12345...102030...


Aerospace – Wikipedia

Aerospace is the human effort in science, engineering and business to fly in the atmosphere of Earth (aeronautics) and surrounding space (astronautics). Aerospace organizations research, design, manufacture, operate, or maintain aircraft or spacecraft. Aerospace activity is very diverse, with a multitude of commercial, industrial and military applications.

Aerospace is not the same as airspace, which is the physical air space directly above a location on the ground. The beginning of space and the ending of the air is considered as 100km above the ground according to the physical explanation that the air pressure is too low for a lifting body to generate meaningful lift force without exceeding orbital velocity.[1]

In most industrial countries, the aerospace industry is a cooperation of public and private industries. For example, several countries have a civilian space program funded by the government through tax collection, such as National Aeronautics and Space Administration in the United States, European Space Agency in Europe, the Canadian Space Agency in Canada, Indian Space Research Organisation in India, Japanese Aeronautics Exploration Agency in Japan, RKA in Russia, China National Space Administration in China, SUPARCO in Pakistan, Iranian Space Agency in Iran, and Korea Aerospace Research Institute (KARI) in South Korea.

Along with these public space programs, many companies produce technical tools and components such as spaceships and satellites. Some known companies involved in space programs include Boeing, Airbus, SpaceX, Lockheed Martin, MacDonald Dettwiler and Northrop Grumman. These companies are also involved in other areas of aerospace such as the construction of aircraft.

Modern aerospace began with Engineer George Cayley in 1799. Cayley proposed an aircraft with a “fixed wing and a horizontal and vertical tail,” defining characteristics of the modern airplane.[2]

The 19th century saw the creation of the Aeronautical Society of Great Britain (1866), the American Rocketry Society, and the Institute of Aeronautical Sciences, all of which made aeronautics a more serious scientific discipline.[2] Airmen like Otto Lilienthal, who introduced cambered airfoils in 1891, used gliders to analyze aerodynamic forces.[2] The Wright brothers were interested in Lilienthal’s work and read several of his publications.[2] They also found inspiration in Octave Chanute, an airman and the author of Progress in Flying Machines (1894).[2] It was the preliminary work of Cayley, Lilienthal, Chanute, and other early aerospace engineers that brought about the first powered sustained flight at Kitty Hawk, North Carolina on December 17, 1903, by the Wright brothers.

War and science fiction inspired great minds like Konstantin Tsiolkovsky and Wernher von Braun to achieve flight beyond the atmosphere.

The launch of Sputnik 1 in October 1957 started the Space Age, and on July 20, 1969 Apollo 11 achieved the first manned moon landing.[2] In April 1981, the Space Shuttle Columbia launched, the start of regular manned access to orbital space. A sustained human presence in orbital space started with “Mir” in 1986 and is continued by the “International Space Station”.[2] Space commercialization and space tourism are more recent focuses in aerospace.

Aerospace manufacturing is a high-technology industry that produces “aircraft, guided missiles, space vehicles, aircraft engines, propulsion units, and related parts”.[3] Most of the industry is geared toward governmental work. For each original equipment manufacturer (OEM), the US government has assigned a Commercial and Government Entity (CAGE) code. These codes help to identify each manufacturer, repair facilities, and other critical aftermarket vendors in the aerospace industry.

In the United States, the Department of Defense and the National Aeronautics and Space Administration (NASA) are the two largest consumers of aerospace technology and products. Others include the very large airline industry. The aerospace industry employed 472,000 wage and salary workers in 2006.[4] Most of those jobs were in Washington state and in California, with Missouri, New York and Texas also being important. The leading aerospace manufacturers in the U.S. are Boeing, United Technologies Corporation, SpaceX, Northrop Grumman and Lockheed Martin. These manufacturers are facing an increasing labor shortage as skilled U.S. workers age and retire. Apprenticeship programs such as the Aerospace Joint Apprenticeship Council (AJAC) work in collaboration with Washington state aerospace employers and community colleges to train new manufacturing employees to keep the industry supplied.

Important locations of the civilian aerospace industry worldwide include Washington state (Boeing), California (Boeing, Lockheed Martin, etc.); Montreal, Quebec, Canada (Bombardier, Pratt & Whitney Canada); Toulouse, France (Airbus/EADS); Hamburg, Germany (Airbus/EADS); and So Jos dos Campos, Brazil (Embraer), Quertaro, Mexico (Bombardier Aerospace, General Electric Aviation) and Mexicali, Mexico (United Technologies Corporation, Gulfstream Aerospace).

In the European Union, aerospace companies such as EADS, BAE Systems, Thales, Dassault, Saab AB and Leonardo S.p.A. (formerly Finmeccnica)[5] account for a large share of the global aerospace industry and research effort, with the European Space Agency as one of the largest consumers of aerospace technology and products.

In India, Bangalore is a major center of the aerospace industry, where Hindustan Aeronautics Limited, the National Aerospace Laboratories and the Indian Space Research Organisation are headquartered. The Indian Space Research Organisation (ISRO) launched India’s first Moon orbiter, Chandrayaan-1, in October 2008.

In Russia, large aerospace companies like Oboronprom and the United Aircraft Building Corporation (encompassing Mikoyan, Sukhoi, Ilyushin, Tupolev, Yakovlev, and Irkut which includes Beriev) are among the major global players in this industry. The historic Soviet Union was also the home of a major aerospace industry.

The United Kingdom formerly attempted to maintain its own large aerospace industry, making its own airliners and warplanes, but it has largely turned its lot over to cooperative efforts with continental companies, and it has turned into a large import customer, too, from countries such as the United States. However, the UK has a very active aerospace sector, including the second largest defence contractor in the world, BAE Systems, supplying fully assembled aircraft, aircraft components, sub-assemblies and sub-systems to other manufacturers, both in Europe and all over the world.

Canada has formerly manufactured some of its own designs for jet warplanes, etc. (e.g. the CF-100 fighter), but for some decades, it has relied on imports from the United States and Europe to fill these needs. However Canada still manufactures some military aircraft although they are generally not combat capable. Another notable example was the late 1950s development of the Avro Canada CF-105 Arrow, a supersonic fighter-interceptor that was cancelled in 1959 a highly controversial decision.

France has continued to make its own warplanes for its air force and navy, and Sweden continues to make its own warplanes for the Swedish Air Forceespecially in support of its position as a neutral country. (See Saab AB.) Other European countries either team up in making fighters (such as the Panavia Tornado and the Eurofighter Typhoon), or else to import them from the United States.

Pakistan has a developing aerospace engineering industry. The National Engineering and Scientific Commission, Khan Research Laboratories and Pakistan Aeronautical Complex are among the premier organizations involved in research and development in this sector. Pakistan has the capability of designing and manufacturing guided rockets, missiles and space vehicles. The city of Kamra is home to the Pakistan Aeronautical Complex which contains several factories. This facility is responsible for manufacturing the MFI-17, MFI-395, K-8 and JF-17 Thunder aircraft. Pakistan also has the capability to design and manufacture both armed and unarmed unmanned aerial vehicles.

In the People’s Republic of China, Beijing, Xi’an, Chengdu, Shanghai, Shenyang and Nanchang are major research and manufacture centers of the aerospace industry. China has developed an extensive capability to design, test and produce military aircraft, missiles and space vehicles. Despite the cancellation in 1983 of the experimental Shanghai Y-10, China is still developing its civil aerospace industry.

The aircraft parts industry was born out of the sale of second-hand or used aircraft parts from the aerospace manufacture sector. Within the United States there is a specific process that parts brokers or resellers must follow. This includes leveraging a certified repair station to overhaul and “tag” a part. This certification guarantees that a part was repaired or overhauled to meet OEM specifications. Once a part is overhauled its value is determined from the supply and demand of the aerospace market. When an airline has an aircraft on the ground, the part that the airline requires to get the plane back into service becomes invaluable. This can drive the market for specific parts. There are several online marketplaces that assist with the commodity selling of aircraft parts.

In the aerospaces & defense industry, a lot of consolidation has appeared over the last couple of decades. Between 1988 and 2011, worldwide more than 6,068 mergers & acquisitions with a total known value of 678 bil. USD have been announced.[6] The largest transactions have been: the acquisition of Goodrich Corporation by United Technologies Corporation for 16.2 bil. USD in 2011,[7] Allied Signal merged with Honeywell in a stock swap valued 15.6 bil. USD in 1999,[8] the merger of Boeing with McDonnell valued at 13.4 bil. USD in 1996,[9] Marconi Electronic Systems, a subsidiary of GEC, was acquired by British Aerospace for 12.9 bil. USD in 1999[10] (now called: BAE Systems), and Raytheon acquired Hughes Aircraft for 9.5 bil. USD in 1997.

Functional safety relates to a part of the general safety of a system or a piece of equipment. It implies that the system or equipment can be operated properly and without causing any danger, risk, damage or injury.

Functional safety is crucial in the aerospace industry, which allows no compromises or negligence. In this respect, supervisory bodies, such as the European Aviation Safety Agency (EASA),[11] regulate the aerospace market with strict certification standards. This is meant to reach and ensure the highest possible level of safety. The standards AS 9100 in America, EN 9100 on the European market or JISQ 9100 in Asia particularly address the aerospace and aviation industry. These are standards applying to the functional safety of aerospace vehicles. Some companies are therefore specialized in the certification, inspection verification and testing of the vehicles and spare parts to ensure and attest compliance with the appropriate regulations.

Spinoffs refer to any technology that is a direct result of coding or products created by NASA and redesigned for an alternate purpose.[12] These technological advancements are one of the primary results of the aerospace industry, with $5.2 billion worth of revenue generated by spinoff technology, including computers and cellular devices.[12] These spinoffs have applications in a variety of different fields including medicine, transportation, energy, consumer goods, public safety and more.[12] NASA publishes an annual report called Spinoffs, regarding many of the specific products and benefits to the aforementioned areas in an effort to highlight some of the ways funding is put to use.[13] For example, in the most recent edition of this publication, Spinoffs 2015, endoscopes are featured as one of the medical derivations of aerospace achievement.[12] This device enables more precise and subsequently cost-effective neurosurgery by reducing complications through a minimally invasive procedure that abbreviates hospitalization.[12]

Originally posted here:

Aerospace – Wikipedia

Home | The Aerospace Corporation

Advanced Technology. Objective Analysis. Innovative Solutions.

As an independent, nonprofit corporation operating the only federally funded research and development center for the space enterprise, The Aerospace Corporation performs objective technical analyses and assessments for a variety of government, civil, and commercial customers. With more than five decades of experience, Aerospace provides leadership and support in all fields and disciplines of research, design, development, acquisition, operations, and program management.

See original here:

Home | The Aerospace Corporation

Official Web | SENER – Aerospace

Cookies policy

What are cookies?

A “cookie” is a small file with browsing information that is downloaded to the user’s computer, tablet or smartphone.

The combined total of cookies from all of our users helps us to improve the quality of our website, letting us identify which pages are useful and which might need to be improved.

There is no way in which cookies can cause damage to your device. On the contrary, their use helps us to identify and solve errors.

What type of cookies does this website use?

Below are details of the types of cookies that are used in the sener.es website and their specific purposes:

Different sources:

Different lifespans:

Different purposes:

How do I delete cookies?

You can allow, block or delete cookies installed on your device by changing the settings of the browser installed on your device:

User’s responsibilities:

By using this Website, the User expressly agrees to the use of information that is collected; the User also acknowledges awareness of the possibility to refuse the processing of such data or information by blocking Cookies in their browser settings. However, the option of blocking Cookies from the browser may inhibit full use of all of the Website’s functions.

After reading all of the information provided, we inform the User that by continuing to browse our website without taking the appropriate measures to change the browser settings to block the installation of Cookies used by the website, under the terms included in article 22.2 of Law 34/2002 on Information Society Services and E-Commerce, in accordance with its drafting by RD 13/2012, of 30 March, the User contents to the use of the mechanisms referred to herein.

View post:

Official Web | SENER – Aerospace

Aerospace engineering – Wikipedia

Aerospace engineering is the primary field of engineering concerned with the development of aircraft and spacecraft.[3] It has two major and overlapping branches: Aeronautical engineering and Astronautical Engineering. Avionics engineering is similar, but deals with the electronics side of aerospace engineering.

Aeronautical engineering was the original term for the field. As flight technology advanced to include craft operating in outer space (astronautics), the broader term “aerospace engineering” has come into common use.[4] Aerospace engineering, particularly the astronautics branch, is often colloquially referred to as “rocket science”.[5]

Flight vehicles are subjected to demanding conditions such as those produced by changes in atmospheric pressure and temperature, with structural loads applied upon vehicle components. Consequently, they are usually the products of various technological and engineering disciplines including aerodynamics, propulsion, avionics, materials science, structural analysis and manufacturing. The interaction between these technologies is known as aerospace engineering. Because of the complexity and number of disciplines involved, aerospace engineering is carried out by teams of engineers, each having their own specialized area of expertise.[6]

The origin of aerospace engineering can be traced back to the aviation pioneers around the late 19th to early 20th centuries, although the work of Sir George Cayley dates from the last decade of the 18th to mid-19th century. One of the most important people in the history of aeronautics,[7] Cayley was a pioneer in aeronautical engineering[8] and is credited as the first person to separate the forces of lift and drag, which are in effect on any flight vehicle.[9]

Early knowledge of aeronautical engineering was largely empirical with some concepts and skills imported from other branches of engineering.[10] Scientists understood some key elements of aerospace engineering, like fluid dynamics, in the 18th century. Many years later after the successful flights by the Wright brothers, the 1910s saw the development of aeronautical engineering through the design of World War I military aircraft.

The first definition of aerospace engineering appeared in February 1958.[4] The definition considered the Earth’s atmosphere and the outer space as a single realm, thereby encompassing both aircraft (aero) and spacecraft (space) under a newly coined word aerospace. In response to the USSR launching the first satellite, Sputnik into space on October 4, 1957, U.S. aerospace engineers launched the first American satellite on January 31, 1958. The National Aeronautics and Space Administration was founded in 1958 as a response to the Cold War.[11]

Some of the elements of aerospace engineering are:[12][13]

The basis of most of these elements lies in theoretical physics, such as fluid dynamics for aerodynamics or the equations of motion for flight dynamics. There is also a large empirical component. Historically, this empirical component was derived from testing of scale models and prototypes, either in wind tunnels or in the free atmosphere. More recently, advances in computing have enabled the use of computational fluid dynamics to simulate the behavior of the fluid, reducing time and expense spent on wind-tunnel testing. Those studying hydrodynamics or Hydroacoustics often obtained degrees in Aerospace Engineering.

Additionally, aerospace engineering addresses the integration of all components that constitute an aerospace vehicle (subsystems including power, aerospace bearings, communications, thermal control, life support, etc.) and its life cycle (design, temperature, pressure, radiation, velocity, lifetime).

Aerospace engineering may be studied at the advanced diploma, bachelor’s, master’s, and Ph.D. levels in aerospace engineering departments at many universities, and in mechanical engineering departments at others. A few departments offer degrees in space-focused astronautical engineering. Some institutions differentiate between aeronautical and astronautical engineering. Graduate degrees are offered in advanced or specialty areas for the aerospace industry.

A background in chemistry, physics, computer science and mathematics is important for students pursuing an aerospace engineering degree.[15]

The term “rocket scientist” is sometimes used to describe a person of great intelligence since rocket science is seen as a practice requiring great mental ability, especially technically and mathematically. The term is used ironically in the expression “It’s not rocket science” to indicate that a task is simple.[16] Strictly speaking, the use of “science” in “rocket science” is a misnomer since science is about understanding the origins, nature, and behavior of the universe; engineering is about using scientific and engineering principles to solve problems and develop new technology.[5][17] However, the media and the public often use “science” and “engineering” as synonyms.[5][17][18]

Go here to see the original:

Aerospace engineering – Wikipedia

Aerospace | Thales Group

In Aerospace, governments, airports, airlines, pilots, crews and passengers rely on Thales to make flight safer, easier and more efficient.We do this by designing, delivering and supporting the systems that keep our skies running. From air traffic management, training and simulation solutions, nose-to-tail aircraft connectivity and in-flight services, we enable and connect all parts of the aerospace ecosystem in the air, on the ground, and in between.Whatever it takes.

Continue reading here:

Aerospace | Thales Group

Careers | The Aerospace Corporation

Make a Career Out of Making a Difference: Explore Jobs

Whether youre ensuring the resiliency of satellite systems or finding a better way to remove dangerous debris from orbit, your work at Aerospace will make a difference. From delivering world-class mission assurance to pioneering technological breakthroughs, youll help build a safer, stronger future.

Originally posted here:

Careers | The Aerospace Corporation

Aerospace – definition of aerospace by The Free Dictionary

Hickling, along with thousands of other aerospace veterans who left or were laid off during the consolidation of the 1990s, reflects how radically the region’s economy has shifted away from its historic dependence on aerospace jobs.That’s a far cry from 1985, when aerospace was a nascent $250 million business for Goodrich, representing just 7 percent of sales.Rexnord Aerospace will partner with Dixie Aerospace to market, sell and distribute PSI Bearings, Shafer Roller Bearings, Tuflite Composite Bearings and Shafer Tooling to the aerospace market.The aerospace cluster is just starting to take off,” said Jack Kyser, the chief economist for the Los Angeles Economic Development Corporation.The increased use of composite materials in aerospace applications will dramatically change the economics of flight and the process of developing aircraft.The great power that has yet to be released in growing the aerospace industry in California is truly the suppliers and manufacturers who are contractors to the aerospace corporations,” Runner told business people gathered for the Santa Clarita 2000 Aerospace Conference.Jefferies Quarterdeck, the aerospace and defense investment banking group of Jefferies & Company, Inc.Called “Other State’s Incentives to Attract or Encourage Aerospace Manufacturing,” the draft report notes that despite defense cutbacks of the early 1990s, there is potential growth for the industry, notably in space projects.The Aerospace & Defense in the United Kingdom industry profile is an essential resource for top-level data and analysis covering the Aerospace & Defense industry.British Aerospace and Marconi – together employing some 130,000 people worldwide, more than 18,000 of them in the United States – said most jobs would be safeguarded.Catherine Gridley, President, Smiths Aerospace Customer Services said: “PBLs have transformed the supply chain resulting in a win-win situation for customers and suppliers.The study, “Beyond Consolidation – A Study of the Continuing Transformation of Aerospace and Defense in Southern California,” concludes the region can pick up 73,000 new aerospace jobs over the next 20 years, mainly from commercial space activity.

Continued here:

Aerospace – definition of aerospace by The Free Dictionary

Cryptocurrency Price Forecast: Trust Is Growing, But Prices Are Falling

Trust Is Growing…
Before we get to this week’s cryptocurrency news, analysis, and our cryptocurrency price forecast, I want to share an experience from this past week. I was at home watching the NBA playoffs, trying to ignore the commercials, when a strange advertisement caught my eye.

It followed a tomato from its birth on the vine to its end on the dinner table (where it was served as a bolognese sauce), and a diamond from its dusty beginnings to when it sparkled atop an engagement ring.

The voiceover said: “This is a shipment passed 200 times, transparently tracked from port to port. This is the IBM blockchain.”

Let that sink in—IBM.

The post Cryptocurrency Price Forecast: Trust Is Growing, But Prices Are Falling appeared first on Profit Confidential.

Excerpt from:

Cryptocurrency Price Forecast: Trust Is Growing, But Prices Are Falling

Cryptocurrency News: This Week on Bitfinex, Tether, Coinbase, & More

Cryptocurrency News
On the whole, cryptocurrency prices are down from our previous report on cryptos, with the market slipping on news of an exchange being hacked and a report about Bitcoin manipulation.

However, there have been two bright spots: 1) an official from the U.S. Securities and Exchange Commission (SEC) said that Ethereum is not a security, and 2) Coinbase is expanding its selection of tokens.

Let’s start with the good news.
SEC Says ETH Is Not a Security
Investors have some reason to cheer this week. A high-ranking SEC official told attendees of the Yahoo! All Markets Summit: Crypto that Ethereum and Bitcoin are not.

The post Cryptocurrency News: This Week on Bitfinex, Tether, Coinbase, & More appeared first on Profit Confidential.

Visit link:

Cryptocurrency News: This Week on Bitfinex, Tether, Coinbase, & More

Ripple Price Forecast: XRP vs SWIFT, SEC Updates, and More

Ripple vs SWIFT: The War Begins
While most criticisms of XRP do nothing to curb my bullish Ripple price forecast, there is one obstacle that nags at my conscience. Its name is SWIFT.

The Society for Worldwide Interbank Financial Telecommunication (SWIFT) is the king of international payments.

It coordinates wire transfers across 11,000 banks in more than 200 countries and territories, meaning that in order for XRP prices to ascend to $10.00, Ripple needs to launch a successful coup. That is, and always has been, an unwritten part of Ripple’s story.

We’ve seen a lot of progress on that score. In the last three years, Ripple wooed more than 100 financial firms onto its.

The post Ripple Price Forecast: XRP vs SWIFT, SEC Updates, and More appeared first on Profit Confidential.

Here is the original post:

Ripple Price Forecast: XRP vs SWIFT, SEC Updates, and More

Cryptocurrency News: XRP Validators, Malta, and Practical Tokens

Cryptocurrency News & Market Summary
Investors finally saw some light at the end of the tunnel last week, with cryptos soaring across the board. No one quite knows what kicked off the rally—as it could have been any of the stories we discuss below—but the net result was positive.

Of course, prices won’t stay on this rocket ride forever. I expect to see a resurgence of volatility in short order, because the market is moving as a single unit. Everything is rising in tandem.

This tells me that investors are simply “buying the dip” rather than identifying which cryptos have enough real-world value to outlive the crash.

So if you want to know when.

The post Cryptocurrency News: XRP Validators, Malta, and Practical Tokens appeared first on Profit Confidential.

View post:

Cryptocurrency News: XRP Validators, Malta, and Practical Tokens

Cryptocurrency News: Bitcoin ETFs, Andreessen Horowitz, and Contradictions in Crypto

Cryptocurrency News
This was a bloody week for cryptocurrencies. Everything was covered in red, from Ethereum (ETH) on down to the Basic Attention Token (BAT).

Some investors claim it was inevitable. Others say that price manipulation is to blame.

We think the answers are more complicated than either side has to offer, because our research reveals deep contradictions between the price of cryptos and the underlying development of blockchain projects.

For instance, a leading venture capital (VC) firm launched a $300.0-million crypto investment fund, yet liquidity continues to dry up in crypto markets.

Another example is the U.S. Securities and Exchange Commission’s.

The post Cryptocurrency News: Bitcoin ETFs, Andreessen Horowitz, and Contradictions in Crypto appeared first on Profit Confidential.

Here is the original post:

Cryptocurrency News: Bitcoin ETFs, Andreessen Horowitz, and Contradictions in Crypto

Cryptocurrency News: Looking Past the Bithumb Crypto Hack

Another Crypto Hack Derails Recovery
Since our last report, hackers broke into yet another cryptocurrency exchange. This time the target was Bithumb, a Korean exchange known for high-flying prices and ultra-active traders.

While the hackers made off with approximately $31.5 million in funds, the exchange is working with relevant authorities to return the stolen tokens to their respective owners. In the event that some is still missing, the exchange will cover the losses. (Source: “Bithumb Working With Other Crypto Exchanges to Recover Hacked Funds,”.

The post Cryptocurrency News: Looking Past the Bithumb Crypto Hack appeared first on Profit Confidential.

Originally posted here:

Cryptocurrency News: Looking Past the Bithumb Crypto Hack

Cryptocurrency News: Vitalik Buterin Doesn’t Care About Bitcoin ETFs

Cryptocurrency News
While headline numbers look devastating this week, investors might take some solace in knowing that cryptocurrencies found their bottom at roughly $189.8 billion in market cap—that was the low point. Since then, investors put more than $20.0 billion back into the market.

During the rout, Ethereum broke below $300.00 and XRP fell below $0.30, marking yearly lows for both tokens. The same was true down the list of the top 100 biggest cryptos.

Altcoins took the brunt of the hit. BTC Dominance, which reveals how tightly investment is concentrated in Bitcoin, rose from 42.62% to 53.27% in just one month, showing that investors either fled altcoins at higher.

The post Cryptocurrency News: Vitalik Buterin Doesn’t Care About Bitcoin ETFs appeared first on Profit Confidential.

Read the rest here:

Cryptocurrency News: Vitalik Buterin Doesn’t Care About Bitcoin ETFs

Cryptocurrency News: New Exchanges Could Boost Crypto Liquidity

Cryptocurrency News
Even though the cryptocurrency news was upbeat in recent days, the market tumbled after the U.S. Securities and Exchange Commission (SEC) rejected calls for a Bitcoin (BTC) exchange-traded fund (ETF).

That news came as a blow to investors, many of whom believe the ETF would open the cryptocurrency industry up to pension funds and other institutional investors. This would create a massive tailwind for cryptos, they say.

So it only follows that a rejection of the Bitcoin ETF should send cryptos tumbling, correct? Well, maybe you can follow that logic. To me, it seems like a dramatic overreaction.

I understand that legitimizing cryptos is important. But.

The post Cryptocurrency News: New Exchanges Could Boost Crypto Liquidity appeared first on Profit Confidential.

Read more:

Cryptocurrency News: New Exchanges Could Boost Crypto Liquidity

Cryptocurrency News: Bitcoin ETF Rejection, AMD Microchip Sales, and Hedge Funds

Cryptocurrency News
Although cryptocurrency prices were heating up last week (Bitcoin, especially), regulators poured cold water on the rally by rejecting calls for a Bitcoin exchange-traded fund (ETF). This is the second time that the proposal fell on deaf ears. (More on that below.)

Crypto mining ran into similar trouble, as you can see from Advanced Micro Devices, Inc.‘s (NASDAQ:AMD) most recent quarterly earnings. However, it wasn’t all bad news. Investors should, for instance, be cheering the fact that hedge funds are ramping up their involvement in cryptocurrency markets.

Without further ado, here are those stories in greater detail.
ETF Rejection.

The post Cryptocurrency News: Bitcoin ETF Rejection, AMD Microchip Sales, and Hedge Funds appeared first on Profit Confidential.

Read more here:

Cryptocurrency News: Bitcoin ETF Rejection, AMD Microchip Sales, and Hedge Funds

Cryptocurrency News: What You Need to Know This Week

Cryptocurrency News
Cryptocurrencies traded sideways since our last report on cryptos. However, I noticed something interesting when playing around with Yahoo! Finance’s cryptocurrency screener: There are profitable pockets in this market.

Incidentally, Yahoo’s screener is far superior to the one on CoinMarketCap, so if you’re looking to compare digital assets, I highly recommend it.

But let’s get back to my epiphany.

In the last month, at one point or another, most crypto assets on our favorites list saw double-digit increases. It’s true that each upswing was followed by a hard crash, but investors who rode the trend would have made a.

The post Cryptocurrency News: What You Need to Know This Week appeared first on Profit Confidential.

Go here to read the rest:

Cryptocurrency News: What You Need to Know This Week

Aerospace | Thales Group

In Aerospace, governments, airports, airlines, pilots, crews and passengers rely on Thales to make flight safer, easier and more efficient.We do this by designing, delivering and supporting the systems that keep our skies running. From air traffic management, training and simulation solutions, nose-to-tail aircraft connectivity and in-flight services, we enable and connect all parts of the aerospace ecosystem in the air, on the ground, and in between.Whatever it takes.

Here is the original post:

Aerospace | Thales Group

Aerospace – Wikipedia

Aerospace is the human effort in science, engineering and business to fly in the atmosphere of Earth (aeronautics) and surrounding space (astronautics). Aerospace organizations research, design, manufacture, operate, or maintain aircraft or spacecraft. Aerospace activity is very diverse, with a multitude of commercial, industrial and military applications.

Aerospace is not the same as airspace, which is the physical air space directly above a location on the ground. The beginning of space and the ending of the air is considered as 100km above the ground according to the physical explanation that the air pressure is too low for a lifting body to generate meaningful lift force without exceeding orbital velocity.[1]

In most industrial countries, the aerospace industry is a cooperation of public and private industries. For example, several countries have a civilian space program funded by the government through tax collection, such as National Aeronautics and Space Administration in the United States, European Space Agency in Europe, the Canadian Space Agency in Canada, Indian Space Research Organisation in India, Japanese Aeronautics Exploration Agency in Japan, RKA in Russia, China National Space Administration in China, SUPARCO in Pakistan, Iranian Space Agency in Iran, and Korea Aerospace Research Institute (KARI) in South Korea.

Along with these public space programs, many companies produce technical tools and components such as spaceships and satellites. Some known companies involved in space programs include Boeing, Airbus, SpaceX, Lockheed Martin, MacDonald Dettwiler and Northrop Grumman. These companies are also involved in other areas of aerospace such as the construction of aircraft.

Modern aerospace began with Engineer George Cayley in 1799. Cayley proposed an aircraft with a “fixed wing and a horizontal and vertical tail,” defining characteristics of the modern airplane.[2]

The 19th century saw the creation of the Aeronautical Society of Great Britain (1866), the American Rocketry Society, and the Institute of Aeronautical Sciences, all of which made aeronautics a more serious scientific discipline.[2] Airmen like Otto Lilienthal, who introduced cambered airfoils in 1891, used gliders to analyze aerodynamic forces.[2] The Wright brothers were interested in Lilienthal’s work and read several of his publications.[2] They also found inspiration in Octave Chanute, an airman and the author of Progress in Flying Machines (1894).[2] It was the preliminary work of Cayley, Lilienthal, Chanute, and other early aerospace engineers that brought about the first powered sustained flight at Kitty Hawk, North Carolina on December 17, 1903, by the Wright brothers.

War and science fiction inspired great minds like Konstantin Tsiolkovsky and Wernher von Braun to achieve flight beyond the atmosphere.

The launch of Sputnik 1 in October 1957 started the Space Age, and on July 20, 1969 Apollo 11 achieved the first manned moon landing.[2] In April 1981, the Space Shuttle Columbia launched, the start of regular manned access to orbital space. A sustained human presence in orbital space started with “Mir” in 1986 and is continued by the “International Space Station”.[2] Space commercialization and space tourism are more recent focuses in aerospace.

Aerospace manufacturing is a high-technology industry that produces “aircraft, guided missiles, space vehicles, aircraft engines, propulsion units, and related parts”.[3] Most of the industry is geared toward governmental work. For each original equipment manufacturer (OEM), the US government has assigned a Commercial and Government Entity (CAGE) code. These codes help to identify each manufacturer, repair facilities, and other critical aftermarket vendors in the aerospace industry.

In the United States, the Department of Defense and the National Aeronautics and Space Administration (NASA) are the two largest consumers of aerospace technology and products. Others include the very large airline industry. The aerospace industry employed 472,000 wage and salary workers in 2006.[4] Most of those jobs were in Washington state and in California, with Missouri, New York and Texas also being important. The leading aerospace manufacturers in the U.S. are Boeing, United Technologies Corporation, SpaceX, Northrop Grumman and Lockheed Martin. These manufacturers are facing an increasing labor shortage as skilled U.S. workers age and retire. Apprenticeship programs such as the Aerospace Joint Apprenticeship Council (AJAC) work in collaboration with Washington state aerospace employers and community colleges to train new manufacturing employees to keep the industry supplied.

Important locations of the civilian aerospace industry worldwide include Washington state (Boeing), California (Boeing, Lockheed Martin, etc.); Montreal, Quebec, Canada (Bombardier, Pratt & Whitney Canada); Toulouse, France (Airbus/EADS); Hamburg, Germany (Airbus/EADS); and So Jos dos Campos, Brazil (Embraer), Quertaro, Mexico (Bombardier Aerospace, General Electric Aviation) and Mexicali, Mexico (United Technologies Corporation, Gulfstream Aerospace).

In the European Union, aerospace companies such as EADS, BAE Systems, Thales, Dassault, Saab AB and Leonardo S.p.A. (formerly Finmeccnica)[5] account for a large share of the global aerospace industry and research effort, with the European Space Agency as one of the largest consumers of aerospace technology and products.

In India, Bangalore is a major center of the aerospace industry, where Hindustan Aeronautics Limited, the National Aerospace Laboratories and the Indian Space Research Organisation are headquartered. The Indian Space Research Organisation (ISRO) launched India’s first Moon orbiter, Chandrayaan-1, in October 2008.

In Russia, large aerospace companies like Oboronprom and the United Aircraft Building Corporation (encompassing Mikoyan, Sukhoi, Ilyushin, Tupolev, Yakovlev, and Irkut which includes Beriev) are among the major global players in this industry. The historic Soviet Union was also the home of a major aerospace industry.

The United Kingdom formerly attempted to maintain its own large aerospace industry, making its own airliners and warplanes, but it has largely turned its lot over to cooperative efforts with continental companies, and it has turned into a large import customer, too, from countries such as the United States. However, the UK has a very active aerospace sector, including the second largest defence contractor in the world, BAE Systems, supplying fully assembled aircraft, aircraft components, sub-assemblies and sub-systems to other manufacturers, both in Europe and all over the world.

Canada has formerly manufactured some of its own designs for jet warplanes, etc. (e.g. the CF-100 fighter), but for some decades, it has relied on imports from the United States and Europe to fill these needs. However Canada still manufactures some military aircraft although they are generally not combat capable. Another notable example was the late 1950s development of the Avro Canada CF-105 Arrow, a supersonic fighter-interceptor that was cancelled in 1959 a highly controversial decision.

France has continued to make its own warplanes for its air force and navy, and Sweden continues to make its own warplanes for the Swedish Air Forceespecially in support of its position as a neutral country. (See Saab AB.) Other European countries either team up in making fighters (such as the Panavia Tornado and the Eurofighter Typhoon), or else to import them from the United States.

Pakistan has a developing aerospace engineering industry. The National Engineering and Scientific Commission, Khan Research Laboratories and Pakistan Aeronautical Complex are among the premier organizations involved in research and development in this sector. Pakistan has the capability of designing and manufacturing guided rockets, missiles and space vehicles. The city of Kamra is home to the Pakistan Aeronautical Complex which contains several factories. This facility is responsible for manufacturing the MFI-17, MFI-395, K-8 and JF-17 Thunder aircraft. Pakistan also has the capability to design and manufacture both armed and unarmed unmanned aerial vehicles.

In the People’s Republic of China, Beijing, Xi’an, Chengdu, Shanghai, Shenyang and Nanchang are major research and manufacture centers of the aerospace industry. China has developed an extensive capability to design, test and produce military aircraft, missiles and space vehicles. Despite the cancellation in 1983 of the experimental Shanghai Y-10, China is still developing its civil aerospace industry.

The aircraft parts industry was born out of the sale of second-hand or used aircraft parts from the aerospace manufacture sector. Within the United States there is a specific process that parts brokers or resellers must follow. This includes leveraging a certified repair station to overhaul and “tag” a part. This certification guarantees that a part was repaired or overhauled to meet OEM specifications. Once a part is overhauled its value is determined from the supply and demand of the aerospace market. When an airline has an aircraft on the ground, the part that the airline requires to get the plane back into service becomes invaluable. This can drive the market for specific parts. There are several online marketplaces that assist with the commodity selling of aircraft parts.

In the aerospaces & defense industry, a lot of consolidation has appeared over the last couple of decades. Between 1988 and 2011, worldwide more than 6,068 mergers & acquisitions with a total known value of 678 bil. USD have been announced.[6] The largest transactions have been: the acquisition of Goodrich Corporation by United Technologies Corporation for 16.2 bil. USD in 2011,[7] Allied Signal merged with Honeywell in a stock swap valued 15.6 bil. USD in 1999,[8] the merger of Boeing with McDonnell valued at 13.4 bil. USD in 1996,[9] Marconi Electronic Systems, a subsidiary of GEC, was acquired by British Aerospace for 12.9 bil. USD in 1999[10] (now called: BAE Systems), and Raytheon acquired Hughes Aircraft for 9.5 bil. USD in 1997.

Functional safety relates to a part of the general safety of a system or a piece of equipment. It implies that the system or equipment can be operated properly and without causing any danger, risk, damage or injury.

Functional safety is crucial in the aerospace industry, which allows no compromises or negligence. In this respect, supervisory bodies, such as the European Aviation Safety Agency (EASA),[11] regulate the aerospace market with strict certification standards. This is meant to reach and ensure the highest possible level of safety. The standards AS 9100 in America, EN 9100 on the European market or JISQ 9100 in Asia particularly address the aerospace and aviation industry. These are standards applying to the functional safety of aerospace vehicles. Some companies are therefore specialized in the certification, inspection verification and testing of the vehicles and spare parts to ensure and attest compliance with the appropriate regulations.

Spinoffs refer to any technology that is a direct result of coding or products created by NASA and redesigned for an alternate purpose.[12] These technological advancements are one of the primary results of the aerospace industry, with $5.2 billion worth of revenue generated by spinoff technology, including computers and cellular devices.[12] These spinoffs have applications in a variety of different fields including medicine, transportation, energy, consumer goods, public safety and more.[12] NASA publishes an annual report called Spinoffs, regarding many of the specific products and benefits to the aforementioned areas in an effort to highlight some of the ways funding is put to use.[13] For example, in the most recent edition of this publication, Spinoffs 2015, endoscopes are featured as one of the medical derivations of aerospace achievement.[12] This device enables more precise and subsequently cost-effective neurosurgery by reducing complications through a minimally invasive procedure that abbreviates hospitalization.[12]

See more here:

Aerospace – Wikipedia

The Aerospace Corporation – Official Site

Advanced Technology. Objective Analysis. Innovative Solutions.

As an independent, nonprofit corporation operating the only federally funded research and development center for the space enterprise, The Aerospace Corporation performs objective technical analyses and assessments for a variety of government, civil, and commercial customers. With more than five decades of experience, Aerospace provides leadership and support in all fields and disciplines of research, design, development, acquisition, operations, and program management.

Original post:

The Aerospace Corporation – Official Site


12345...102030...