ASSOCIATE – BIOCHEMISTRY at Greenblum & Bernstein, P.L.C …

Greenblum & Bernstein, P.L.C., an internationally well-known and cutting-edge Northern Virginia-based IP boutique with a wide range of domestic and international clientele is looking for a motivated patent prosecution associate in the biotechnology field. Responsibilities for this position primarily include preparing and prosecuting patent applications, conducting validity, infringement and freedom to operate studies, as well as client counseling and participation in litigation. The ideal candidate has a doctorate degree in biotechnology, and excellent academic credentials and communication skills. This candidate preferably has at least two years of experience in patent prosecution (preferably including at least two years of PTO experience). Salary is commensurate with experience and our compensation package is competitive with other top-tier intellectual property firms in the D.C. area.

As part of our teamoriented approach, the ideal candidate will have the opportunity to work closely with attorneys who are former high ranking PTO employees in a collegial atmosphere. This candidate will also have the opportunity to work on matters for large corporations, mid-size enterprises, universities, as well as smaller startups.

Doctorate degree in biotechnology or closely related discipline. Excellent academic credentials.Two plus years of prior prosecution experience. PTO experience preferred.

Link:
ASSOCIATE - BIOCHEMISTRY at Greenblum & Bernstein, P.L.C ...

Biochemistry | Chemistry

Despite previous setbacks, Rebecca Plimpton lands publication in major science journal.

Dr. Simmons steps down after 17 years as the director of the center. Dr. Steven L. Castle, also from the Department of Chemistry and Biochemistry, will be the center's new associate director.

Komal Kedia, who represented the College of Physical and Mathematica Sciences in BYU's 2014 3MT competition, was recently featured on BYU Radio for her work with Dr. Graves.

Scientists working in Professor Josh Andersen's cancer research lab have made significant discoveries which may lower the amount of chemotherapy needed to treat cancer.

Biochemistry is the chemistry of living systems, or the study of what living systems are composed of and how they function at the molecular level. As a discipline, Biochemistry lies at the nexus of Chemistry and Biology, and seeks to understand the physicochemical basis for the traits of life, including metabolism, heredity, and all aspects of physiology and pathophysiology. The science of Biochemistry broadly includes molecular biology, as well as bioorganic, bioinorganic, and biophysical chemistry; and it relates to all biomedical fields including immunology, neurobiology, cancer biology, pharmacology, and developmental biology.

For more information about research in the Andersen Lab and living in Provo, click here: The Andersen Lab, Living in Provo. The health of an organism is linked to the tightly regulated balance between cell proliferation and cell death. Any aberrant tilt in this balance can lead to some of the most devastating human diseases. For example, excessive proliferation unbalanced ...

Read more

Additional research areas: HIV/AIDS, Immunology and Molecular Biology A major concern in the treatment of HIV-infected subjects is the establishment of "reservoirs" or sites where HIV escapes intervention by drugs or the immune system. These sanctuary sites store infectious virus that serves to perpetuate infection. The primary cellular reservoirs in humans consist of latently infected CD4 T lymphocytes, monocytes/macrophages, and ...

Read more

Dr. Christensens lab works in the fields of biochemistry and bioanalytical chemistry. His lab develops methods that apply optical spectroscopy, time-lapse microscopy, and other current analytical and biophysical techniques to questions in biochemistry, biophysics, cell and microbiology. A current area of research in my lab grew out of our discovery several years ago that the anthrax toxin receptors capillary morphogenesis ...

Read more

For more information about research in the Graves Lab, click here. Serum proteomics to identify biomarkers of human disease. Over the past few years, I (in conjunction with collaborators at the University of Utah Medical School) have explored quantitative differences in serum proteins, peptides, and lipids in pregnant women who went on to experience a preterm birth in their pregnancy ...

Read more

My research explores mechanisms used by living cells to control the synthesis and degradation of protein. Specifically, we use mass spectrometry and stable isotopes to label newly synthesized molecules with a time dependent tag. This allows us to measure both in vivo concentrations, and replacement rate. With a mass spectrometer, the time-dependent stable isotope enrichment can be measured in any ...

Read more

My laboratory's research focuses on signal transduction in the cancer cell. In particular, we are interested in a group of genes we have cloned that are activated during cell division. Our research determined that one of these genes encodes a previously undescribed cyclooxygenase, a critical enzyme involved in the synthesis of prostaglandins and thromboxane. These fatty-acid derived molecules are hormone-like ...

Read more

BIOINORGANIC CHEMISTRY Biological systems require trace amounts of metal ions to sustain life. Metal ions are required at the active sites of many enzymes and are essential to catalyze some of the most energetically demanding reactions in biology. Unfortunately, these highly reactive metal ions also catalyze deleterious reactions for biological systems if the metal ion is permitted to be free ...

Read more

Mechanisms of Assembly of Signaling Complexes Most cellular functions are performed by proteins associated together into complexes. In fact, many proteins cannot even exist in the cell without their binding partners. These protein complexes often require the help of other proteins, called chaperones, to bring the complexes together. This is certainly the case for protein complexes involved in cell signaling ...

Read more

Originally posted here:
Biochemistry | Chemistry

Fermentation – Wikipedia, the free encyclopedia

Fermentation is a metabolic process that converts sugar to acids, gases or alcohol. It occurs in yeast and bacteria, but also in oxygen-starved muscle cells, as in the case of lactic acid fermentation. Fermentation is also used more broadly to refer to the bulk growth of microorganisms on a growth medium, often with the goal of producing a specific chemical product. French microbiologist Louis Pasteur is often remembered for his insights into fermentation and its microbial causes. The science of fermentation is known as zymology.

Fermentation takes place in the lack of oxygen (when the electron transport chain is unusable) and becomes the cells primary means of ATP (energy) production.[1] It turns NADH and pyruvate produced in the glycolysis step into NAD+ and various small molecules depending on the type of fermentation (see examples below). In the presence of O2, NADH and pyruvate are used to generate ATP in respiration. This is called oxidative phosphorylation, and it generates much more ATP than glycolysis alone. For that reason, cells generally benefit from avoiding fermentation when oxygen is available, the exception being obligate anaerobes which cannot tolerate oxygen.

The first step, glycolysis, is common to all fermentation pathways:

Pyruvate is CH3COCOO. Pi is phosphate. Two ADP molecules and two Pi are converted to two ATP and two water molecules via substrate-level phosphorylation. Two molecules of NAD+ are also reduced to NADH.[2]

In oxidative phosphorylation the energy for ATP formation is derived from an electrochemical proton gradient generated across the inner mitochondrial membrane (or, in the case of bacteria, the plasma membrane) via the electron transport chain. Glycolysis has substrate-level phosphorylation (ATP generated directly at the point of reaction).

Humans have used fermentation to produce food and beverages since the Neolithic age. For example, fermentation is used for preservation in a process that produces lactic acid as found in such sour foods as pickled cucumbers, kimchi and yogurt (see fermentation in food processing), as well as for producing alcoholic beverages such as wine (see fermentation in winemaking) and beer. Fermentation can even occur within the stomachs of animals, such as humans. Auto-brewery syndrome is a rare medical condition where the stomach contains brewers yeast that break down starches into ethanol; which enters the blood stream.[3]

To many people, fermentation simply means the production of alcohol: grains and fruits are fermented to produce beer and wine. If a food soured, one might say it was 'off' or fermented. Here are some definitions of fermentation. They range from informal, general usage to more scientific definitions.[4]

Fermentation does not necessarily have to be carried out in an anaerobic environment. For example, even in the presence of abundant oxygen, yeast cells greatly prefer fermentation to aerobic respiration, as long as sugars are readily available for consumption (a phenomenon known as the Crabtree effect).[5] The antibiotic activity of hops also inhibits aerobic metabolism in yeast[citation needed].

Fermentation reacts NADH with an endogenous, organic electron acceptor.[1] Usually this is pyruvate formed from the sugar during the glycolysis step. During fermentation, pyruvate is metabolized to various compounds through several processes:

Sugars are the most common substrate of fermentation, and typical examples of fermentation products are ethanol, lactic acid, carbon dioxide, and hydrogen gas (H2). However, more exotic compounds can be produced by fermentation, such as butyric acid and acetone. Yeast carries out fermentation in the production of ethanol in beers, wines, and other alcoholic drinks, along with the production of large quantities of carbon dioxide. Fermentation occurs in mammalian muscle during periods of intense exercise where oxygen supply becomes limited, resulting in the creation of lactic acid.[6]

Read the rest here:
Fermentation - Wikipedia, the free encyclopedia

Georgia Tech Chemistry & Biochemistry

Nanoparticles (NPs), in particular noble metal nanoparticles, have been incorporated into many therapeutic and biodiagnostic applications. While these particles have many advantageous physical and optical properties, little is known about their intrinsic intracellular effects in biological environments. Here, we report the possible cell death mechanisms triggered in human oral squamous cell carcinoma (HSC-3) cells after exposure to extracellular, cytoplasm, and nuclear localized AuNPs and AgNPs. NP uptake and localization, cell viability, ATP levels, modes of cell death, ROS generation, mitochondrial depolarization, and the levels and/or translocation of caspase-dependent and caspase-independent proteins were assessed under control and localized metal nanoparticle exposure. Exposure to AuNPs resulted the adoption of a quiescent cellular state, as AuNPs caused a decrease in intracellular ATP, but no change in viability or cell death populations. However, AgNP exposure significantly reduced HSC-3 cell viability and increased apoptotic populations, especially when localized at the cytoplasm and nucleus. Increased cell death populations were linked to an increase in intracellular ROS generation. Western blot analysis indicated cytoplasm localized AgNPs and nuclear localized AgNPs utilized a caspase-independent apoptotic pathway that involved the nuclear translocation of AIF and p38 MAPK proteins. These results demonstrate that the degree of cytotoxicity increases as AgNPs move from extracellular localization to nuclear localization, whereas changing AuNP localization does not trigger any significant cytotoxicity.

See the article here:
Georgia Tech Chemistry & Biochemistry

The Discovery of the Structure of DNA: Double Helix, Biochemistry (2000) – Video


The Discovery of the Structure of DNA: Double Helix, Biochemistry (2000)
The Double Helix : A Personal Account of the Discovery of the Structure of DNA is an autobiographical account of the discovery of the double helix structure of DNA written by James D. Watson...

By: The Film Archives

See the article here:
The Discovery of the Structure of DNA: Double Helix, Biochemistry (2000) - Video

Biochemical ‘fossil’ shows how life may have emerged without … – Science Daily

One major mystery about life's origin is how phosphate became an essential building block of genetic and metabolic machinery in cells, given its poor accessibility on early Earth. In a study published on March 9 in the journal Cell, researchers used systems biology approaches to tackle this long-standing conundrum, providing compelling, data-driven evidence that primitive life forms may not have relied on phosphate at all. Instead, a few simple, abundant molecules could have supported the emergence of a sulfur-based, phosphate-free metabolism, which expanded to form a rich network of biochemical reactions capable of supporting the synthesis of a broad category of key biomolecules.

"The significance of this work is that future efforts to understand life's origin should take into account the concrete possibility that phosphate-based processes, which are essential today, may not have been around when the first life-like processes started emerging," says senior study author Daniel Segr (@dsegre) of Boston University. "An early phosphate-independent metabolism capable of producing several key building blocks of living systems is in principle viable."

Phosphate is essential for all living systems and is present in a large proportion of known biomolecules. A sugar-phosphate backbone forms the structural framework of nucleic acids, including DNA and RNA. Moreover, phosphate is a critical component of adenosine triphosphate (ATP), which transports chemical energy within cells, and a compound called NADH, which has several essential roles in metabolism. But it is unclear how phosphate could have assumed these central roles on primordial Earth, given its scarcity and poor accessibility.

In light of this puzzle, some have proposed that early metabolic pathways did not rely on phosphate. In many of these scenarios, sulfur and iron found on mineral surfaces are thought to have fulfilled major catalytic and energetic functions prior to the appearance of phosphate. One notable origin-of-life scenario suggests that the role of ATP was originally assumed by sulfur-containing compounds called thioesters, which are widely involved in protein, carbohydrate, and lipid metabolism. Despite the availability of iron and sulfur on early Earth, concrete evidence supporting these scenarios has been lacking.

To test the feasibility of the "iron-sulfur world hypothesis" and the "thioester world scenario," Segr and his team used computational systems biology approaches originally developed for large-scale analyses of complex metabolic networks. The researchers used a large database to assemble the complete set of all known biochemical reactions. After exploring this so-called "biosphere-level metabolism," the researchers identified a set of eight phosphate-free compounds thought to have been available in prebiotic environments. They then used an algorithm that simulated the emergence of primitive metabolic networks by compiling all possible reactions that could have taken place in the presence of these eight compounds, which included formate, acetate, hydrogen sulfide, ammonium, carbon dioxide, water, bicarbonate, and nitrogen gas.

This analysis revealed that a few simple prebiotic compounds could support the emergence of a rich, phosphate-independent metabolic network. This core network, consisting of 315 reactions and 260 metabolites, was capable of supporting the biosynthesis of a broad category of key biomolecules such as amino acids and carboxylic acids. Notably, the network was enriched for enzymes containing iron-sulfur clusters, bolstering the idea that modern biochemistry emerged from mineral geochemistry. Moreover, thioesters rather than phosphate could have enabled this core metabolism to overcome energetic bottlenecks and expand under physiologically realistic conditions.

"Before our study, other researchers had proposed a sulfur-based early biochemistry, with hints that phosphate may not have been necessary until later," Segr says. "What was missing until now was data-driven evidence that these early processes, rather than scattered reactions, could have constituted a highly connected and relatively rich primitive metabolic network."

Although this non-experimental evidence does not definitively prove that life started without phosphate, it provides compelling support for the iron-sulfur world hypothesis and the thioester world scenario. At the same time, the study calls into question the "RNA world hypothesis," which proposes that self-replicating RNA molecules were the precursors to all current life on Earth. Instead, the results support the "metabolism-first hypothesis," which posits that a self-sustaining phosphate-free metabolic network predated the emergence of nucleic acids. In other words, nucleic acids could have been an outcome of early evolutionary processes rather than a prerequisite for them.

"Evidence that an early metabolism could have functioned without phosphate indicates that phosphate may have not been an essential ingredient for the onset of cellular life," says first author Joshua Goldford of Boston University. "This proto-metabolic system would have required an energy source and may have emerged either on the Earth's surface, with solar energy as the main driving force, or in the depth of the oceans near hydrothermal vents, where geochemical gradients could have driven the first life-like processes."

In future studies, the researchers will continue to apply systems biology approaches to study the origin of life. "My hope is that these findings will motivate further studies of the landscape of possible historical paths of metabolism, as well as specific experiments for testing the feasibility of a phosphate-free sulfur-based core biochemistry," Segr says. "The idea of analyzing metabolism as an ecosystem-level or even planetary phenomenon, rather than an organism-specific one, may also have implications for our understanding of microbial communities. Furthermore, it will be interesting to revisit the question of how inheritance and evolution could have worked prior to the appearance of biopolymers."

Story Source:

Materials provided by Cell Press. Note: Content may be edited for style and length.

Continue reading here:
Biochemical 'fossil' shows how life may have emerged without ... - Science Daily