an obligation to invest income from technology transfer activities into research and the provision of education, are particularly unlikely to agree a royalty claw back structure which could force them to refund royalties or milestones a year or more after having received them.

One alternative option may be to agree that the licensee can make deductions against future royalty payments. A further alternative could be for some portion of the royalties paid to be retained in escrow for a period of time, to be released to the licensor upon achievement of a positive clinical outcome or expiry of a set period of time. However, escrow arrangements necessarily increase the complexity of agreements and are difficult to negotiate upfront when payment and reimbursement models and the associated outcome triggers have not yet been set.

A compromise?

As we have outlined in this article, although there are some things each party can consider at the outset of negotiating a licence, getting into protracted negotiations about hypothetical scenarios is unlikely to be attractive to either party.

The parties may wish to adopt an alternative approach of including robust governance provisions in the licence to deal specifically with this issue. For example, establishing a committee comprised of representatives of both parties to oversee and review issues relating to pricing and reimbursement. This may give the licensor a clearer oversight (and potentially input) into decisions which may impact future royalty streams and may present the licensee with an opportunity to propose alternative payment structures to support its desired pricing model. This could be combined with a mechanism for proposing and agreeing amendments to payment provisions in the licence if necessary to accommodate pricing and reimbursement issues which were unforeseen at the outset. Of course the success of such mechanisms will depend on the strength of the relationship between the parties and a combined willingness to work together and potentially compromise. It would also be important to ensure it is clear what happens where the parties cannot agree (e.g. escalation? expert determination? preservation of the status quo?). However, in a future where pricing and reimbursement issues are only likely to become more complex and of key importance to the success of complex treatments such as cell and gene therapies, it will be interesting to see whether this is a route industry explores.

Conclusion

The launch in recent years of a number of advanced cell and gene therapies with blockbuster price tags has heralded a new era for drug pricing and associated payment and reimbursement issues. It is a trend that looks likely to continue if current pipelines can also deliver much anticipated advanced therapies for common conditions. The high prices associated with these products present a myriad of issues however, not only for patients, payers and healthcare providers, but also for the licensors of the underlying intellectual property underpinning such treatments as industry adopts innovative new payment and reimbursement models which may impact on royalty streams.

When negotiating a licence to technology underpinning a cell or gene therapy the parties should consider how less conventional pricing mechanisms may impact the royalty structure. However, while there are some issues licensees and licensors may be able to consider upfront, it is difficult to anticipate the issues that may become relevant at a stage where pricing models have not been set, particularly as there is no one-size-fits-all pricing approach.

We have proposed an increased use of robust governance processes in a licensing relationship as one option to consider. It will also be interesting to see whether any trends emerge in relation to upfront and milestone payments in response to the challenges outlined above. In particular, licensees may push for more back-loaded or performance-related milestone payments to reflect the risks associated with pricing models which take a longer term view of the cost benefits of these types of therapies. We look forward to seeing what innovative approaches licensors and licensees adopt to adapt to these challenges in the years to come.

Follow this link:

Cell and gene therapies - Lexology

Bicoastal startup Kriya Therapeutics to grow gene therapy manufacturing in NC – WRAL Tech Wire

RESEARCH TRIANGLE PARK Theres a new biotech company setting up shop in the Triangle, and its flush with cash and headed up by some big names in the industry.

MeetKriya Therapeutics the brainchild of Dr. Shankar Ramaswamy, former chief business officer for Axovant Gene Therapies; Fraser Wright, co-founder of Sparks Therapeutics; and Roger Jeffs, the former United Therapeutics CEO who has deep rootsinNorth Carolina.

Launched in 2019, the biotech startup has dual headquarters in Durham and Palo Alto, California, and is billing itself as a next-generation gene therapy company focused on designing and developing treatments for highly prevalent and severe chronic conditions, like diabetes and obesity.

Earlier this month, it arrived in a big way after securing $80.5 million in Series A financing during a pandemic.

Its never easy. But itsa really significant pool of capital for us so were thankful to have been able to get it done,Ramaswamy, Kriyas CEO, told NC Biotech in a video interview this week.[Our] investors have a very long term vision of what a next generation gene therapy company could look like, and were very supportive building towards that vision.

Fraser Wright, PhDScientific Co-Founder and Chief Scientific Advisor; Shankar Ramaswamy, MDCo-Founder, Chairman, and CEO; and Nachi Gupta, MD, PhDChief of Staff.

Among the investors: QVT, Dexcel Pharma, Foresite Capital, Bluebird Ventures (associated with Sutter Hill Ventures), Narya Capital, Amplo,Paul Manning, andAsia Alpha. The round followed an initial seed financing led by Transhuman Capital late last year.

Itsis amilestone for the company andsets us up for success to goout and execute on the things that we really want to get done.

Ramaswamy says the company is now ready to scale, and is focused on building out its teams on both coasts.

We expect to grow very quickly both here in the Bay Area and in North Carolina, he said, emphasizing the Triangles importance as its manufacturing hub. That could be dozens of employees [here] in the not so distant future, if not larger over time.

How it will work: co-founders Ramaswamy and Wright will be based in the Bay area along with finance operations and early-stage research.

Meanwhile, in Durham, co-founder Jeffs will lead a team focused on development and manufacturing. It will include Britt Petty, AveXis former head of global manufacturing and Melissa Rhodes, former chief development officer at Altavant Sciences; and Mitch Lower, another Avexis veteran.

I dont view North Carolina as a satellite office.Thats where well be building our internal manufacturing infrastructure to solve for one of the key bottlenecks in gene therapy,which is manufacturing capacity and quality, saidRamaswamy.

Theres a very strong pool of talent in North Carolina, especially in biologics manufacturing. And [our team] has a very strong track record and history of success with biologics manufacturing, and strong experience there as well. So we think its a great place to be, given the past couple of decades, where there have been so many successful products actually manufactured in North Carolina.

Already, Kriyahas a number of gene therapies in the pipeline.

Among them: KT-A112, an investigational gene therapy administered by intramuscular injection that delivers the genes to produce insulin and glucokinase for type 1 and type 2 diabetes;KT-A522, an investigational gene therapy administered by salivary gland injection that delivers the gene to produce a glucagon-like peptide 1 (GLP-1) receptor agonist for type 2 diabetes and severe obesity; andKT-A83, an investigational gene therapy administered by intrapancreatic injection that delivers the gene to produce modified insulin growth factor 1 (IGF-1) for type 1 diabetes.

The team is currently set up in a temporary office in Durham, but plans to move intoamore permanent space somewhere in the Research Triangle in the near future.

Kriya is building a leading team and cutting-edge infrastructure to engineer best-in-class gene therapies for severe chronic conditions and accelerate their advancement into human clinical trials, saidJeffs, its vice chairman. Through its R&D laboratory capabilities in the Bay Area and in-house process development and manufacturing infrastructure inResearch Triangle Park, I believe that Kriya will be uniquely positioned to become a leader in the gene therapy field.

(c) North Carolina Biotechnology Center

Durhams Kriya Therapuetics lands $80M to advance gene therapies for diabetes, severe obesity

See more here:

Bicoastal startup Kriya Therapeutics to grow gene therapy manufacturing in NC - WRAL Tech Wire

Expression Therapeutics Announces IND Approval by the FDA for Hemophilia A Gene Therapy | DNA RNA and Cells | News Channels – PipelineReview.com

DetailsCategory: DNA RNA and CellsPublished on Tuesday, 26 May 2020 18:08Hits: 457

ATLANTA, GA, USA I May 26, 2020 I Expression Therapeutics has announced that it has received clearance by the United States Food and Drug Administration (FDA) to proceed following review of its Investigational New Drug Application (IND) for clinical testing of its novel lentiviral vector-based gene therapy ET3 for hemophilia A. Hemophilia A is the most common severe congenital bleeding disorder and afflicts approximately 1 in 8,000 people. Without treatment, severe hemophilia is crippling and fatal by late adolescence to early adulthood.

The ET3 gene therapy developed by Expression Therapeutics combines innovative platform technologies in protein bioengineering and tissue-directed expression. ET3 consists of autologous mobilized peripheral blood stem and progenitor cells transduced with a recombinant lentiviral vector, encoding a bioengineered coagulation factor VIII transgene designed for highlevel expression at low vector copy number. In the ET3 trial, subjects will be preconditioned with low-dose stem and immune cell suppressing agents prior to receiving a single infusion of ET3. The high-expression factor VIII can correct the bleeding tendency in hemophilia A. The duration of ET3 activity is expected to be the normal lifetime of the patient. Expression Therapeutics expects to initiate a Phase 1 clinical trial titled ET3-201 at Emory University and enroll patients shortly.

"We are extremely pleased that the FDA has granted permission to proceed with this clinical study," said Trent Spencer, Ph.D., President of Expression Therapeutics and Director of the Cell and Gene Therapy Program in the Aflac Cancer and Blood Disorders Center at Emory University.

Hematopoietic stem and progenitor cell lentiviral gene therapy is currently the only approach that offers the possibility of permanent cure of hemophilia A and provides an opportunity to reach both pediatric and adult populations.

"We are very excited to get the hemophilia A clinical trial underway, the first of six gene therapy products currently under development at Expression Therapeutics," said Mohan Rao, Ph.D., CEO of Expression Therapeutics.

Expression Therapeutics is a biotechnology company based in Atlanta. The current therapeutic pipeline includes advanced gene therapies for hemophilia A and B; neuroblastoma, T-cell leukemia/lymphoma, and acute myeloid leukemia (AML); and primary immunodeficiencies such as hemophagocytic lymphohistiocytosis (HLH).

SOURCE: Expression Therapeutics

Excerpt from:

Expression Therapeutics Announces IND Approval by the FDA for Hemophilia A Gene Therapy | DNA RNA and Cells | News Channels - PipelineReview.com

Lab Mice Shed Fat and Build Muscle with Gene Therapy – The Great Courses Daily News

By Jonny Lupsha, News Writer

According to the Fierce Biotech article, the mice who underwent the new gene therapy were injected with a gene that makes the protein follistatin, which in turn blocks a protein called myostatin. Myostatin regulates muscle growth. The therapy caused a significant buildup of muscle mass in the mice while also preventing obesity, the article said. The mice didnt just build muscle; they also nearly doubled their strength without exercising any more than they usually did. Despite being fed a high-fat diet, they had fewer metabolic issues and stronger hearts than did animals that did not receive the follistatin gene.

Scientists have been developing gene therapy for many years. It can change our bodies in many ways, and has potential serving as a treatment for cancer and muscular dystrophy.

The procedure that the mice underwent encapsulates what gene therapy isalthough scientists generally focus on people.

I define [gene therapy] as the addition of genes to humans for medical purposes, said Dr. David Sadava, Adjunct Professor of Cancer Cell Biology at the City of Hope Medical Center.

Dr. Sadava said gene therapy is based on four assumptions. First, whoever is doing the gene therapy has to know the gene thats involved in whichever problem needs to be treated. Second, they must have a normal, healthy copy of that gene available in the lab. Third, they must know where and when the gene is normally expressed. Finally, they have to be fairly certain what will happen when the gene is expressed normally.

Additionally, gene therapy must do several things in order to be considered successful.

First, gene therapy must get the gene into the appropriate cells, Dr. Sadava said. Second, gene therapy must get the gene expressed in those cells. Third, we have to get the gene integrated into the genome of the target cells so itll be there permanently. And fourth, you better not have any bad side effects to gene therapy, like any therapy in medicine.

According to Dr. Sadava, one kind of gene therapy is referred to as gene augmentation, and it comes into play when the functional product of a gene has been lost and no longer gets produced normally. By injecting a gene into someone, healthy copies of a protein product will be made and function restored.

We could hypothetically think of muscular dystrophy as a good target for gene therapy, he said. We know that muscles lack the protein dystrophinits an organizing proteinso well put in the good gene for good dystrophin.

Another kind of gene therapy is called target cell killing. Dr. Sadava said it uses a gene that either produces a poison that kills certain types of cells or it stimulates the immune system to do so. Target cell killing can be applied to cancer.

A gene is put into cancer cells that allows them to produce a protein that will make a toxic drug from a harmless chemical, Dr. Sadava said. So the idea is we inject a harmless chemical into the body, it goes all over the body and when it enters a tumor cell, its converted into a poison by the gene product of the gene that weve put in for gene therapy. So we might put in a gene that will cause a protein to be made that attracts killer T cells so the tumor will stick up its hand and say Come kill me now.'

Gene therapy is an exciting field in science and medicine with a lot of potential for humans. For now, it may seem like its just helping some overweight mice get a confidence boost, but the practical applications should shore up within our lifetime.

Dr. David Sadava contributed to this article. Dr. Sadava is Adjunct Professor of Cancer Cell Biology at the City of Hope Medical Center in Duarte, CA, and the Pritzker Family Foundation Professor of Biology, Emeritus, at The Claremont Colleges. Professor Sadava graduated from Carleton University with a B.S. with first-class honors in biology and chemistry. He earned a Ph.D. in Biology from the University of California, San Diego.

Read the original here:

Lab Mice Shed Fat and Build Muscle with Gene Therapy - The Great Courses Daily News

Troubleshooting the Development of New Gene Therapies – Technology Networks

Gene therapy does more than treat genetic diseases it can cure them. A one-time dose of a non-replicative viral vector, such as commonly used recombinant adeno-associated virus (AAV), delivers a functional gene to replace or compensate for a dysfunctional version that is causing a patients disease (Figure 1). As a cutting-edge biopharmaceutical technology, there are multiple gene therapies now FDA approved; with hundreds more in clinical trials, were likely to see many more of these therapies on the market soon.1 However, to keep up with the rapid pace of clinical research, developers are working to streamline the manufacturing and quality control process to improve quality and lower the cost of bringing these important drugs to market.Developers use a multitude of analytical tests to develop gene therapies and optimize their manufacturing process. When developers get aberrant test results, they must be able to interpret where the problem lies. Did the manufacturing process produce an undesirable product, or is the analytical testing method unreliable? Analytical testing companies that have the infrastructure, personnel, and experience often partner with developers to tighten up analytical variability so that results of tests clearly indicate where there are opportunities to increase efficiency and product quality.

Figure 1. Gene delivery by recombinant viral vector.During gene therapy, viral capsids containing the therapeutic gene are taken up by the patients cells and the genetic material is delivered to the nucleus. There, the gene gets expressed as a protein necessary for the patients health. Credit: Avomeen.

Figure 2. A full AAV capsid and associated capsid impurities. Complete viral capsids have AAV are assembled from 60 capsid proteins, with a defined stoichiometry and shape and contain a therapeutic gene. AAV vector impurities include capsids that contain too many copies of the gene (overfilled), those that contain lower copy numbers or truncations of the gene (partially full), or empty capsids that contain no genetic material. Credit:Avomeen.

There are several ways to measure the empty/full capsid ratio, and as developers are establishing their chemistry, manufacturing and control (CMC) protocol, it is important that they choose an optimized method, as they must use that method for effective quality control from early process development to lot release and stability.3 Gene therapy developers may choose analytical ultracentrifugation to evaluate capsids, but while highly effective, this method is not as quantitative, robust or efficient as some newer methods. High-performance liquid chromatography (HPLC) using AAV full/empty analytical columns have been demonstrated to be highly effective at separating full, empty, and improperly filled capsids for robust quantification. Additionally, this method is higher throughput than ultracentrifugation, and requires less precious AAV sample to run.

Cellular potency is evaluated by transducing cells with the AAV product and then measuring a phenotypic or functional outcome due to the transduction. Developing these tests can be challenging because there is no one-size-fits-all test that will give developers the answers they need. Developers often draw on the experience of analytical labs to determine how to best evaluate their AAV products transduction efficiency.A gene therapy in development must also be tested to ensure that it is free of residual, process-related impurities such as polyethylenimine, iodixanol, poloxamer, and other excipients that must be removed in the final product to ensure safety. Few research and manufacturing facilities have the equipment and expertise necessary to perform this kind of testing, and it is advisable to find one that has experience testing polymers, extractables and leachables to examine if components of the manufacturing equipment or drugs packaging are not contaminating the final product.

As fast-paced as the gene therapy field is now, it stands to become a true race to the finish line to bring new gene therapies to market in the near future. Regulatory bodies are becoming more familiar with reviewing gene therapies, and the road to commercialization will move more quickly. There is no denying that gene therapies will bring incredible benefits to patients, but it will be crucial to improve manufacturing efficiency and lower costs to make gene therapies more accessible to the patients who need them.References

1. Colasante, W., Diesel, P., and Gerlovin, Lev. (2018). New Approaches To Market Access And Reimbursement For Gene And Cell Therapies. Cell & Gene. Retrieved from: https://www.cellandgene.com/doc/new-approaches-to-market-access-and-reimbursement-for-gene-and-cell-therapies-0001

2. Fraser Wright, J. (2014). Product-Related Impurities in Clinical-Grade Recombinant AAV Vectors: Characterization and Risk Assessment. Biomedicines, 2, 80-97; doi:10.3390/biomedicines2010080

3. U.S. Food & Drug Administration (2019). Guidance for Human Somatic Cell Therapy and Gene Therapy. Retrieved from: https://www.fda.gov/animal-veterinary/guidance-industry/chemistry-manufacturing-and-controls-cmc-guidances-industry-gfis

4. Stein, R. (2019). At $2.1 Million, New Gene Therapy Is The Most Expensive Drug Ever. NPR. Retrieved from: https://www.npr.org/sections/health-shots/2019/05/24/725404168/at-2-125-million-new-gene-therapy-is-the-most-expensive-drug-ever

5. Cohen, J.T, Chambers, J. D., Silver, M. C., Lin, P., Neumann, P.J. (2019). Putting The Costs And Benefits Of New Gene Therapies Into Perspective. Health Affairs. Retrieved from: https://www.healthaffairs.org/do/10.1377/hblog20190827.553404/full/

6. ATCC (accessed May, 2020) ATCC Virus Reference Materials. Retrieved from: https://www.atcc.org/en/Standards/Standards_Programs/ATCC_Virus_Reference_Materials.aspx#

7. U.S. FDA (2020). FDA Details Policies on Gene Therapies in Seven Guidances. Retrieved from: https://www.fdanews.com/articles/195767-fda-details-policies-on-gene-therapies-in-seven-guidances

Read the rest here:

Troubleshooting the Development of New Gene Therapies - Technology Networks

Reversing SHANK3 mutations in mice mitigates autism-like traits – Spectrum

Double dose: Mice with mutations in both copies of SHANK3 have more behavioral differences than animals with mutations in one copy of the gene.

tiripero / iStock

Correcting a mutation in the autism gene SHANK3 in fetal mice lessens some autism-like behaviors after birth, according to a new study1. The work adds to evidence that gene therapy may help some people with SHANK3 mutations.

In people, mutations in SHANK3 can lead to Phelan-McDermid syndrome, a condition that causes developmental delays and often autism. Up to 2 percent of people with autism have a mutation in SHANK32.

Our findings imply that early genetic correction of SHANK3 has the potential to provide therapeutic benefit for patients, lead investigator Craig Powell, professor of neurobiology at the University of Alabama at Birmingham, wrote in an email.

A 2016 study showed that correcting mutations in SHANK3 in both young and adult mice can decrease excessive grooming, which is thought to correspond to repetitive behaviors in people with autism.

Last year, Powell and his team also showed that correcting SHANK3 mutations in adult mice eliminates some autism-like behaviors3. But the results were difficult to interpret. The team reversed the mutation using an enzyme called Cre-recombinase that could edit SHANK3 if the animals were given a drug called tamoxifen. Control mice in that study that did not receive tamoxifen but had the gene for Cre still showed behavior changes, raising the possibility that the enzyme affected their brains.

In the new work, Powells team used a different approach. They engineered mice with a mutation in both or only one copy of SHANK3 the latter more closely mirrors what happens in people. Some animals had the Cre gene, but some also had another gene for a Cre-activating protein that is naturally expressed when the animals are in utero. By using this protein, the researchers could avoid using tamoxifen, which some studies have shown may also cause behavioral changes in mice4.

The control mice had either the gene for Cre-recombinase or fortheCre-activating protein, but not both, allowing the researchers to isolate any effects from the method itself.

They found that correcting the mutation lowers some but not all of the animals autism-like behaviors, a finding Powell says is surprising. The mice groom less and are more social by some measures, but they still prefer interacting with an object than with another mouse.

We dont really know why some behaviors are affected and not others, Powell says.

Mice with one mutated copy of SHANK3 have fewer behavioral differences than mice with two, they also found, which indicates the value of using both kinds of animals in gene-reversal studies, experts say.

The fact that they did analyze both side by side, and they did see some differences, I find quite intriguing, says Gaia Novarino, professor of neuroscience at the Institute of Science and Technology in Klosterneuburg, Austria.

The team originally planned to consider when and where in the brain SHANK3 was corrected. But the Cre-activating protein involved in the study was expressed throughout the brain, preventing region-specific findings.

The team gave some mice the antibiotic doxycycline to suppress Cre expression, in hopes of also testing the effects of correcting SHANK3 in adulthood. But the method failed, for unknown reasons.

It is also important to publish experiments that do not work out exactly as planned, Powell says.

The teams openness about the studys shortcomings could help others design their own studies or re-evaluate previous work, says Yong-Hui Jiang, chief of medical genetics at Yale University.

People will learn from the difficulties and the experience, Jiang says.

It would still be helpful to test whether correcting SHANK3 mutations can reverse autism-like behaviors in adult mice without using tamoxifen, other researchers say.

Its beneficial to do experiments in such a way where you leave very little room for alternative interpretations, says Gavin Rumbaugh, professor of neuroscience at the Scripps Research Institute in Jupiter, Florida. He suggests using a mouse that does not express Cre until the animal is administered doxycycline, rather than trying to suppress Cre with the drug.

The work lends credence to the idea that gene therapy might alleviate some difficulties associated with autism in people with SHANK3 mutations, researchers say. Further studies could also investigate in how many cells the gene needs to be restored to change behavior, and what would be the safest and most effective stage of development to intervene with a gene therapy.

The impression is you have a quite large window, Novarino says. Thats quite positive.

Read more here:

Reversing SHANK3 mutations in mice mitigates autism-like traits - Spectrum