National Center for Complementary and Integrative Health …

All Health Topics fromA-Z

Research-based info from acupuncture tozinc.

What do these termsmean?

Learn how to make wise healthdecisions.

Uses and side effects of herbs andbotanicals.

Information on seekingtreatment.

Evidence-based medicine, continuing education, clinical practice guidelines, andmore.

Tools to help you better understand complex scientific topics that relate to healthresearch.

More:

National Center for Complementary and Integrative Health …

Alternative Medicine | Fox News

82-year-old polio survivor Mona Randolph uses one of only three “iron lungs” known to still be in use in the U.S. The iron lung, which was invented in 1920s, was often used on polio patients who were unable to breathe after the virus paralyzed muscle groups in the chest. Six nights a week, Randolph sleeps up to her neck in a noisy, airtight, 75-year-old iron tube.

See the article here:

Alternative Medicine | Fox News

Category:Alternative medicine – Wikipedia

Alternative medicine encompasses methods used in both complementary medicine and alternative medicine, known collectively as complementary and alternative medicine (CAM). These methods are used in place of (“alternative to”), or in addition to (“complementary to”), conventional medical treatments. The terms are primarily used in the western world, and include several traditional medicine techniques practiced throughout the world.

If you add something to this category it should also be added to list of forms of alternative medicine.

This category has the following 10 subcategories, out of 10 total.

The following 106 pages are in this category, out of 106 total. This list may not reflect recent changes (learn more).

Read the original here:

Category:Alternative medicine – Wikipedia

Ecosystem services – Wikipedia

Ecosystem services are the many and varied benefits that humans freely gain from the natural environment and from properly-functioning ecosystems. Such ecosystems include, for example, agroecosystems, forest ecosystems, grassland ecosystems and aquatic ecosystems. Collectively, these benefits are becoming known as ‘ecosystem services’, and are often integral to the provisioning of clean drinking water, the decomposition of wastes, and the natural pollination of crops and other plants.

While scientists and environmentalists have discussed ecosystem services implicitly for decades, the Millennium Ecosystem Assessment (MA) in the early 2000s popularized the concept.[1] There, ecosystem services are grouped into four broad categories: provisioning, such as the production of food and water; regulating, such as the control of climate and disease; supporting, such as nutrient cycles and oxygen production; and cultural, such as spiritual and recreational benefits. To help inform decision-makers, many ecosystem services are being assigned economic values.

While the notion of human dependence on Earth’s ecosystems reaches to the start of Homo sapiens’ existence, the term ‘natural capital’ was first coined by E.F. Schumacher in 1973 in his book Small is Beautiful [2]. Recognition of how ecosystems could provide complex services to humankind date back to at least Plato (c. 400 BC) who understood that deforestation could lead to soil erosion and the drying of springs.[3][pageneeded] Modern ideas of ecosystem services probably began when Marsh challenged in 1864 the idea that Earth’s natural resources are unbounded by pointing out changes in soil fertility in the Mediterranean.[4][pageneeded] It was not until the late 1940s that three key authorsHenry Fairfield Osborn, Jr,[5] William Vogt,[6] and Aldo Leopold [7]promoted recognition of human dependence on the environment.

In 1956, Paul Sears drew attention to the critical role of the ecosystem in processing wastes and recycling nutrients.[8] In 1970, Paul Ehrlich and Rosa Weigert called attention to “ecological systems” in their environmental science textbook[9] and “the most subtle and dangerous threat to man’s existence… the potential destruction, by man’s own activities, of those ecological systems upon which the very existence of the human species depends”.

The term “environmental services” was introduced in a 1970 report of the Study of Critical Environmental Problems,[10] which listed services including insect pollination, fisheries, climate regulation and flood control. In following years, variations of the term were used, but eventually ‘ecosystem services’ became the standard in scientific literature.[11]

The ecosystem services concept has continued to expand and includes socio-economic and conservation objectives, which are discussed below. A history of the concepts and terminology of ecosystem services as of 1997, can be found in Daily’s book “Nature’s Services: Societal Dependence on Natural Ecosystems”.[3]

While Gretchen Daily’s original definition distinguished between ecosystem goods and ecosystem services, Robert Costanza and colleagues’ later work and that of the Millennium Ecosystem Assessment lumped all of these together as ecosystem services.[12][13]

Per the 2006 Millennium Ecosystem Assessment (MA), ecosystem services are “the benefits people obtain from ecosystems”. The MA also delineated the four categories of ecosystem servicessupporting, provisioning, regulating and culturaldiscussed below.

By 2010, there had evolved various working definitions and descriptions of ecosystem services in the literature.[14] To prevent double counting in ecosystem services audits, for instance, The Economics of Ecosystems and Biodiversity (TEEB) replaced “Supporting Services” in the MA with “Habitat Services” and “ecosystem functions”, defined as “a subset of the interactions between ecosystem structure and processes that underpin the capacity of an ecosystem to provide goods and services”.[15]

The Millennium Ecosystem Assessment (MA) report 2005 defines Ecosystem services as benefits people obtain from ecosystems and distinguishes four categories of ecosystem services, where the so-called supporting services are regarded as the basis for the services of the other three categories.[1]

These include services such as nutrient recycling, primary production and soil formation.[16] These services make it possible for the ecosystems to provide services such as food supply, flood regulation, and water purification.

There is discussion as to how the concept of cultural ecosystem services can be operationalized. A good review of approaches in landscape aesthetics, cultural heritage, outdoor recreation, and spiritual significance to define and assess cultural values of our environment so that they fit into the ecosystem services approach is given by Daniel et al.[17] who vote for models that explicitly link ecological structures and functions with cultural values and benefits.There also is a fundamental critique of the concept of cultural ecosystem services that builds on three arguments:[18]

The following examples illustrate the relationships between humans and natural ecosystems through the services derived from them:

Understanding of ecosystem services requires a strong foundation in ecology, which describes the underlying principles and interactions of organisms and the environment. Since the scales at which these entities interact can vary from microbes to landscapes, milliseconds to millions of years, one of the greatest remaining challenges is the descriptive characterization of energy and material flow between them. For example, the area of a forest floor, the detritus upon it, the microorganisms in the soil and characteristics of the soil itself will all contribute to the abilities of that forest for providing ecosystem services like carbon sequestration, water purification, and erosion prevention to other areas within the watershed. Note that it is often possible for multiple services to be bundled together and when benefits of targeted objectives are secured, there may also be ancillary benefitsthe same forest may provide habitat for other organisms as well as human recreation, which are also ecosystem services.

The complexity of Earth’s ecosystems poses a challenge for scientists as they try to understand how relationships are interwoven among organisms, processes and their surroundings. As it relates to human ecology, a suggested research agenda [22] for the study of ecosystem services includes the following steps:

Recently, a technique has been developed to improve and standardize the evaluation of ESP functionality by quantifying the relative importance of different species in terms of their efficiency and abundance.[28] Such parameters provide indications of how species respond to changes in the environment (i.e. predators, resource availability, climate) and are useful for identifying species that are disproportionately important at providing ecosystem services. However, a critical drawback is that the technique does not account for the effects of interactions, which are often both complex and fundamental in maintaining an ecosystem and can involve species that are not readily detected as a priority. Even so, estimating the functional structure of an ecosystem and combining it with information about individual species traits can help us understand the resilience of an ecosystem amidst environmental change.

Many ecologists also believe that the provision of ecosystem services can be stabilized with biodiversity. Increasing biodiversity also benefits the variety of ecosystem services available to society. Understanding the relationship between biodiversity and an ecosystem’s stability is essential to the management of natural resources and their services.

The concept of ecological redundancy is sometimes referred to as functional compensation and assumes that more than one species performs a given role within an ecosystem.[29] More specifically, it is characterized by a particular species increasing its efficiency at providing a service when conditions are stressed in order to maintain aggregate stability in the ecosystem.[30] However, such increased dependence on a compensating species places additional stress on the ecosystem and often enhances its susceptibility to subsequent disturbance[citation needed]. The redundancy hypothesis can be summarized as “species redundancy enhances ecosystem resilience”.[31]

Another idea uses the analogy of rivets in an airplane wing to compare the exponential effect the loss of each species will have on the function of an ecosystem; this is sometimes referred to as rivet popping.[32] If only one species disappears, the loss of the ecosystem’s efficiency as a whole is relatively small; however, if several species are lost, the system essentially collapsessimilar to an airplane that lost too many rivets. The hypothesis assumes that species are relatively specialized in their roles and that their ability to compensate for one another is less than in the redundancy hypothesis. As a result, the loss of any species is critical to the performance of the ecosystem. The key difference is the rate at which the loss of species affects total ecosystem functioning.

A third explanation, known as the portfolio effect, compares biodiversity to stock holdings, where diversification minimizes the volatility of the investment, or in this case, the risk of instability of ecosystem services.[33] This is related to the idea of response diversity where a suite of species will exhibit differential responses to a given environmental perturbation. When considered together, they create a stabilizing function that preserves the integrity of a service.[34]

Several experiments have tested these hypotheses in both the field and the lab. In ECOTRON, a laboratory in the UK where many of the biotic and abiotic factors of nature can be simulated, studies have focused on the effects of earthworms and symbiotic bacteria on plant roots.[32] These laboratory experiments seem to favor the rivet hypothesis. However, a study on grasslands at Cedar Creek Reserve in Minnesota supports the redundancy hypothesis, as have many other field studies.[35]

There are questions regarding the environmental and economic values of ecosystem services.[36] Some people may be unaware of the environment in general and humanity’s interrelatedness with the natural environment, which may cause misconceptions. Although environmental awareness is rapidly improving in our contemporary world, ecosystem capital and its flow are still poorly understood, threats continue to impose, and we suffer from the so-called ‘tragedy of the commons’.[37] Many efforts to inform decision-makers of current versus future costs and benefits now involve organizing and translating scientific knowledge to economics, which articulate the consequences of our choices in comparable units of impact on human well-being.[38] An especially challenging aspect of this process is that interpreting ecological information collected from one spatial-temporal scale does not necessarily mean it can be applied at another; understanding the dynamics of ecological processes relative to ecosystem services is essential in aiding economic decisions.[39] Weighting factors such as a service’s irreplaceability or bundled services can also allocate economic value such that goal attainment becomes more efficient.

The economic valuation of ecosystem services also involves social communication and information, areas that remain particularly challenging and are the focus of many researchers.[40] In general, the idea is that although individuals make decisions for any variety of reasons, trends reveal the aggregative preferences of a society, from which the economic value of services can be inferred and assigned. The six major methods for valuing ecosystem services in monetary terms are:[41]

A peer-reviewed study published in 1997 estimated the value of the world’s ecosystem services and natural capital to be between US$1654 trillion per year, with an average of US$33 trillion per year.[42] However, Salles (2011) indicates ‘The total value of biodiversity is infinite, so having debate about what is the total value of nature is actually pointless because we can’t live without it’.

Although monetary pricing continues with respect to the valuation of ecosystem services, the challenges in policy implementation and management are significant and multitudinous. The administration of common pool resources is a subject of extensive academic pursuit.[43][44][45][46][47] From defining the problems to finding solutions that can be applied in practical and sustainable ways, there is much to overcome. Considering options must balance present and future human needs, and decision-makers must frequently work from valid but incomplete information. Existing legal policies are often considered insufficient since they typically pertain to human health-based standards that are mismatched with necessary means to protect ecosystem health and services. To improve the information available, one suggestion has involved the implementation of an Ecosystem Services Framework (ESF[48]), which integrates the biophysical and socio-economic dimensions of protecting the environment and is designed to guide institutions through multidisciplinary information and jargon, helping to direct strategic choices.

Novel and expedient methods are needed to deal with managing Earth’s ecosystem services. Local to regional collective management efforts might be considered appropriate for services like crop pollination or resources like water.[22][43] Another approach that has become increasingly popular over the last decade is the marketing of ecosystem services protection. Payment and trading of services is an emerging worldwide small-scale solution where one can acquire credits for activities such as sponsoring the protection of carbon sequestration sources or the restoration of ecosystem service providers. In some cases, banks for handling such credits have been established and conservation companies have even gone public on stock exchanges, defining an evermore parallel link with economic endeavors and opportunities for tying into social perceptions.[38] However, crucial for implementation are clearly defined land rights, which is often lacking in many developing countries.[49] In particular, many forest-rich developing countries suffering deforestation experience conflict between different forest stakeholders.[49] In addition, concerns for such global transactions include inconsistent compensation for services or resources sacrificed elsewhere and misconceived warrants for irresponsible use. Another approach has been focused on protecting ecosystem service ‘hotspots’. Recognition that the conservation of many ecosystem services aligns with more traditional conservation goals (i.e. biodiversity) has led to the suggested merging of objectives for maximizing their mutual success. This may be particularly strategic when employing networks that permit the flow of services across landscapes, and might also facilitate securing the financial means to protect services through a diversification of investors.[50][51]

For example, in recent years there has been interest in the valuation of ecosystem services provided by shellfish production and restoration.[52] A keystone species, low in the food chain, bivalve shellfish such as oysters support a complex community of species by performing a number of functions essential to the diverse array of species that surround them. There is also increasing recognition that some shellfish species may impact or control many ecological processes; so much so that they are included on the list of “ecosystem engineers”organisms that physically, biologically or chemically modify the environment around them in ways that influence the health of other organisms.[53] Many of the ecological functions and processes performed or affected by shellfish contribute to human well-being by providing a stream of valuable ecosystem services over time by filtering out particulate materials and potentially mitigating water quality issues by controlling excess nutrients in the water.

Ecosystem-based adaptation or EbA is an emerging strategy for community development and environmental management that seeks to use an ecosystem services framework to help communities adapt to the effects of climate change. The Convention on Biological Diversity currently defines Ecosystem-Based Adaptation as “the use of biodiversity and ecosystem services to help people adapt to the adverse effects of climate change”, which includes the use of “sustainable management, conservation and restoration of ecosystems, as part of an overall adaptation strategy that takes into account the multiple social, economic and cultural co-benefits for local communities”.[54]

In 2001, the Millennium Ecosystem Assessment announced that humanity’s impact on the natural world was increasing to levels never before seen, and that the degradation of the planet’s ecosystems would become a major barrier to achieving the Millennium Development Goals. In recognition of this fact, Ecosystem-Based Adaptation seeks to use the restoration of ecosystems as a stepping-stone to improving the quality of life in communities experiencing the impacts of climate change. Specifically, this involves the restoration of ecosystems that provide the community with essential services, such as the provisioning of food and water and protection from storm surges and flooding. EbA interventions typically combine elements of both climate change mitigation and adaptation to global warming to help address the community’s current and future needs.[55]

Collaborative planning between scientists, policy makers, and community members is an essential element of Ecosystem-Based Adaptation. By drawing on the expertise of outside experts and local residents alike, EbA seeks to develop unique solutions to unique problems, rather than simply replicating past projects.[54]

Ecosystem services are defined as the gains acquired by humankind from surroundings ecosystems. Four different types of ecosystem services have been distinguished by the scientific body: regulating services, provisioning services, cultural services and supporting services. An ecosystem does not necessarily offer all four types of services simultaneously; but given the intricate nature of any ecosystem, it is usually assumed that humans benefit from a combination of these services. The services offered by diverse types of ecosystems (forests, seas, coral reefs, mangroves, etc.) differ in nature and in consequence. In fact, some services directly affect the livelihood of neighboring human populations (such as fresh water, food or aesthetic value, etc.) while other services affect general environmental conditions by which humans are indirectly impacted (such as climate change, erosion regulation or natural hazard regulation, etc.).[56]

Estuarine and coastal ecosystems are both marine ecosystems. An estuary is defined as the area in which a river meets the sea or the ocean. The waters surrounding this area are predominantly salty waters or brackish waters; and the incoming river water is dynamically motioned by the tide. An estuary strip may be covered by populations of reed (or similar plants) and/or sandbanks (or similar form or land).[citation needed]

A coastal ecosystem occurs in areas where the sea or ocean waters meet the land.[citation needed]

Regulating services are the “benefits obtained from the regulation of ecosystem processes”.[57] In the case of coastal and estuarine ecosystems, these services include climate regulation, waste treatment and disease control and natural hazard regulation.

Both the biotic and abiotic ensembles of marine ecosystems play a role in climate regulation. They act as sponges when it comes to gases in the atmosphere, retaining large levels of CO2 and other greenhouse gases (methane and nitrous oxide). Marine plants also use CO2 for photosynthesis purposes and help in reducing the atmospheric CO2. The oceans and seas absorb the heat from the atmosphere and redistribute it through the means of water currents, and atmospheric processes, such as evaporation and the reflection of light allow for the cooling and warming of the overlying atmosphere. The ocean temperatures are thus imperative to the regulation of the atmospheric temperatures in any part of the world: “without the ocean, the Earth would be unbearably hot during the daylight hours and frigidly cold, if not frozen, at night”.[58]

Another service offered by marine ecosystem is the treatment of wastes, thus helping in the regulation of diseases. Wastes can be diluted and detoxified through transport across marine ecosystems; pollutants are removed from the environment and stored, buried or recycled in marine ecosystems: “Marine ecosystems break down organic waste through microbial communities that filter water, reduce/limit the effects of eutrophication, and break down toxic hydrocarbons into their basic components such as carbon dioxide, nitrogen, phosphorus, and water”.[58] The fact that waste is diluted with large volumes of water and moves with water currents leads to the regulation of diseases and the reduction of toxics in seafood.

Coastal and estuarine ecosystems act as buffer zones against natural hazards and environmental disturbances, such as floods, cyclones, tidal surges and storms. The role they play is to “[absorb] a portion of the impact and thus [lessen] its effect on the land”.[58] Wetlands, for example, and the vegetation it supports trees, root mats, etc. retain large amounts of water (surface water, snowmelt, rain, groundwater) and then slowly releases them back, decreasing the likeliness of floods.[59] Mangrove forests protect coastal shorelines from tidal erosion or erosion by currents; a process that was studied after the 1999 cyclone that hit India. Villages that were surrounded with mangrove forests encountered less damages than other villages that weren’t protected by mangroves.[60]

Provisioning services consist of all “the products obtained from ecosystems”. Marine ecosystems provide people with: wild & cultured seafood, fresh water, fiber & fuel and biochemical & genetic resources.[citation needed]

Humans consume a large number of products originating from the seas, whether as a nutritious product or for use in other sectors: “More than one billion people worldwide, or one-sixth of the global population, rely on fish as their main source of animal protein. In 2000, marine and coastal fisheries accounted for 12 per cent of world food production”.[61] Fish and other edible marine products primarily fish, shellfish, roe and seaweeds constitute for populations living along the coast the main elements of the local cultural diets, norms and traditions. A very pertinent example would be sushi, the national food of Japan, which consists mostly of different types of fish and seaweed.

Water bodies that are not highly concentrated in salts are referred to as ‘fresh water’ bodies. Fresh water may run through lakes, rivers and streams, to name a few; but it is most prominently found in the frozen state or as soil moisture or buried deep underground. Fresh water is not only important for the survival of humans, but also for the survival of all the existing species of animals, plants.[citation needed]

Marine creatures provide us with the raw materials needed for the manufacturing of clothing, building materials (lime extracted from coral reefs), ornamental items and personal-use items (luffas, art and jewelry): “The skin of marine mammals for clothing, gas deposits for energy production, lime (extracted from coral reefs) for building construction, and the timber of mangroves and coastal forests for shelter are some of the more familiar uses of marine organisms. Raw marine materials are utilized for non-essential goods as well, such as shells and corals in ornamental items”.[61] Humans have also referred to processes within marine environments for the production of renewable energy: using the power of waves or tidal power as a source of energy for the powering of a turbine, for example.[citation needed] Oceans and seas are used as sites for offshore oil and gas installations, offshore wind farms.[citation needed]

Biochemical resources are compounds extracted from marine organisms for use in medicines, pharmaceuticals, cosmetics and other biochemical products. Genetic resources are the genetic information found in marine organisms that would later on be used for animal and plant breeding and for technological advances in the biological field. These resources are either directly taken out from an organism such as fish oil as a source of omega3 , or used as a model for innovative man-made products: “such as the construction of fiber optics technology based on the properties of sponges. … Compared to terrestrial products, marine-sourced products tend to be more highly bioactive, likely due to the fact that marine organisms have to retain their potency despite being diluted in the surrounding sea-water”.[61]

Cultural services relate to the non-material world, as they benefit the benefit recreational, aesthetic, cognitive and spiritual activities, which are not easily quantifiable in monetary terms.[citation needed]

Marine environments have been used by many as an inspiration for their works of art, music, architecture, traditions… Water environments are spiritually important as a lot of people view them as a means for rejuvenation and change of perspective. Many also consider the water as being a part of their personality, especially if they have lived near it since they were kids: they associate it to fond memories and past experiences. Living near water bodies for a long time results in a certain set of water activities that become a ritual in the lives of people and of the culture in the region.[citation needed]

Sea sports are very popular among coastal populations: surfing, snorkeling, whale watching, kayaking, recreational fishing…a lot of tourists also travel to resorts close to the sea or rivers or lakes to be able to experience these activities, and relax near the water.[citation needed]

A lot can be learned from marine processes, environments and organisms that could be implemented into our daily actions and into the scientific domain. Although much is still yet to still be known about the ocean world: “by the extraordinary intricacy and complexity of the marine environment and how it is influenced by large spatial scales, time lags, and cumulative effects”.[58]

Supporting services are the services that allow for the other ecosystem services to be present. They have indirect impacts on humans that last over a long period of time. Several services can be considered as being both supporting services and regulating/cultural/provisioning services.[citation needed]

Nutrient cycling is the movement of nutrients through an ecosystem by biotic and abiotic processes.[62] The ocean is a vast storage pool for these nutrients, such as carbon, nitrogen and phosphorus. The nutrients are absorbed by the basic organisms of the marine food web and are thus transferred from one organism to the other and from one ecosystem to the other. Nutrients are recycled through the life cycle of organisms as they die and decompose, releasing the nutrients into the neighboring environment. “The service of nutrient cycling eventually impacts all other ecosystem services as all living things require a constant supply of nutrients to survive”.[58]

Biologically mediated habitats are defined as being the habitats that living marine structures offer to other organisms.[63] These need not to be designed for the sole purpose of serving as a habitat, but happen to become living quarters whilst growing naturally. For example, coral reefs and mangrove forests are home to numerous species of fish, seaweed and shellfish… The importance of these habitats is that they allow for interactions between different species, aiding the provisioning of marine goods and services. They are also very important for the growth at the early life stages of marine species (breeding and bursary spaces), as they serve as a food source and as a shelter from predators.[citation needed]

Primary production refers to the production of organic matter, i.e., chemically bound energy, through processes such as photosynthesis and chemosynthesis. The organic matter produced by primary producers forms the basis of all food webs. Further, it generates oxygen (O2), a molecule necessary to sustain animals and humans.[64][65][66][67]

Ecosystem services degradation can pose a number of risks to corporate performance as well as provide business opportunities through ecosystem restoration and enhancement. Risks and opportunities include:

Many companies are not fully aware of the extent of their dependence and impact on ecosystems and the possible ramifications. Likewise, environmental management systems and environmental due diligence tools are more suited to handle “traditional” issues of pollution and natural resource consumption. Most focus on environmental impacts, not dependence. Several newly developed tools and methodologies can help the private sector value and assess ecosystem services. These include Our Ecosystem,[68] the Corporate Ecosystem Services Review (ESR),[69] Artificial Intelligence for Ecosystem Services (ARIES),[70] the Natural Value Initiative (NVI)[71] and InVEST (Integrated Valuation of Ecosystem Services & Tradeoffs) [72]

Ecosystem services decisions require making complex choices at the intersection of ecology, technology, society and the economy. The process of making ecosystem services decisions must consider the interaction of many types of information, honor all stakeholder viewpoints, including regulatory agencies, proposal proponents, decision makers, residents, NGOs, and measure the impacts on all four parts of the intersection. These decisions are usually spatial, always multi-objective, and based on uncertain data, models, and estimates. Often it is the combination of the best science combined with the stakeholder values, estimates and opinions that drive the process.[73]

One analytical study modeled the stakeholders as agents to support water resource management decisions in the Middle Rio Grande basin of New Mexico. This study focused on modeling the stakeholder inputs across a spatial decision, but ignored uncertainty.[74] Another study used Monte Carlo methods to exercise econometric models of landowner decisions in a study of the effects of land-use change. Here the stakeholder inputs were modeled as random effects to reflect the uncertainty.[75] A third study used a Bayesian decision support system to both model the uncertainty in the scientific information Bayes Nets and to assist collecting and fusing the input from stakeholders. This study was about siting wave energy devices off the Oregon Coast, but presents a general method for managing uncertain spatial science and stakeholder information in a decision making environment.[76] Remote sensing data and analyses can be used to assess the health and extent of land cover classes that provide ecosystem services, which aids in planning, management, monitoring of stakeholders’ actions, and communication between stakeholders.[77]

In Baltic countries scientists, nature conservationists and local authorities are implementing integrated planning approach for grassland ecosystems. They are developing Integrated Planning Tool that will be based on GIS (geographic information system) technology and put online that will help for planners to choose the best grassland management solution for concrete grassland. It will look holistically at the processes in the countryside and help to find best grassland management solutions by taking into account both natural and socioeconomic factors of the particular site.

See the original post:

Ecosystem services – Wikipedia

This New Startup Is Making Chatbots Dumber So You Can Actually Talk to Them

A Spanish tech startup decided to ditch artificial intelligence to make its chatbot platform more approachable

Tech giants have been trying to one-up each other to make the most intelligent chatbot out there. They can help you simply fill in forms, or take the form of fleshed-out digital personalities that can have meaningful conversations with you. Those that have voice functions have come insanely close to mimicking human speech — inflections, and even the occasional “uhm’s” and “ah’s” — perfectly.

And they’re much more common than you might think. In 2016, Facebook introduced Messenger Bots that businesses worldwide now use for simple tasks like ordering flowers, getting news updates in chat form, or getting information on flights from an airline. Millions of users are filling waiting lists to talk to an “emotional chatbot” on an app called Replika.

But there’s no getting around AI’s shortcomings. And for chatbots in particular, the frustration arises from a disconnect between the user’s intent or expectations, and the chatbot’s programmed abilities.

Take Facebook’s Project M. Sources believe Facebook’s (long forgotten) attempt at developing a truly intelligent chatbot never surpassed a 30 percent success rate, according to Wired — the remaining 70 percent of the time, human employees had to step in to solve tasks. Facebook billed the bot as all-knowing, but the reality was far less promising. It simply couldn’t handle pretty much any task it was asked to do by Facebook’s numerous users.

Admittedly, takes a a lot of resources to develop complex AI chatbots. Even Google Duplex, arguably the most advanced chatbot around today, is still limited to verifying business hours and making simple appointments. Still, users simply expect far more than what AI chatbots can actually do, which tends to enrage users.

The tech industry isn’t giving up. Market researchers predict that chatbots will grow to become a $1 billion market by 2025.

But maybe they’re going about this all wrong. Maybe, instead of making more sophisticated chatbots, businesses should focus on what users really need in a chatbot, stripped down to its very essence.

Landbot, a one-year-old Spanish tech startup, is taking a different approach: it’s making a chatbot-builder for businesses that does the bare minimum, and nothing more. The small company landed $2.2 million in a single round of funding (it plans to use those funds primarily to expand its operations and cover the costs of relocating to tech innovation hub Barcelona).

“We started our chatbot journey using Artificial Intelligence technology but found out that there was a huge gap between user expectations and reality,” co-founder Jiaqi Pan tells TechCrunch. “No matter how well trained our chatbots were, users were constantly dropped off the desired flow, which ended up in 20 different ways of saying ‘TALK WITH A HUMAN’.”

Instead of creating advanced tech that could predict and analyze user prompts, Landbot decided to work on a simple user interface that allows businesses to create chat flows that link prompt and action, question and answer. It’s kind of like a chatbot flowchart builder. And the results are pretty positive: the company has seen healthy revenue growth, and the tool is used by hundreds of businesses in more than 50 countries, according to TechCrunch.

The world is obsessed with achieving perfect artificial intelligence, and the growing AI chatbot market is no different. So obsessed in fact, it’s driving users away — growing disillusionment, frustration, and rage are undermining tech companies’ efforts. And this obsession might be doing far more harm than good. It’s simple: people are happiest when they get the results they expect. Added complexity or lofty promises of “true AI” will end up pushing them away if it doesn’t actually end up helping them.

After all, sometimes less is more. Landbot and its customers are making it work with less.

Besides, listening to your customers can go a long way.

Now can you please connect me to a human?

The post This New Startup Is Making Chatbots Dumber So You Can Actually Talk to Them appeared first on Futurism.

Read the original:

This New Startup Is Making Chatbots Dumber So You Can Actually Talk to Them

Google and The UN Team Up To Study The Effects of Climate Change

Google agreed to work with UN Environment to create a platform that gives the world access to valuable environmental data.

WITH OUR POWERS COMBINED… The United Nations’ environmental agency has landed itself a powerful partner in the fight against climate change: Google. The tech company has agreed to partner with UN Environment to increase the world’s access to valuable environmental data. Specifically, the two plan to create a user-friendly platform that lets anyone, anywhere, access environmental data collected by Google’s vast network of satellites. The organizations announced their partnership at a UN forum focused on sustainable development on Monday.

FRESHWATER FIRST. The partnership will first focus on freshwater ecosystems, such as mountains, wetlands, and rivers. These ecosystems provide homes for an estimated 10 percent of our planet’s known species, and research has shown that climate change is causing a rapid loss in biodiversity. Google will use satellite imagery to produce maps and data on these ecosystems in real-time, making that information freely available to anyone via the in-development online platform. According to a UN Environment press release, this will allow nations and other organizations to track changes and take action to prevent or reverse ecosystem loss.

LOST FUNDING. Since President Trump took office, the United States has consistently decreased its contributions to global climate research funds. Collecting and analyzing satellite data is neither cheap nor easy, but Google is already doing it to power platforms such as Google Maps and Google Earth. Now, thanks to this partnership, people all over the world will have a way to access information to help combat the impacts of climate change. Seems the same data that let’s you virtually visit the Eiffel Tower could help save our planet.

READ MORE: UN Environment and Google Announce Ground-Breaking Partnership to Protect Our Planet [UN Environment]

More on freshwater: Climate Change Is Acidifying Our Lakes and Rivers the Same Way It Does With Oceans

The post Google and The UN Team Up To Study The Effects of Climate Change appeared first on Futurism.

Link:

Google and The UN Team Up To Study The Effects of Climate Change

This Wearable Controller Lets You Pilot a Drone With Your Body

PUT DOWN THE JOYSTICK. If you’ve ever tried to pilot a drone, it’s probably taken a little while to do it well; each drone is a little different, and figuring out how to use its manual controller can take time. There seems to be no shortcut other than to suffer a crash landing or two.

Now, a team of researchers from the Swiss Federal Institute of Technology in Lausanne (EPFL) have created a wearable drone controller that makes the process of navigation so intuitive, it requires almost no thought at all. They published their research in the journal PNAS on Monday.

NOW, PRETEND YOU’RE A DRONE. To create their wearable drone controller, the researchers first needed to figure out how people wanted to move their bodies to control a drone. So they placed 19 motion-capture markers and various electrodes all across the upper bodies of 17 volunteers. Then, they asked each volunteer to watch simulated drone footage through virtual reality goggles. This let the volunteer feel like they were seeing through the eyes of a drone.

The researchers then asked the volunteers to move their bodies however they liked to mimic the drone as it completed five specific movements (for example, turning right or flying toward the ground). The markers and electrodes allowed the researchers to monitor those movements, and they found that most volunteers moved their torsos in a way simple enough to track using just four motion-capture markers.

With this information, the researchers created a wearable drone controller that could relay the user’s movements to an actual drone — essentially, they built a wearable joystick.

PUTTING IT TO THE TEST. To test their wearable drone controller, the researchers asked 39 volunteers to complete a real (not virtual) drone course using either the wearable or a standard joystick. They found that volunteers wearing the suit outperformed those using the joystick in both learning time and steering abilities.

“Using your torso really gives you the feeling that you are actually flying,” lead author Jenifer Miehlbradt said in a press release. “Joysticks, on the other hand, are of simple design but mastering their use to precisely control distant objects can be challenging.”

IN THE FIELD. Mehlbradt envisions search and rescue crews using her team’s wearable drone controller. “These tasks require you to control the drone and analyze the environment simultaneously, so the cognitive load is much higher,” she told Inverse. “I think having control over the drone with your body will allow you to focus more on what’s around you.”

However, this greater sense of immersion in the drone’s environment might not be beneficial in all scenarios. Previous research has shown that piloting strike drones for the military can cause soldiers to experience significant levels of trauma, and a wearable like the EPFL team’s has the potential to exacerbate the problem.

While Miehlbradt told Futurism her team did not consider drone strikes while developing their drone suit, she speculates that such applications wouldn’t be a good fit.

“I think that, in this case, the ‘distance’ created between the operator and the drone by the use of a third-party control device is beneficial regarding posterior emotional trauma,” she said. “With great caution, I would speculate that our control approach — should it be used in such a case —  may therefore increase the risk of experiencing such symptoms.”

READ MORE: Drone Researchers Develop Genius Method for Piloting Using Body Movements [Inverse]

More on rescue drones: A Rescue Drone Saved Two Teen Swimmers on Its First Day of Deployment

The post This Wearable Controller Lets You Pilot a Drone With Your Body appeared first on Futurism.

See the rest here:

This Wearable Controller Lets You Pilot a Drone With Your Body

Most Of NASA’s Moon Rocks Remain Untouched By Scientists

we have only studied about 16 percent of the moon rocks taken during the Apollo missions. NASA's Apollo curator keeps them for future generations.

Forty-nine years ago this Friday, Neil Armstrong and Buzz Aldrin became the first humans to set foot on the Moon. That day, they also became the first people to harvest samples from another celestial body and bring them back to Earth.

Over the course of the Apollo missions, astronauts collected about 2,200 individual samples weighing a total of 842 pounds (382 kg) for scientific study that continues today, NASA curator Ryan Zeigler told Futurism. Zeigler, who also conducts geochemical research, is responsible for overseeing NASA’s collection of space rocks from the Apollo missions, as well as those from Mars, asteroids, stars, and anywhere else other than Earth.

Scientists have only studied about 16 percent of all the Apollo samples by mass, Zeigler told Futurism. Within that 16 percent, just under one-third has been put on display, which Zeigler noted largely keeps the samples pristine. Another quarter were at least partially destroyed (on purpose) during NASA-approved research, and the rest have been analyzed in less destructive ways.

“Trying not to deplete the samples so that future scientists will still have the opportunity to work with them is definitely something we are considering,” says Zeigler. “Also, while I would consider the Apollo samples primarily a scientific resource (though as a scientist am obviously biased), it is undeniable that these samples also have significant historic and cultural importance as well, and thus need to be preserved on those grounds, too.”

The cultural reasons to preserve moon rocks, Zeigler says, are harder to define. But it’s still important to make sure future scientists have enough space rocks left to work with, especially since we can’t fully predict the sorts of questions they’ll try to answer using the Apollo samples, or the technology that will be at their disposal.

“Every decade since the Apollo samples came back has seen significant advances in instrumentation that have allowed samples to be analyzed at higher levels of precision, or smaller spatial resolution,” Zeigler says. “Our understanding of the Moon, and really the whole solar system, has evolved considerably by continuing studies of the Apollo samples.”

“Our understanding of the Moon, and really the whole solar system, has evolved considerably by continuing studies of the Apollo samples.”

In the last six years, Zeigler says that his curation team saw 351 requests for Apollo samples, which comes out to about 60 each year. Within those requests, the scientists have asked for about 692 individual samples per year, most of which weigh one to two grams each. Even if the researchers don’t get everything that they ask for, Zeigler says, most of the studies are at least partially approved, and he’s been loaning out about 525 samples every year. That comes out to just over 75 percent of what the scientists requested.

“So while it is true that significant scientific justification is required to get Apollo samples, and we (NASA, with the support of the planetary scientific community) are intentionally reserving a portion of the Apollo samples for future generations of scientists and scientific instruments to study, the samples are available to scientists around the world to study, and we are slowly lowering the percentage of material that is left,” Zeigler says.

Thankfully, about 84 percent of the Apollo samples are still untouched. That pretty much guarantees that the next generation of geologists and astronomers who try to decipher the Moon’s remaining secrets will have enough samples to fiddle with.

To read more on future lunar research, click here: Three Reasons Why We Might Return To The Moon

The post Most Of NASA’s Moon Rocks Remain Untouched By Scientists appeared first on Futurism.

Read the rest here:

Most Of NASA’s Moon Rocks Remain Untouched By Scientists

Alphabet Will Bring Its Balloon-Powered Internet to Kenya

Alphabet has inked a deal with a Kenyan telecom to bring its balloon-powered internet to rural and suburban parts of Kenya

BADASS BALLOONS. In 2013, Google unveiled Project Loon, a plan to send a fleet of balloons into the stratosphere that could then beam internet service back down to people on Earth.

And it worked! Just last year, the project provided more than 250,000 Puerto Ricans with internet service in the wake of the devastation of Hurricane Maria. The company, now simply called Loon, was the work of X, an innovation lab originally nestled under Google but now a subsidiary of Google’s parent company, Alphabet. And it’s planning to bring its balloon-powered internet to Kenya.

EYES ON AFRICA. On Thursday, Loon announced a partnership with Telkom Kenya, Kenya’s third largest telecommunications provider. Starting next year, Loon balloons will soar high above the East African nation, sending 4G internet coverage down to its rural and suburban populations. This marks the first time Loon has inked a commercial deal with an African nation.

“Loon’s mission is to connect people everywhere by inventing and integrating audacious technologies,” Loon CEO Alastair Westgarth told Reuters. Telkom CEO Aldo Mareuse added,“We will work very hard with Loon, to deliver the first commercial mobile service, as quickly as possible, using Loon’s balloon-powered internet in Africa.”

INTERNET EVERYWHERE. The internet is such an important part of modern life that, back in 2016, the United Nations declared access to it a human right. And while you might have a hard time thinking about going even a day without internet access, more than half of the world’s population still can’t log on. In Kenya, about one-third of the population still lacks access.

Thankfully, Alphabet isn’t the only company working to get the world connected. SpaceX, Facebook, and SoftBank-backed startup Altaeros have their own plans involving satellites, drones, and blimps, respectively. Between those projects and Loon, the world wide web may finally be available to the entire world.

READ MORE: Alphabet to Deploy Balloon Internet in Kenya With Telkom in 2019 [Reuters]

More on Loon: Alphabet Has Officially Launched Balloons that Deliver Internet In Puerto Rico

The post Alphabet Will Bring Its Balloon-Powered Internet to Kenya appeared first on Futurism.

See the article here:

Alphabet Will Bring Its Balloon-Powered Internet to Kenya

China Is Investing In Its Own Hyperloop To Clear Its Crowded Highways

Chinese state-backed companies just made huge investments in U.S. based Hyperloop startups. But will it solve China's stifling traffic problems?

GRIDLOCK. China’s largest cities are choking in traffic. Millions of cars on the road means stifling levels of air pollution and astronomical commute times, especially during rush hours.

The latest move to address this urban traffic nightmare: Chinese state-backed companies are making heavy investments in U.S. hyperloop startups Arrivo and Hyperloop Transportation Technologies, lining up $1 billion and $300 million in credit respectively. It’s substantial financing that could put China ahead in the race to open the first full-scale hyperloop track.

MAG-LEV SLEDS. Both companies are planning something big, although their approaches differ in some key ways. Transport company Arrivo is focusing on relieving highway traffic by creating a separate track that allows cars to zip along at 200 miles per hour (320 km/h) on magnetically levitated sleds inside vacuum-sealed tubes (it’s not yet clear if this will be above ground or underground).

Arrivo’s exact plans to build a Chinese hyperloop system have not yet been announced, but co-founder Andrew Liu told Bloomberg that $1 billion in funding could be enough to build “as many as three legs of a commercial, citywide hyperloop system of 6 miles to 9 miles [9.5 to 14.4 km] per section.” The company hasn’t yet announced in which city it’ll be built.

Meanwhile, Hyperloop Transportation Technologies has already made up its mind as to where it will plop down its first Chinese loop. It’s the old familiar maglev train design inside a vacuum tube, but instead it’s passengers, not their cars, that will ride along at speeds of up to 750 mph (1200 km/h). Most of the $300 million will go towards building a 6.2 mile (10 km) test track in Guizhou province. According to a press release, this marks the third commercial agreement for HyperloopTT after Abu Dhabi and Ukraine from earlier this year.

A PRICEY SOLUTION. Building a hyperloop is expensive. This latest investment hints at just how expensive just a single system could be in the end. But providing high-speed alternatives to car-based transport is only one of many ways to deal with the gridlock and traffic jams that plague urban centers. China, for instance, has attempted to tackle the problem by restricting driving times based on license plates, expanding bike sharing networks, and even mesh ride-sharing data with smart traffic lights.

And according to a recent report by Chinese location-based services provider AutoNavi, those solutions seem to be working: a Quartz analysis of the data found that traffic declined by 12.5 and 9 percent in Hangzhou and Shenzhen respectively, even though the population grew by 3 and 5 percent.

MO’ MONEY, MO’ PROBLEMS. There are more hurdles to overcome before hyperloop can have a significant impact in China. There is the cost of using the hyperloop system — if admission is priced too high (perhaps to cover astronomical infrastructure costs), adoption rates may remain too low to have a significant effect.

The capacity of a maglev train system would also have to accommodate China’s  growing population centers. That’s not an easy feat HyperloopTT’s capusles have to squeeze through a four meter (13 feet) diameter tube and only hold 28 to 40 people at a time, and there are 3 million cars in Shenzhen alone.

We don’t know yet whether China’s hyperloop investments will pay off and significantly reduce traffic in China’s urban centers. But bringing new innovations to transportation in massive and growing cities — especially when those new innovations are more environmentally friendly — is rarely a bad idea.

The post China Is Investing In Its Own Hyperloop To Clear Its Crowded Highways appeared first on Futurism.

Follow this link:

China Is Investing In Its Own Hyperloop To Clear Its Crowded Highways

WhatsApp Updates Controls in India in an Effort to Thwart Mob Violence

WhatsApp has announced plans to update how users forward content, presumably in an effort to address mob violence in India.

CHANGE IS COMING. Today, more than 1 billion people use the Facebook-owned messaging app WhatsApp to share messages, photos, and videos. With the tap of a button, they can forward a funny meme or send a party invite to groups of friends and family. They can also easily share “fake news,” rumors and propaganda disguised as legitimate information.

In India — the nation where people forward more WhatsApp content than anywhere else — WhatsApp-spread fake news is inciting mob violence and literally getting people killed. On Thursday, WhatsApp announced in a blog post that it plans to make several changes in an effort to prevent more violence.

Some of the changes will only apply to users in India. They will no longer see the “quick forward” button next to photos and videos that made that content particularly easy to send along quickly, without incorporating information about where it came from. They’ll also no longer be able to forward content to more than five chats at a time. In the rest of the world, the new limit for forwards will be 20 chats. The previous cap was 250.

THE ELEPHANT IN THE ROOM. Over the past two months, violent mobs have attacked two dozen people in India after WhatsApp users spread rumors that those people had abducted children. Some of those people even died from their injuries.

The Indian government has been pressuring WhatsApp to do something to address these recent bouts of violence; earlier on Thursday, India’s Ministry of Electronics and Information Technology threatened the company with legal action if it didn’t figure out some effective way to stop the mob violence.

The WhatsApp team, however, never mentions that violence is the reason for the changes in its blog post, simply asserting that the goal of the control changes is to maintain the app’s “feeling of intimacy” and “keep WhatsApp the way it was designed to be: a private messaging app.”

TRY, TRY AGAIN. This is WhatsApps’ third attempt in the last few weeks to address the spread of fake news in India. First, the company added a new label to the app to indicate that a message is a forward (and not original content from the sender). Then, they published full-page ads in Indian newspapers to educate the public on the best way to spot fake news.

Neither of those efforts has appeared to work, and it’s hard to believe the latest move will have the intended impact either. Each WhatsApp chat can include up to 256 people. That means a message forwarded to five chats (per the new limit) could still reach 1,280 people. And if those 1,280 people then forward the message to five chats, it’s not hard to see how fake news could still spread like wildfire across the nation.

READ MORE: WhatsApp Launches New Controls After Widespread App-Fueled Mob Violence in India [The Washington Post]

More on fake news: Massive Study of Fake News May Reveal Why It Spreads so Easily

The post WhatsApp Updates Controls in India in an Effort to Thwart Mob Violence appeared first on Futurism.

Read the original post:

WhatsApp Updates Controls in India in an Effort to Thwart Mob Violence

U.S. Department of Defense Established A Center To Better Integrate AI

The U.S. military's AI center will help the nation's armed forces develop and implement the latest in artificial intelligence

ALL EYES ON AI. The U.S. Department of Defense (DoD) is going all-in on AI. The department, which oversees everything pertaining to the U.S.’s national security and armed forces, has been tossing around the idea of establishing a center focused on artificial intelligence (AI) since October 2016. On June 27, the idea became a reality when Deputy Defense Secretary Patrick Shanahan issued a memo officially establishing the Joint Artificial Intelligence Center (JAIC).

The JAIC will serve as the military’s AI center, housing the DoD’s 600 or so AI projects. According to a request the DoD submitted to Congress in June, the center will cost an estimated $1.7 billion over the next six years.

“Deputy Secretary of Defense Patrick M. Shanahan directed the DoD Chief Information Officer to standup the Joint Artificial Intelligence Center (JAIC) in order to enable teams across DOD to swiftly deliver new AI-enabled capabilities and effectively experiment with new operating concepts in support of DOD’s military missions and business functions,” Department of Defense spokeswoman Heather Babb told Futurism.

AT THE JAIC. In his memo, Shanahan notes that advances in AI will likely change the nature of warfare and that the military needs a new approach to AI that will allow it to rapidly integrate any advances into its operations and “way of fighting.” He believes the military’s AI center could help in those efforts by focusing on four areas of need:

  • Helping the military execute its National Mission Initiatives (NMIs). These are large-scale AI projects designed to address groups of urgent, related challenges.
  • Creating a DoD-wide foundation for the execution of AI. This would mean finding a way to make any AI-related tools, data, technologies, experts, and processes available to the entire DoD quickly and efficiently.
  • Improving collaboration on AI projects both within the DoD and with outside parties, such as U.S. allies, private companies, and academics.
  • Working with the Office of the Secretary of Defense (OSD) to determine how to govern and standardize AI development and delivery.

CROSSING THE LINE. Last week, many of the biggest names in AI research from the private sector and academia took a stand against autonomous weapons, machines that use AI to decide whether or not to attempt to kill a person. Signatories of the pledge vowed to never work on any such projects; one even called autonomous weapons “as disgusting and destabilizing as bioweapons.”

By establishing an AI center, the U.S. government makes its stance clear: Not only does it see AI as an inevitable part of the future of war, it wants to be the best at implementing it. As Shanahan wrote in an email to DoD employees, “Plenty of people talk about the threat from AI; we want to be the threat.”

READ MORE: Pentagon’s Joint AI Center Is ‘Established,’ but There’s Much More to Figure Out [FedScoop]

More on autonomous weapons: Top AI Experts Vow They Won’t Help Create Lethal Autonomous Weapons

Editor’s note 7/23/18 at 3:15 PM: This piece was updated to include statements from Deputy Defense Secretary Patrick Shanahan and DoD spokesperson Heather Babb.

The post U.S. Department of Defense Established A Center To Better Integrate AI appeared first on Futurism.

Follow this link:

U.S. Department of Defense Established A Center To Better Integrate AI

3 Reasons Why We Might Return to The Moon

we may see manned missions to the moon. Science, politics, and celestial cash grabs are at the forefront of why people want to go back.

Friday marks the 49th anniversary of the first time any human set foot on solid, extraterrestrial ground. The details are probably familiar: on July 20, 1969, Neil Armstrong and Buzz Aldrin became the first people to walk on the Moon. It’s a rare privilege, even now: only ten other people have landed on the Moon and gone out for a stroll.

Just over three years later, humans walked on the Moon for the last time. Changing political and economic priorities meant NASA would no longer focus on sending people to the Moon. After all, we had already planted a flag, confirmed that the Moon wasn’t made of cheese, and played some golf. What else is left?

Well, it just so turns out that we might be heading back out there — and soon. President Trump has insisted on resuming manned Moon missions, despite the fact that it doesn’t match the public or scientific community’s desires for a space program (no one is quite sure where his determination stems from, but it doesn’t seem to have much more substance than a whim).

But there are some other, real reasons that we might want to send someone to the Moon. There’s science to be done, and money to be made. Let’s dig a little deeper and see what might be bringing us back to our lunar neighbor.

1) Trump really wants it to happen.

Last December, President Trump signed a directive indicating that NASA would prioritize human exploration to the Moon and beyond. Just imagine: a human setting foot on the Moon! Accomplishing such an impossible feat would show the rest of the world that America is capable of great things, which would really assert our dominance on the international stage!

So, assuming that President Trump knows we won the space race 43 years ago (he knows, right? right?) there might be other reasons why Trump wants more people to go visit. Maybe it’s a display of national achievement, maybe it’s to develop economic or military advantages. Either way, the White House is pushing hard for that giant leap.

2) Cash money.

A rare isotope called helium-3 could help us produce clean and safe nuclear energy without giving off any hazardous or radioactive waste. And it just so happens that the Moon has loads of the stuff (so does Jupiter, but that’s a bit harder to reach).

While a helium nuclear fusion reactor does not yet exist, many expect that helium-3 could be the missing piece — and whoever secures the supply would unlock riches to rival Scrooge McDuck.

Two years ago, the federal government gave a private company its blessing to land on the Moon for the first time. Moon Express, which also plans to dump human ashes on the Moon (read: litter) for customers who want an unconventional cremation, has the ultimate goal of establishing a lunar mining colony. According to the company’s website, Expedition “Harvest Moon” plans to have a permanent research station up and running by 2021. At that point, it will begin extracting samples and raw materials to send back to Earth.

This could lead to more and (maybe) better research into the moon’s history and makeup, especially since our supply of samples from the Apollo missions is so limited. But helium-3 is what Moon Express is really after. And they’re not the only ones  the Chinese government also has its eyes set on the Moon’s helium-3 supply.

In addition to opening space up to private mining operations, Trump has reached out to NASA in hopes that the agency’s technology could be used to launch mining rigs to the Moon and to asteroids.

But there’s a lot that needs to happen before the spacefaring equivalents of coal barons start selling space rocks. For instance, we need to figure out how to approach and land on an asteroid, and to set up at least semi-permanent bases and mining operations. But still, some companies some companies are forging ahead.

3) Science! slash, practice for Mars.

The government, along with multiple space-interested billionaires, have some well-publicized plans to colonize Mars. Their reasons range from: furthering scientific research, to exploring the cosmos for funsies, to saving humanity from, uh, something.

The Moon could play a vital role in those plans — as practice off-world destination, and as a celestial truck stop along the way.

In February, Commerce Secretary Wilbur Ross said that setting up a colony on the Moon will be essential for future space exploration. Especially, he mentioned, so that it can serve as a refueling station. His logic seems to be based on the fact that the Moon exerts less gravitational force than the Earth, so landing and relaunching a refueled rocket would let that rocket explore farther into space.

Some have also proposed using a Moon base as practice for a Martian settlement, since they would be much closer to Earth — Moon-dwellers would only be three days from Earth, while human Martians would be eight months from home.

NASA’s Gateway mission, as Time reported, could give rise to lunar settlements within the next ten years. Gateway would function as a space station in orbit around the Moon, but would be capable of traveling to and from the surface. The expected Gateway timeline is controversial even within NASA, however, as some feel that its far too optimistic about when we might actually see results.

There are still too many unknowns and hazards for people in space settlements for such a program to succeed today. Even trying to simulate a Mars colony on Earth led to several unforeseen mental strains and complications.

But either way, ongoing exploration and research missions continue to radically change our understanding of the Moon.

“Ten years ago we would have said that the Moon was complete dry,” Ryan Zeigler, NASA’s curator of lunar samples from the Apollo missions, told Futurism. “Over the past ten years, new instruments and new scientists have shown this to not be the case, and that has had profound effects on the models that predict how the Earth-Moon system has formed,” he added.

Of course, there are financial reasons at the forefront the recent push for lunar exploration. But even if its just a pleasant side effect, we may get valuable new science out of these missions, too.

Read more about complications with NASA’s lunar plans: NASA Just Canceled Its Only Moon Rover Project. That’s Bad News for Trump’s Lunar Plans.

The post 3 Reasons Why We Might Return to The Moon appeared first on Futurism.

Follow this link:

3 Reasons Why We Might Return to The Moon

Malta Plans to Create the World’s First Decentralized Stock Exchange

Malta has announced plans to created the world's first decentralized stock exchange

BLOCKCHAIN ISLAND. The tiny European nation of Malta is truly living up to its nickname of “Blockchain Island.” On Thursday, MSX (the innovation arm of the Malta Stock Exchange) announced a new partnership with blockchain-based equity fundraising platform Neufund and Binance, one of the world’s biggest cryptocurrency exchanges). Their goal: create the first global stock exchange that’s both regulated and decentralized.

THE NEW SCHOOL. There are a lot of complex concepts at play here, so let’s break them down.

First, tokens. In the realm of cryptocurrency, a token is a digital asset on a blockchain, a ledger that records every time two parties trade an asset. A token can represent practically anything, from money to a vote in an election. Today, many blockchain startups raise funds by selling “equity tokens” through initial coin offerings (ICO).

When a person buys one of these equity tokens, they are essentially buying a percentage ownership of the startup. They can later use an online platform known as a cryptocurrency exchange to sell the tokens or buy more from other investors at any time, quickly and fairly cheaply.

Though various governments are starting to look into regulating tokens, the cryptocurrency realm is still largely unregulated, making it an enticing target for scammers.

THE OLD SCHOOL. Equity securities, also known as stocks, are similar to equity tokens. A person who buys stock in a company owns a percentage of that company. However, securities are not traded via 24-hour online exchanges — they’re bought and sold via stock exchanges, which are only open during certain hours. Navigating them often requires the help of middleman, such as a broker or lawyer, which could be costly.

A government agency typically regulates a nation’s securities and stock exchanges — in the United States, that agency is the Securities and Exchange Commission (SEC). This regulation can protect investors from scams and ensure companies don’t try to swindle them.

TOKENIZED SECURITIES. Tokenized securities are a melding of these two worlds. They’re securities, and when they’re traded, a blockchain records the transaction. This combines the fast, cheap transactions associated with tokens with the protective oversight of securities.

Right now, there’s not a government-regulated, global platform hosting the trading of tokenized securities, and that’s the void the Malta team plans to fill with their decentralized stock exchange.

“We are thrilled to announce the partnerships with Malta Stock Exchange and Binance, that will ensure high liquidity to equity tokens issued on Neufund,” Zoe Adamovicz, CEO and Co-founder at Neufund, said in a press release. “It is the first time in history that security tokens can be offered and traded in a legally binding way.”

Experts estimate that the value of the world’s equity tokens could soar as high as $1 trillion by 2020. Malta’s project is still in the pilot stages, but if all the pieces for its decentralized stock exchange fall into place, the tiny European island could find itself at the center of that incredibly fruitful market.

READ MORE: Malta Paves the Way for a Decentralized Stock Exchange [TechCrunch]

More on tokens: Tokens Will Become the Foundation of a New Digital Economy

The post Malta Plans to Create the World’s First Decentralized Stock Exchange appeared first on Futurism.

Originally posted here:

Malta Plans to Create the World’s First Decentralized Stock Exchange

Federal Agencies Propose Major Changes to Endangered Species Act

A PROPOSAL. Species on the brink of extinction in the U.S. could soon have their government protections stripped from them.

On Thursday, the U.S. Fish and Wildlife Service (FWS) (the government agency that manages the U.S.’s fish, wildlife, and natural habitats) and National Oceanic Atmospheric Administration (NOAA) (a scientific government agency that studies the world’s oceans, major waterways, and atmosphere) proposed revisions to the Endangered Species Act, a law designed to empower the federal government to protect threatened or endangered species.

The agencies propose making changes to three sections of the ESA — Section 4, Section 4D, and Section 7 — and the full explanations of the proposed changes are available to the public via a trio of Federal Register notices. If you don’t have time to sift through all 118 pages of Register notices, though, here’s a breakdown of the changes that could have the biggest impact.

THERE’S ALWAYS MONEY IN THE PROTECTED LAND. One potentially major change centers on removing language designed to ensure regulators make decisions about species/habits solely based on scientific factors, not economic ones.

The agencies propose removing “without reference to possible economic or other impacts of such determination” from the ESA because, they write, “there may be circumstances where referencing economic, or other impacts may be informative to the public.” As pointed out by The New York Times, this could make it easier for companies to obtain approval for potentially damaging construction projects, such as roads or oil pipelines.

Another major change centers on “threatened” species. These are currently defined as “any species which is likely to become endangered within the foreseeable future.”  But the proposal suggests giving the FWS the ability to define “foreseeable future” on a species-by-species basis. Today, threatened and endangered species receive more or less the same protections, but under the proposed changes, species newly classified as threatened wouldn’t automatically receive those protections.

PRAISE AND BACKLASH. The proposed changes quickly elicited an impassioned response from the public.

“For too long, the ESA has been used as a means of controlling lands in the West rather than actually focusing on species recovery,” Kathleen Sgamma, president of Western Energy Alliance, which lobbies on behalf of the oil and gas industry, told The New York Times. She added that she was hopeful the changes would “[help lift restrictions on] responsible economic activities on private and public lands.”

Environmental activists, however, see the changes as undercutting the purpose of the ESA: to protect endangered species.

“These proposals would slam a wrecking ball into the most crucial protections for our most endangered wildlife. If these regulations had been in place in the 1970s, the bald eagle and the gray whale would be extinct today,” Brett Hartl, government affairs director for the Center for Biological Diversity, a nonprofit focused on protecting endangered species, said in a statement.

“Allowing the federal government to turn a blind eye to climate change will be a death sentence for polar bears and hundreds of other animals and plants,” he added. “This proposal turns the extinction-prevention tool of the Endangered Species Act into a rubber stamp for powerful corporate interests

Members of the public have 60 days to share their thoughts on the proposed changes with the government, though it’s hard to say what impact that might have. Ultimately, if environmental advocates are right, the U.S. could soon see a dramatic increase in the number of animals that move from endangered to outright extinct.

READ MORE: Law That Saved the Bald Eagle Could Be Vastly Reworked [The New York Times]

More on the Endangered Species Act: The War for Endangered Species Has Begun

The post Federal Agencies Propose Major Changes to Endangered Species Act appeared first on Futurism.

Read the original post:

Federal Agencies Propose Major Changes to Endangered Species Act

Leaders Who Pledged Not To Build Autonomous Killing Machines Are Ignoring The Real Problem

That major pledge against building autonomous killing machines is a great start, but it has some glaring holes in what it covers.

Last week, many of the major players in the artificial intelligence world signed a pledge to never build or endorse artificial intelligence systems that could run an autonomous weapon. The signatories included: Google DeepMind’s cofounders, OpenAI founder Elon Musk, and a whole slew of prominent artificial intelligence researchers and industry leaders.

The pledge, put forth by AI researcher Max Tegmark’s Future of Life Institute, argues that any system that can target and kill people without human oversight is inherently immoral, and condemns any future AI arms race that may occur. By signing the pledge, these AI bigwigs join the governments of 26 nations including China, Pakistan, and the State of Palestine, all of which also condemned and banned lethal autonomous weapons.

So if you want to build a fighter drone that doesn’t need any human oversight before killing, you’ll have to do it somewhere other than these nations, and with partners other than those who signed the agreement.

Yes, banning killer robots is likely a good move for our collective future — children in nations ravaged by drone warfare have already started to fear the sky — but there’s a pretty glaring hole in what this pledge actually does.

Namely: there are more subtle and insidious ways to leverage AI against a nation’s enemies than strapping a machine gun to a robot’s arm, Terminator-style.

The pledge totally ignores the fact that cybersecurity means more than protecting yourself from an army of killer robots. As Mariarosaria Taddeo of the Oxford Internet Institute told Business Insider, AI could be used in international conflicts in more subtle but impactful ways. Artificial intelligence algorithms could prove effective at hacking or hijacking networks that are crucial for national security.

Already, as Taddeo mentioned, the UK National Health Service was held hostage by the North Korea-linked WannaCry virus and a Russian cyberattack took control of European and North American power grids. With sophisticated, autonomous algorithms at the helm, these cyberattacks could become more frequent and more devastating. And yet, because these autonomous weapons don’t go “pew pew pew,” the recent AI pledge doesn’t mention (or pertain to) them at all.

Of course, that doesn’t make the pledge meaningless. Not by a long shot. But just as important as the high-profile people and companies that agreed to not make autonomous killing machines are the names missing from the agreement. Perhaps most notably is the U.S. Department of Defense, which recently established its Joint Artificial Intelligence Center (JAIC) for the express purpose of getting ahead for any forthcoming AI arms races.

“Deputy Secretary of Defense Patrick M. Shanahan directed the DOD Chief Information Officer to standup the Joint Artificial Intelligence Center (JAIC) in order to enable teams across DOD to swiftly deliver new AI-enabled capabilities and effectively experiment with new operating concepts in support of DOD’s military missions and business functions,” Heather Babb, Department of Defense spokesperson, told Futurism.

“Plenty of people talk about the treat from AI; we want to be the threat,” Deputy Defense Secretary Patrick Shanahan wrote in a recent email to DoD employees, a DoD spokesperson confirmed to Futurism.

The JAIC sees artificial intelligence as a crucial tool for the future of warfare. Given the U.S.’s hawkish stance on algorithmic warfare, it’s unclear if a well-intentioned, incomplete pledge can possibly hold up.

More on pledges against militarized AI: Google: JK, We’re Going To Keep Working With The Military After All

The post Leaders Who Pledged Not To Build Autonomous Killing Machines Are Ignoring The Real Problem appeared first on Futurism.

Read the original post:

Leaders Who Pledged Not To Build Autonomous Killing Machines Are Ignoring The Real Problem