Artificial Intelligence – University of Washington

David L. Waltz Vice President, Computer Science Research NEC Research Institute Bringing Common Sense, Expert Knowledge, and Superhuman Reasoning to Computers

Artificial Intelligence (AI) is the key technology in many of today's novel applications, ranging from banking systems that detect attempted credit card fraud, to telephone systems that understand speech, to software systems that notice when you're having problems and offer appropriate advice. These technologies would not exist today without the sustained federal support of fundamental AI research over the past three decades.

Although there are some fairly pure applications of AI -- such as industrial robots, or the IntellipathTM pathology diagnosis system recently approved by the American Medical Association and deployed in hundreds of hospitals worldwide -- for the most part, AI does not produce stand-alone systems, but instead adds knowledge and reasoning to existing applications, databases, and environments, to make them friendlier, smarter, and more sensitive to user behavior and changes in their environments. The AI portion of an application (e.g., a logical inference or learning module) is generally a large system, dependent on a substantial infrastructure. Industrial R&D, with its relatively short time-horizons, could not have justified work of the type and scale that has been required to build the foundation for the civilian and military successes that AI enjoys today. And beyond the myriad of currently deployed applications, ongoing efforts that draw upon these decades of federally-sponsored fundamental research point towards even more impressive future capabilities:

In a 1977 article, the late AI pioneer Allen Newell foresaw a time when the entire man-made world would be permeated by systems that cushioned us from dangers and increased our abilities: smart vehicles, roads, bridges, homes, offices, appliances, even clothes. Systems built around AI components will increasingly monitor financial transactions, predict physical phenomena and economic trends, control regional transportation systems, and plan military and industrial operations. Basic research on common sense reasoning, representing knowledge, perception, learning, and planning is advancing rapidly, and will lead to smarter versions of current applications and to entirely new applications. As computers become ever cheaper, smaller, and more powerful, AI capabilities will spread into nearly all industrial, governmental, and consumer applications.

Moreover, AI has a long history of producing valuable spin-off technologies. AI researchers tend to look very far ahead, crafting powerful tools to help achieve the daunting tasks of building intelligent systems. Laboratories whose focus was AI first conceived and demonstrated such well-known technologies as the mouse, time-sharing, high-level symbolic programming languages (Lisp, Prolog, Scheme), computer graphics, the graphical user interface (GUI), computer games, the laser printer, object-oriented programming, the personal computer, email, hypertext, symbolic mathematics systems (Macsyma, Mathematica, Maple, Derive), and, most recently, the software agents which are now popular on the World Wide Web. There is every reason to believe that AI will continue to produce such spin-off technologies.

Intellectually, AI depends on a broad intercourse with computing disciplines and with fields outside computer science, including logic, psychology, linguistics, philosophy, neuroscience, mechanical engineering, statistics, economics, and control theory, among others. This breadth has been necessitated by the grandness of the dual challenges facing AI: creating mechanical intelligence and understanding the information basis of its human counterpart. AI problems are extremely difficult, far more difficult than was imagined when the field was founded. However, as much as AI has borrowed from many fields, it has returned the favor: through its interdisciplinary relationships, AI functions as a channel of ideas between computing and other fields, ideas that have profoundly changed those fields. For example, basic notions of computation such as memory and computational complexity play a critical role in cognitive psychology, and AI theories of knowledge representation and search have reshaped portions of philosophy, linguistics, mechanical engineering and, control theory.

By the early 1980's an "expert systems" industry had emerged, and Japan and Europe dramatically increased their funding of AI research. In some cases, early expert systems success led to inflated claims and unrealistic expectations: while the technology produced many highly effective systems, it proved very difficult to identify and encode the necessary expertise. The field did not grow as rapidly as investors had been led to expect, and this translated into some temporary disillusionment. AI researchers responded by developing new technologies, including streamlined methods for eliciting expert knowledge, automatic methods for learning and refining knowledge, and common sense knowledge to cover the gaps in expert information. These technologies have given rise to a new generation of expert systems that are easier to develop, maintain, and adapt to changing needs.

Today developers can build systems that meet the advanced information processing needs of government and industry by choosing from a broad palette of mature technologies. Sophisticated methods for reasoning about uncertainty and for coping with incomplete knowledge have led to more robust diagnostic and planning systems. Hybrid technologies that combine symbolic representations of knowledge with more quantitative representations inspired by biological information processing systems have resulted in more flexible, human-like behavior. AI ideas also have been adopted by other computer scientists -- for example, "data mining," which combines ideas from databases, AI learning, and statistics to yield systems that find interesting patterns in large databases, given only very broad guidelines.

Authorizing Financial Transactions

Credit card providers, telephone companies, mortgage lenders, banks, and the U.S. Government employ AI systems to detect fraud and expedite financial transactions, with daily transaction volumes in the billions. These systems first use learning algorithms to construct profiles of customer usage patterns, and then use the resulting profiles to detect unusual patterns and take the appropriate action (e.g., disable the credit card). Such automated oversight of financial transactions is an important component in achieving a viable basis for electronic commerce.

Original post:

Artificial Intelligence - University of Washington

Related Posts

Comments are closed.