UT Dallas Professor Receives Funding to Design Materials Inspired by Bone

Contact Information

Available for logged-in reporters only

Newswise Dr. Majid Minary, an assistant professor of mechanical engineering at UT Dallas, has received funding to design high-performance materials inspired by bone.

The Young Investigator Research Program (YIP) grant from theAir Force Office of Scientific Research (AFOSR) could eventually lead to the creation of a material that can reinforce itself at points of high stress for use in airplanes and other defense applications. The YIP program provides $360,000 over three years.

The YIP is open to scientists and engineers at research institutions across the United States who received their PhD in the last five years and who show exceptional ability and promise for conducting basic research.

Materials and structures that self-reinforce, repair and heal are of importance for developing vehicles and machines for use in defense and security, said Dr. Mario Rotea, head of the Department of Mechanical Engineering in the Erik Jonsson School of Engineering and Computer Science and holder of the Erik Jonsson Chair. Nature uses evolution to develop these capabilities. Dr. Minary is one of a handful of young engineers and scientists who seek to uncover fundamental mechanisms of nature and combine them with engineering principles to develop these capabilities in man-made systems. This YIP award certifies Dr. Minarys vision and skill set, and acknowledges the quality and applicability of his work to problems of relevance to the [Air Force].

The AFOSR awarded 42 grants from more than 230 applicants who submitted proposals for YIP in this round of competition. Minary is one of two current Jonsson School faculty members to receive the award this year. Cybersecurity expert Dr. Zhiqiang Lin, assistant professor of computer science, also received a grant.

Human bone has been one of the major sources for bio-inspired design for man-made materials. Its been known for decades that human bone has the ability to remodel itself. For example, bone in the dominant arm of a tennis player often weighs more than bone in the other arm, and medical clinicians often prescribe weight-bearing exercises to heal fractured bones.

Whats less clear are the fundamental mechanisms behind the remodeling. Based on his prior research, Minary will investigate the piezoelectricity (how pressure forms electric charges) of the fibers of collagen inside bones. Collagen is the most abundant protein in the human body it contributes to smooth skin and is a building block for muscles, tendons and bones.

My prior work showed that it is actually the collagen fibers in bone that have the piezoelectric property that allows bone to rebuild itself, said Minary, also a member of the Alan G. MacDiarmid NanoTech Institute at UT Dallas. Now we want to see if we can learn from this property and make synthetic materials that act in similar ways as the collagen fibers.

Continue reading here:

UT Dallas Professor Receives Funding to Design Materials Inspired by Bone

Related Posts

Comments are closed.