NewsLife Interview: Dr. Ruben Villareal – on ‘biotechnology answer to safer


NewsLife Interview: Dr. Ruben Villareal - on #39;biotechnology answer to safer better crops #39;
NewsLife Interview: Dr. Ruben Villareal, Academian, National Academy of Science Technology - on #39;biotechnology answer to safer better crops #39; - [June 28, ...

By: PTV PH

Continue reading here:
NewsLife Interview: Dr. Ruben Villareal - on 'biotechnology answer to safer

Leadership Stage (Education to Dream Employment) System Profile – Biotechnology Professional – Video


Leadership Stage (Education to Dream Employment) System Profile - Biotechnology Professional
Leadership Stage (Education to Dream Employment) System Profile - Biotechnology Professional Service Provider:- Kalaanantarupah Consultants - World Leaders i...

By: Thiyagarajakumar Ramaswamy

Read more here:
Leadership Stage (Education to Dream Employment) System Profile - Biotechnology Professional - Video

How effective are traditional methods of compositional analysis in providing an accurate material balance for a range of softwood derived residues?

Background:
Forest residues represent an abundant and sustainable source of biomass which could be used as a biorefinery feedstock. Due to the heterogeneity of forest residues, such as hog fuel and bark, one of the expected challenges is to obtain an accurate material balance of these feedstocks. Current compositional analytical methods have been standardised for more homogenous feedstocks such as white wood and agricultural residues. The described work assessed the accuracy of existing and modified methods on a variety of forest residues both before and after a typical pretreatment process.
Results:
When "traditional" pulp and paper methods were used, the total amount of material that could be quantified in each of the six softwood-derived residues ranged from 88% to 96%. It was apparent that the extractives present in the substrate were most influential in limiting the accuracy of a more representative material balance. This was particularly evident when trying to determine the lignin content, due to the incomplete removal of the extractives, even after a two stage water-ethanol extraction. Residual extractives likely precipitated with the acid insoluble lignin during analysis, contributing to an overestimation of the lignin content. Despite the minor dissolution of hemicellulosic sugars, extraction with mild alkali removed most of the extractives from the bark and improved the raw material mass closure to 95% in comparison to the 88% value obtained after water-ethanol extraction. After pretreatment, the extent of extractive removal and their reaction/precipitation with lignin was heavily dependent on the pretreatment conditions used. The selective removal of extractives and their quantification after a pretreatment proved to be even more challenging. Regardless of the amount of extractives that were originally present, the analytical methods could be refined to provide reproducible quantification of the carbohydrates present in both the starting material and after pretreatment.
Conclusion:
Despite the challenges resulting from the heterogeneity of the initial biomass substrates a reasonable summative mass closure could be obtained before and after steam pretreatment. However, method revision and optimisation was required, particularly the effective removal of extractives, to ensure that representative and reproducible values for the major lignin and carbohydrate components.Source:
http://www.biotechnologyforbiofuels.com/content/6/1/90

Functional characterisation of the non-essential protein kinases and phosphatases regulating Aspergillus nidulans hydrolytic enzyme production

Background:
Despite recent advances in the understanding of lignocellulolytic enzyme regulation, less is known about how different carbon sources are sensed and the signaling cascades that result in the adaptation of cellular metabolism and hydrolase secretion. Therefore, the role played by non-essential protein kinases (NPK) and phosphatases (NPP) in the sensing of carbon and/or energetic status was investigated in the model filamentous fungus Aspergillus nidulans.
Results:
Eleven NPKs and seven NPPs were identified as being involved in cellulase, and in some cases also hemicellulase, production in A. nidulans. The regulation of CreA-mediated carbon catabolite repression (CCR) in the parental strain was determined by fluorescence microscopy, utilising a CreA::GFP fusion protein. The sensing of phosphorylated glucose, via the RAS signalling pathways induced CreA repression, while carbon starvation resulted in derepression. Growth on cellulose represented carbon starvation and derepressing conditions. The involvement of the identified NPKs in the regulation of cellulose-induced responses and CreA derepression was assessed by genome-wide transcriptomics (GEO accession 47810) and the evaluation of CreA::GFP localisation, or a restoration of endocellulase activity via the introduction of [increment]CreA, in the NPK-deficient backgrounds. The absence of either the schA or snfA kinase dramatically reduced cellulose-induced transcriptional responses, including the expression of hydrolytic enzymes and transporters. The mechanism by which these two NPKs controlled gene transcription was identified, as the NPK-deficient mutants were not able to unlock CreA-mediated carbon catabolite repression under derepressing conditions, such as carbon starvation or growth on cellulose.
Conclusions:
Collectively, this study identified multiple kinases and phosphatases involved in the sensing of carbon and/or energetic status, while demonstrating the overlapping, synergistic roles of schA and snfA in the regulation of CreA derepression and hydrolytic enzyme production in A. nidulans. The importance of a carbon starvation-induced signal for CreA derepression, permitting transcriptional activator binding, appeared paramount for hydrolase secretion.Source:
http://www.biotechnologyforbiofuels.com/content/6/1/91

Biotechnology: Feeding the World, or a Brave New World of Agriculture? – Video


Biotechnology: Feeding the World, or a Brave New World of Agriculture?
Featuring Jon Entine, Founding Director, Genetic Literacy Project; Kevin M. Folta, Interim Chair, Horticultural Sciences Department, University of Florida; a...

By: Biology Fortified, Inc.

Originally posted here:
Biotechnology: Feeding the World, or a Brave New World of Agriculture? - Video

Biotechnology: An Overview – Good Herald

Application of technologies on biological systems, dead organisms and their derivatives and food and medicine can be broadly defined as biotechnology. It never had a particular definition since its applications and implementations on various other areas of science are enormous. From manipulating crops and plants to increase the yield to transfer of genes from one organism to the other biotechnology encompasses almost all the living and non-living entities on earth. With the drastic improvement in various machineries and equipments used in the processing of biological materials and the examining of microscopic organisms biotechnology has come a far way since the traditional days of fermentation like techniques, which also is a part of biotechnology.

In the earlier times, biotechnologys application was limited to agriculture and in the production of fermented food products but with the discovery of newer and much complicated data comprising of the most smallest of structures that are measured in microns biotechnology has been found fruitful in the production of many useful products that improves the quality of life of mankind. The categories of science like genetic engineering, animal cell culture, plant cell culture, microbiology, molecular biology, cytogenetics, cryopreservation, bioprocessing, biochemistry, cell biology, embryology, immunology and bioinformatics all these come under biotechnology.

Biotechnology has wide prospects when it comes to environmental science as well. It is used to recycle and retreat the wastes that are left behind at contaminated sites by various industries. This process is termed as bioremediation. Many experiments concerning DNA and RNA and other molecular structures in the human body also comprise of a wide area of practical biotechnology. Mapping of the genes has risen a lot of interest in this decade and with the completion of the Human Genome Project newer prospects for biotechnology has paved way.

Biotechnology has found promising applications in pharmaceutical manufacturing as well. From the production of antibiotics to the purification and separation processes for biomolecules. Biotechnology has its presence felt almost everywhere. Biotechnology plays a massive role in the field of medicine as well. As more and more genetic diseases are brought into picture it is through biotechnology that we try and find ways and means of manipulating the genes and discovering the cure for the disease.

Also with the depleting natural resources for fuel and the environmental effects caused by the use of the conventional fuels can be curbed to a certain extent with the proper manifestation of biotechnology in the production of biorenewable fuel from crops. Biotechnology can speed the production of ethanol and methane for natural gas from these crops.

Overall, biotechnology improves the quality of life and brings in new horizons of modern techniques in various aspects of human life.

The author of this article has great knowledge on Biotechnology. He has written many articles on Chromatography with the great knowledge. He has a great deal of knowledge in Pharmaceutical information as well.

Photo By qimono from Pixabay

Go here to read the rest:
Biotechnology: An Overview - Good Herald

มอบให้ศิษย์ Envi Biotechnology PSU 17-06-2013 – Video


#3617; #3629; #3610; #3651; #3627; #3657; #3624; #3636; #3625; #3618; #3660; Envi Biotechnology PSU 17-06-2013

By: mmmm70251

Originally posted here:
มอบให้ศิษย์ Envi Biotechnology PSU 17-06-2013 - Video

Mary-Dell Chilton, Ph.D., Biotechnology Pioneer, World Food Prize Laureate – Video


Mary-Dell Chilton, Ph.D., Biotechnology Pioneer, World Food Prize Laureate
The World Food Prize Foundation announced that Mary-Dell Chilton, the founder and Distinguished Science Fellow of Syngenta Biotechnology, Inc., along with tw...

By: syngentabiotech

Read the original post:
Mary-Dell Chilton, Ph.D., Biotechnology Pioneer, World Food Prize Laureate - Video

Development of a D-xylose fermenting and inhibitor tolerant industrial Saccharomyces cerevisiae strain with high performance in lignocellulose hydrolysates using metabolic and evolutionary engineering

Background:
The production of bioethanol from lignocellulose hydrolysates requires a robust, D-xylose-fermenting and inhibitor-tolerant microorganism as catalyst. The purpose of the present work was to develop such a strain from a prime industrial yeast strain, Ethanol Red, used for bioethanol production.
Results:
An expression cassette containing 13 genes including Clostridium phytofermentans XylA, encoding D-xylose isomerase (XI), and enzymes of the pentose phosphate pathway was inserted in two copies in the genome of Ethanol Red. Subsequent EMS mutagenesis, genome shuffling and selection in D-xylose-enriched lignocellulose hydrolysate, followed by multiple rounds of evolutionary engineering in complex medium with D-xylose, gradually established efficient D-xylose fermentation. The best-performing strain, GS1.11-26, showed a maximum specific D-xylose consumption rate of 1.1 g/g DW/h in synthetic medium, with complete attenuation of 35 g/L D-xylose in about 17 h. In separate hydrolysis and fermentation of lignocellulose hydrolysates of Arundo donax (giant reed), spruce and a wheat straw/hay mixture, the maximum specific D-xylose consumption rate was 0.36, 0.23 and 1.1 g/g DW inoculum/h, and the final ethanol titer was 4.2, 3.9 and 5.8% (v/v), respectively. In simultaneous saccharification and fermentation of Arundo hydrolysate, GS1.11-26 produced 32% more ethanol than the parent strain Ethanol Red, due to efficient D-xylose utilization. The high D-xylose fermentation capacity was stable after extended growth in glucose. Cell extracts of strain GS1.11-26 displayed 17-fold higher XI activity compared to the parent strain, but overexpression of XI alone was not enough to establish D-xylose fermentation. The high D-xylose consumption rate was due to synergistic interaction between the high XI activity and one or more mutations in the genome. The GS1.11-26 had a partial respiratory defect causing a reduced aerobic growth rate.
Conclusions:
An industrial yeast strain for bioethanol production with lignocellulose hydrolysates has been developed in the genetic background of a strain widely used for commercial bioethanol production. The strain uses glucose and D-xylose with high consumption rates and partial cofermentation in various lignocellulose hydrolysates with very high ethanol yield. The GS1.11-26 strain shows highly promising potential for further development of an all-round robust yeast strain for efficient fermentation of various lignocellulose hydrolysates.Source:
http://www.biotechnologyforbiofuels.com/content/6/1/89