Does anyone have creative ways of removing tramp iron from a coal conveyor, other than the traditional overhead magnet and under conveyor metal detector ?
Has there been anything new on the market ?
Does anyone have creative ways of removing tramp iron from a coal conveyor, other than the traditional overhead magnet and under conveyor metal detector ?
Has there been anything new on the market ?
I know my question won't suite everyone.
I just want to ask, as being a Freshman what are the different projects that I should do because my branch is Mechanical engineering?
Every answer would be important for me.
By 1976, that began to change when Jack Eddy, a solar astronomer from Boulder, Colo., examined historical records of sunspots and published a seminal paper that showed some century-long variations in solar activity are connected with major climatic shifts. Eddy helped show that an extended lull in solar activity during the 17th Century --called the Maunder Minimum -- was likely connected to a decades-long cold period on Earth called the "Little Ice Age."
Two years after Eddy published his paper, NASA launched the first in a series of satellite instruments called radiometers, which measure the amount of sunlight striking the top of Earth's atmosphere, or total solar irradiance. Radiometers have provided unparalleled details about how the sun's irradiance has varied in the decades since. Such measurements have helped validate and expand upon Eddy's findings. And they've led to a number of other discoveries—and questions—about the sun.
Without radiometers, scientists would probably still wonder how much energy the sun emits and whether it varies with the sunspot cycle. They wouldn't know of the competition between dark sunspots and bright spots called faculae that drives irradiance variations.
And they’d have little chance of answering a question that continues to perplex solar experts today: Has overall irradiance changed progressively throughout the past three 11-year cycles, or are variations in the sun's irradiance limited to a single cycle?
The answer has important implications for understanding climate change, as some scientists have suggested that trends in solar irradiance account for a significant portion of global warming.
The next space radiometer, slated for launch this November aboard NASA's Glory satellite, should help chip away at the uncertainty that surrounding the sun's role in climate change.
A Variable Sun It's well known today that the sun's irradiance fluctuates constantly in conjunction with sunspots, which become more and less abundant every 11 years due to turbulent magnetic fields that course through the sun's interior and erupt onto its surface.
But as recently as the 1970s, scientists assumed that the sun’s irradiance was unchanging; the amount of energy it expels was even called the "solar constant."
It was data from radiometers aboard Nimbus 7, launched in 1978, and the Solar Maximum Mission, launched two years later, that were the death knell to the solar constant. Soon after launching, instruments aboard both satellites showed that solar irradiance changed significantly as patches of sunspots rotated around the sun's surface. Irradiance would fall, for example, when groups of sunspots faced Earth. And it would recover when the sunspots rotated to the far side of the sun.
Likewise, in 2003, a radiometer aboard NASA's Solar Radiation and Climate Experiment (SORCE) satellite observed large sunspot patches that caused irradiance to drop by as much 0.34 percent, the largest short-term decrease ever recorded.
"When you look at longer scales on the sun, it's the opposite," said Lean, a solar scientist at the U.S. Naval Research Laboratory in Washington, D.C., and a member of Glory's science team. "Overall, irradiance actually increases when the sun is more active even though sunspots are more common."
How can increases in dark, cool sunspots yield increases in irradiance? "It didn't make much sense until we were able to show that sunspots are just half of the story," said Lean.
Measurements collected during the 1980s and 1990s gave scientists the evidence they needed to prove that irradiance is actually a balance between darkening from sunspots and brightening from accompanying hot regions called faculae, a word meaning "bright torch" in Latin.
When solar activity increases, as it does every 11 years or so, both sunspots and faculae become more numerous. But during the peak of a cycle, the faculae brighten the sun more than sunspots dim it.
Overall, radiometers show that the sun’s irradiance changes by about 0.1 percent as the number of sunspots varies from about 20 sunspots or less per year during periods of low activity (solar minimum) to between 100 and 150 during periods of high activity (solar maximum).
“That may seem like a tiny amount, but it’s critical we understand even these small changes if we want to understand whether the sun's output is trending up or down and affecting climate,” said Greg Kopp, a principal investigator for Glory and scientist at the Laboratory for Atmospheric and Space Physics at the University of Colorado in Boulder.
Though most scientists believe the 0.1 percent variation is too subtle to explain all of the recent warming, it's not impossible that long-term patterns -- proceeding over hundreds or thousands of years -- could cause more severe swings that could have profound impacts on climate.
Searching for a Trend Line A total of 10 radiometers have monitored the sun since Nimbus 7, and by patching all of the measurements together into one data stream, scientists have tried to identify whether the sun’s irradiance has increased or decreased over the last three cycles.
However, melding the results from different instruments has proven complicated because many of the radiometers record slightly different absolute measurements. And the areas of overlap between instruments in the long-term record aren't as robust as scientists would like.
As a result, questions remain about how the sun's irradiance has changed. Richard Willson, principal investigator for NASA's Active Cavity Radiometer Irradiance Monitor (ACRIM), reported in a 2003 paper that the overall brightness of the sun was increasing by 0.05 percent per decade.
Subsequent assessments of the same data have come to a different conclusion. Other groups of scientists have shown that the apparent upward trend is actually an artifact of the radiometers and how they degrade in orbit. Complicating the issue further, an instrument aboard NASA's Solar and Heliospheric Observatory (SOHO) measured irradiance levels during a solar minimum in 2008 that were actually lower than the previous solar minimum.
Which measurements are right? Has the sun experienced subtle brightening or dimming during the last few solar cycles? Such questions remain controversial, but the radiometer aboard Glory, called the Total Irradiance Monitor (TIM), is ready to provide answers. The Glory TIM will be more accurate and stable than previous instruments because of unique optical and electrical advances. And each of its components has undergone a rigorous regime of calibrations at a newly-built facility at the University of Colorado.
“It’s a very exciting time to be studying the sun,” said Lean. “Every day there's something new, and we’re on the verge of answering some very important questions.”
View my blog's last three great articles...
View this site auto transport car shipping car transport Houston criminal lawyer business class flights
Because the Loop Current and its eddies are warmer, and thus higher in surface elevation, than the surrounding waters, they are easily spotted by satellite altimeters, such as those aboard the NASA/French Space Agency Jason 1 and Ocean Surface Topography Mission/Jason 2 satellites. Scientists use the latest satellite measurements of sea-surface height from these and other satellite altimeters to create maps showing the location, direction and speed of currents in the Gulf of Mexico.
This image, created on May 23, 2010, using measurements of sea surface height from multiple satellites, including Jason-1 and OSTM/Jason-2, shows the speed and direction of surface currents in the Gulf. The northern portion of the Loop Current, shown in red, appears about to detach and form a separate eddy--a large, warm, clockwise-spinning vortex of water that is the ocean's version of a cyclone. The star shows the former location of the Deepwater Horizon drilling rig that exploded and sank in April, and has been leaking oil since. Scientists believe a large eddy between the oil spill and the Loop Current could keep, at least temporarily, some of the spilling oil from reaching the Florida Straits and the Gulf Stream.
This map was produced by the Colorado Center for Astrodynamics Research in Boulder, Colo. The center processes satellite measurements of sea surface height in near real-time to create maps of the Gulf of Mexico, showing the location of medium-sized eddies and fronts. More information on these data products is available at http://argo.colorado.edu/~realtime/welcome/.
View my blog's last three great articles...
View this site auto transport car shipping car transport Houston criminal lawyer business class flights
With a new sun-watching instrument called the Total Irradiance Monitor (TIM) scheduled to launch on NASA's Glory satellite in November, we spoke with Judith Lean, a member of the Glory science team and solar physicist at the United States Naval Research Laboratory, about solar cycles and what scientists have learned about solar variability in the last three decades.
What is a solar cycle and how long does it last?
For more than a century, people have noticed that sunspots become more and less frequent on an 11-year-cycle. That’s the main solar cycle we look at. The 11-year-cycle is really part of a 22-year-cycle of the sun’s magnetic field polarity. The changes are driven by something called the solar dynamo, a process that generates and alters the strength of the magnetic field erupting onto the sun's surface. It's the sun’s magnetic field that produces sunspots as it moves up through the sun's surface.
How much does the brightness of the sun change throughout the cycle?
It's a small amount. Total solar irradiance typically increases by about 0.1 percent during periods of high activity. However, certain wavelengths of sunlight—such as ultraviolet—vary more.
What causes irradiance to change?
It's really the balance of sunspots, which are cooler dark areas of the sun, and faculae, bright areas that appear near sunspots. The faculae overwhelm the sunspots, so the sun is actually brighter when there are more sunspots.
Can changes in the sun affect our climate?
If it wasn’t for the sun, we wouldn’t have a climate. The sun provides the energy to drive our climate, and even small changes in the sun's output can have a direct impact on Earth. There are two ways irradiance changes can alter climate: One is the direct effect from altering the amount of radiation reaching Earth. The second is that solar variability can affect ozone production, which can in turn affect the climate.
Does the 0.1 percent change in irradiance affect Earth's climate much?
Solar irradiance changes are likely connected to dynamic aspects of climate—things like the coupling of the atmosphere and ocean—El Niño being one example—or aspects of atmospheric circulation, such as the Hadley cells that dominate in the tropics.
But we've done a great deal of modeling, and the sun doesn't explain the global warming that's occurred over the last century. We think changes in irradiance account for about 10 percent global warming at most. Of course, there are also longer cycles that may have an impact on climate, but our understanding of them is limited.
There is disagreement about whether the last three cycles have gotten successively brighter. Has that been resolved?
No, it hasn't. The best understanding is that irradiance cycles have been about the same in the last three cycles, but one group reports an increasing trend whereas another group says that current levels are now the lowest of the entire 30-year record. I believe these differences are due to instrumental effects, but we really need continual, highly accurate, and stable long-term measurements to resolve this. The radiometer aboard Glory—the Total Irradiance Monitor (TIM)--will be a big step, quite an exciting advance.
What part of the 11-year cycle will Glory observe?
Glory is going is to observe during the ascending phase of the cycle. The ascending phase is relatively rapid, so we should get to the peak in about three years. Then there will be about two years or more when solar activity is high and stays high. About five years from now, activity will start to come down again so that by, say, 2019 we will be at low levels again.
What do you hope Glory will find?
The Glory TIM has been calibrated more rigorously than previous instruments, so it should help a lot in getting the absolute brightness of the sun. In addition to recording the ever-changing irradiance levels, it should measure irradiance precisely enough that will make it feasible to determine whether solar irradiance is stable or changing, if the measurements continue long enough into the future.
Are there aspects of the solar variability that TIM won't measure?
Yes. The Glory TIM looks at overall irradiance, but it doesn't measure how specific parts of the spectrum—the ultraviolet, visible, or infrared—are changing. Some of the largest changes actually happen at the shortest wavelengths, so it's extremely important that we look at the spectrum. There's an instrument related to TIM called the Solar Irradiance Monitor (SIM) aboard the SORCE satellite that lets us see how individual parts of the spectrum vary, and it's also critical.
The sun has been exceptionally quiet in recent years. Are we entering a prolonged solar minimum?
There was a period from mid-2008 to mid-2009 when the sun was without sunspots for many days. It was probably the quietest period we've seen since the first total solar irradiance measurements. But we didn't go into a prolonged minimum because the sun still had a few active regions – not sunspots, but small bright faculae regions -- and we could see the irradiance continue to fluctuate throughout this very quiet period. Now there are more dark sunspots and more bright faculae on the sun’s surface, so activity is ramping up and a new cycle--solar cycle 24--has started.
View my blog's last three great articles...
View this site auto transport car shipping car transport Houston criminal lawyer business class flights
The Atmospheric Imaging Assembly (AIA), one of three instruments aboard SDO, allowed scientists to discover that even minor solar events are never truly small scale. Shortly after AIA opened its doors on March 30, scientists observed a large eruptive prominence on the sun's edge, followed by a filament eruption a third of the way across the star's disk from the eruption.
"Even small events restructure large regions of the solar surface," said Alan Title, AIA principal investigator at Lockheed Martin Advanced Technology Center in Palo Alto, Calif. "It's been possible to recognize the size of these regions because of the combination of spatial, temporal and area coverage provided by AIA."
The AIA instrument also has observed a number of very small flares that have generated magnetic instabilities and waves with clearly-observed effects over a substantial fraction of the solar surface. The instrument is capturing full-disk images in eight different temperature bands that span 10,000 to 36-million degrees Fahrenheit. This allows scientists to observe entire events that are very difficult to discern by looking in a single temperature band, at a slower rate, or over a more limited field of view.
The data from SDO is providing a torrent of new information and spectacular images to be studied and interpreted. Using AIA's high-resolution and nearly continuous full-disk images of the sun, scientists have a better understanding of how even small events on our nearest star can significantly impact technological infrastructure on Earth.
Solar storms produce disturbances in electromagnetic fields that can induce large currents in wires, disrupting power lines and causing widespread blackouts. The storms can interfere with global positioning systems, cable television, and communications between ground controllers and satellites and airplane pilots flying near Earth's poles. Radio noise from solar storms also can disrupt cell phone service.
Launched in Feb. 2010, the spacecraft's commissioning May 14 confirmed all three of its instruments successfully passed an on-orbit checkout, were calibrated and are collecting science data.
"We're already at five million images and counting," said Dean Pesnell, the SDO project scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. "With data and images pouring in from SDO, solar scientists are poised to make discoveries that will rewrite the books on how changes in solar activity have a direct effect on Earth. The observatory is working great, and it's just going to get better."
Goddard built, operates and manages the SDO spacecraft for NASA's Science Mission Directorate in Washington. SDO is the first mission of NASA's Living with a Star Program. The program's goal is to develop the scientific understanding necessary to address those aspects of the sun-Earth system that directly affect our lives and society.
View my blog's last three great articles...
View this site auto transport car shipping car transport Houston criminal lawyer business class flights
International Stem Cell Corporation (OTCBB:ISCO), http://www.intlstemcell.com, today announced significant progress on its international development strategy for stem cell-derived human corneal tissue. Such tissue can potentially be used to replace cadaver-derived corneas in treatment of severe corneal vision impairment and to eliminate the need to use live animals in safety testing of drugs, chemicals and consumer products.
During a recent trip to Asia and Europe, an ISCO senior management team identified and interacted with a group of integrated eye hospitals and ophthalmology research institutions with world-class laboratory facilities, along with potential sources of research funding. One of these is Sankara Nethralaya (http://www.sankaranethralaya.org), one of India's leading not-for-profit clinical and research organizations dedicated to treatment of eye diseases.
Research during the past ten to fifteen years has demonstrated stem cell differentiation into a variety of human cell types. Rarely has it been possible to produce such integrated, functional human tissue, in this case, tissue that has characteristics compatible with human cornea in structure and function. This tissue technology may offer a first-in-class opportunity for high-quality, cost-efficient transplantation tissue for the 10 million people world-wide suffering from corneal vision impairment, particularly in Asia and Europe. It may also provide a much needed alternative to the use of live and extracted animal eyes in the $500+M market for safety testing of drugs, chemicals and consumer products.
During the coming months, ISCO expects to formalize relationships with a number of entities such as Sankara Nethralaya to provide ISCO's cornea development program with the scientific, facility and financial resources needed to advance the technology as rapidly as possible to clinical application. The ultimate goal is not only to address the clear unmet medical and safety testing needs, but also to be among the first pluripotent stem cell applications to achieve widespread commercialization.
Dr. Sengamedu Srinivasa Badrinath, President and Chairman Emeritus of Sankara Nethralaya says: 'At Sankara Nethralaya, we see 1,600 eye patients and do over 100 eye surgeries a day. We employ sixty scientists and clinicians dedicated to the development and application of new state-of-the-art ophthalmic technologies. My senior team at Sankara Nethralaya and I look forward to helping ISCO advance its cornea technology that has potential to significantly reduce the severe quantitative and qualitative limitations in corneal donor tissue across the world today.'
Brian Lundstrom, ISCO's President, continues: 'The addition of Sankara Nethralaya to our international collaborative network will contribute substantial scientific and clinical ophthalmology expertise and resources and complement the instrumentation alliance with The Automation Partnership and the safety testing collaboration with Absorptions Systems. The next step is to organize an experienced therapeutic development team to establish the optimal development path with relevant regulatory authorities and create data needed to advance ISCO's stem cell-derived corneal tissue into clinical trials.'
ABOUT INTERNATIONAL STEM CELL CORPORATION (ISCO.OB):
International Stem Cell Corporation is a California-based biotechnology company focused on therapeutic and research products. ISCO's core technology, parthenogenesis, results in creation of pluripotent human parthenogenetic stem cells (hpSCs) from unfertilized oocytes (eggs). hpSCs avoid ethical issues associated with the use or destruction of viable human embryos. ISCO scientists have created the first parthenogenic, homozygous stem cell line that can be a source of therapeutic cells with minimal immune rejection after transplantation into hundreds of millions of individuals of differing sexes, ages and racial groups. This offers the potential to create the first true stem cell bank, UniStemCell™, while avoiding the ethical issue of using fertilized eggs. ISCO also produces and markets specialized cells and growth media for therapeutic research worldwide through its subsidiary Lifeline Cell Technology. More information is available at ISCO's website, http://www.internationalstemcell.com.
To subscribe to receive ongoing corporate communications please click on the following link: http://www.b2i.us/irpass.asp?BzID=1468&to=ea&s=0.
FORWARD-LOOKING STATEMENTS
Statements pertaining to anticipated technological developments and therapeutic applications, and other opportunities for the company and its subsidiary, along with other statements about the future expectations, beliefs, goals, plans, or prospects expressed by management constitute forward-looking statements. Any statements that are not historical fact (including, but not limited to statements that contain words such as "will," "should," "believes," "plans," "anticipates," "expects," "estimates,") should also be considered to be forward-looking statements. Forward-looking statements involve risks and uncertainties, including, without limitation, risks inherent in the development and/or commercialization of potential products, uncertainty in the results of clinical trials or regulatory approvals, need and ability to obtain future capital, application of capital resources among competing uses, and maintenance of intellectual property rights. Actual results may differ materially from the results anticipated in these forward-looking statements and as such should be evaluated together with the many uncertainties that affect the company's business, particularly those mentioned in the cautionary statements found in the company's Securities and Exchange Commission filings. The company disclaims any intent or obligation to update these forward-looking statements.
Key Words: Stem Cells, Biotechnology, Parthenogenesis
International Stem Cell Corporation
Kenneth C. Aldrich, Chairman
760-940-6383
kaldrich@intlstemcell.com
Or
Brian Lundstrom, President
760-640-6383
bl@intlstemcell.com
Vasopressin antagonists increase the serum sodium concentration in patients who have euvolemia and hypervolemia with hyponatremia in the short term (30 days), but their safety and efficacy with longer term administration is unknown.
In a study, 111 patients with hyponatremia received oral tolvaptan (Samsca) for 700 days.
The most common adverse effects attributed to tolvaptan were pollakiuria, thirst, fatigue, dry mouth, polydipsia, and polyuria.
Mean serum sodium increased from 130.8 mmol/L at baseline to greater than 135 mmol/L throughout the observation period.
Responses were comparable between patients with euvolemia and those with heart failure but more modest in patients with cirrhosis.
In conclusion, prolonged administration of tolvaptan maintains an increased serum sodium with an acceptable margin of safety.
References:
Posted at Clinical Cases and Images. Stay updated and subscribe, follow us on Twitter and connect on Facebook.
From TED Talks/TED Med: Traditionally, David Agus explains, cancer treatments have had a short-sighted focus on the offending individual cells. He suggests a new, cross-disciplinary approach, using atypical drugs and computer modeling.
Posted at Clinical Cases and Images. Stay updated and subscribe, follow us on Twitter and connect on Facebook.
With a 500-million large audience, many practices find that creating a Facebook presence can be an easy -- and free -- way to stay in touch with patients or attract new ones.
Businesses, including physician practices, can create something similar: pages (previously "fan pages"). Anyone on Facebook who elects to "become a fan" or like your page receives, on his or her own home page, any updates, photos, videos or Web links that you post.
Rather than having patients "friend" you on Facebook, you can direct them to this page. Having a moderator is important, because having someone dedicated to responding to people makes them feel more connected and encourages respectful and on topic discussions.
References:
Amednews: How Facebook fan pages can connect with patients.
Posted at Clinical Cases and Images. Stay updated and subscribe, follow us on Twitter and connect on Facebook.
The Secret Museum is now a website!
I have just launched a full website for The Secret Museum, my exhibition of photographs (as seen above) exploring the poetics of hidden, untouched and curious collections from around the world. The website includes information, links, and, of course, a full gallery of photos, installation and otherwise; You can check it out by clicking here.
The Secret Museum exhibition proper will be on view until Sunday, June 6th at Observatory; please consider yourself cordially invited to a closing party that evening, featuring a last perusal of the museum, a bit of wine, a dimly-lit chandelier, and some esoteric music complements of Mister Friese Undine. The party--which will run from 6-10 at Observatory--is, of course, free of charge, and should be good fun. Address and travel details can be found here.
Hope very much to see you there!
All above images from The Secret Museum; captions from top to bottom:
Monday 24th May comments:
It was just about family when Craig Cisero made his way to Italy on a six month pilgrimage. Little did he know what would really transpire… From harvesting grapes to teaching English, Craigorio Does Italia tells Craig’s tale of tracing his roots and finding much more along the way. (The story isn’t over yet.)
© Gretchen for TravelBlogs, 2010. |
Craigorio Does Italia |
No comment |
Post categories: Blogs
Post tags: cultural experiences, Europe, family heritage, Italy, United States, working on the road
So after a quick pit stop in Auckland we were back on the road heading for the Picton ferry. The day couldnrsquot have gone any better. We left Auckland at 10am and arrived at the ferry terminal in Wellington at 6pm 640 odd kilometers in 8 hours and no traffic jams sweet as.Next stop was to the northwest tip of the South Island to visit Abel Tasman New Zealandrsquos smallest National Park.
Hey allI apologise if my spelling is worse that usual in this one the computer I'm writing it on doesn't have spell check and it never seems to work properly in hotmail....Dad sorry you didn't get this before going to Guernsey hope you've had a lovely time I am jealous and expect photos. THE SOUTH WESTMonday 17 May Perth to Albany today I'm exactly half way through my tripThe trains he
After a surprisingly quick 11hour flight to Hong Kong spent watching Avatar and sleeping we arrived in Hong Kong airport. First impressions driving to through the city in our taxi were that it looked really clean and also very green. Lots more trees and shrubbery in these really well kept gardens everywhere. The huge skyscraper apartment buildings are set against a backdrop of mountains so its p
we're in a quaint and charming little indian union territory of puducherry more affectionately known as pondicherrypondi hellooo alcohol with a salient and conspicuous french colonial heritage that looms large. ergo lanesstreets are Rues and fish is poisson and they do a mighty fine coq au vin haha yes we're not that cheap charlies afterall we do indulge in spurts. its a seaside town so
Tja da hatten wir schon fast das Northern Territory NT erreicht nicht mal mehr 50 km trennten uns in Kununurra von der Grenze. Ihr wrdet heute einen Eintrag ber das wilde NT lesen wre da nicht dieser Anruf aus Broome gekommen. Nun gut also wieder mal ein Bericht aus Western Australia. Wir blieben noch bis Freitag in Kununurra genossen das schne Wetter und den Pool. Am Freitag fuhren wi
Hello Just wanted to share some photos from weekendsholidays in May. We had the 5th off from school as it was Children's Day that gave us the opportunity to celebrate Cinco de Mayo in Seoul with friends. The weekend of the 15th was the Lotus Lantern Festival which begins the celebrations for Buddha's birthday Jess attended some of those events. This past weekend we were fortunate to have
We left Paris for Avignon on Sunday. TRAVEL TIP Don't buy your TGV tickets with American Express cards. When we got to Gare Lyon we went to an automated kiosk to print out our etickets because we booked a couple months ago tickets are much pricier if you buy in Paris but soon found that the kiosks cannot process tickets purchased by American Express. We had to stand in a slowmoving lin