Thomas Gaborski named 2014 Young Innovator by international Biomedical Engineering Society

PUBLIC RELEASE DATE:

17-Nov-2014

Contact: Michelle Cometa macuns@rit.edu 585-475-4954 Rochester Institute of Technology @ritnews

Thomas Gaborski's research may be in ultra-thin nano-membranes, but it's going to be titanic in advancing tissue engineering.

Gaborski, assistant professor of biomedical engineering at Rochester Institute of Technology, and his research team are developing ways to use ultra-thin nano-membranes and adipose stem cells to create the vascular network necessary in engineering tissue, skin and organs.

For these organs to be viable, there is a need for not only the organ structure but also the inner network of micro-vessels and capillaries. Gaborski is helping develop that complex structure, using transparent and permeable membrane "scaffolds" to support cell and tissue growth, essential to tissue engineering.

Using adipose-derived stem cells that come from fat tissue, acquired from adults rather than embryos, Gaborski has been able to create functional microenvironments that help support and differentiate stem cells into the specialized cells that make up the human body. Creating engineered tissues from stem cells can help to address the critical shortage of donor organs. It also may alleviate some aspects of organ rejection by an individual's immune system because of the likelihood that an individual's own stem cells could generate needed tissue.

For his work with thin membranes and cell culture on membranes, Gaborski received the 2014 Young Innovator Award in Cellular and Molecular Bioengineering given by the Biomedical Engineering Society this fall. The award is given to profile the best research being carried out by talented assistant professors working in the growing bioengineering field. He presented results of his work in porous membranes and the ability to control cell functions at the society's annual meeting, Oct. 22-25 in San Antonio, Texas.

The goal of tissue engineering is to repair or replace tissues and organs damaged as a result of injury or disease. This requires the precise use of many types of cells, support scaffolds and biochemical factors to create replacement tissue. It is important to design these structures with the proper mechanical and physiological requirements, said Gaborski, a faculty member in RIT's Kate Gleason College of Engineering.

Today, researchers can develop two-dimensional tissues such as artificial skin that is thin enough to receive needed oxygen and nutrients. However, most organs are three-dimensional, he explained.

Link:

Thomas Gaborski named 2014 Young Innovator by international Biomedical Engineering Society

Related Posts

Comments are closed.