Nanomedicine enables all-in-one cancer treatment – nanotechweb.org

Cancer is a complex disease to treat, and yet the operating principle of many current treatments is to simply kill healthy cells a little slower than cancerous ones. In response, scientists at The University of Electronic Science and Technology of China have developed a sophisticated nanoparticle-based treatment. Their theranostic nanoparticles carry an anti-cancer drug cargo, and showcase multiple cutting-edge nanomedicine technologies to enhance the drug's efficacy, including selective drug delivery, photoactive agents, and even signal-jamming genetic material.

The researchers have designed each individual nanoparticle to be a toolbox for cancer therapy, able to passively and actively target tumours (Biomater. Sci. 2017 Advance Article). The nanoparticles can act as contrast agents for both magnetic resonance imaging and X-ray, they deliver a concentrated dose of anti-cancer drugs, and they also thwart the cancer's attempts at developing immunity to the drug. They even deliver a photosensitizer that can be used to specifically weaken cancerous tissue by photodynamic treatment.

Yiyao Liu and colleagues demonstrated the efficacy of their nanodevices in vitro and in vivo on a range of cell lines and on tumours in living mice. They found that their nanoparticle drug-delivery technique effectively stopped tumour growth, whereas tumours in mice treated with the drug alone grew at a rate half that of a control group that had not been treated.

The nanoparticles are complex, many layered spheres. Protected by a jacket of natural polymer is a nugget of silica, holey like a sponge and soaked in doxorubicin, a common anti-cancer drug, along with the photosensitizer. The polymer jacket is pH sensitive so that it falls off in the acidic microenvironment of the tumour, only then releasing the active cargo.

Doxorubicin has two flaws. Firstly, it works by slotting in-between DNA base pairs to stop the replication process needed for cells to divide. This kills cells that need to duplicate quickly, such as cancerous cells, but harms many healthy cell types too. Secondly, it triggers the body's natural defences, causing cells to over express p-glycoprotein, a microscale pump that removes toxic molecules like doxorubicin from cells, and making the drug less and less effective against cancer.

The scientists at The University of Electronic Science and Technology of China countered both of these flaws. Healthy cell exposure is reduced by the polymer jacket, which makes sure the drug is only released under the conditions expected in a tumour. The jacket itself is covered in signal-jamming RNA to inhibit the expression of the cellular pumps, keeping the doxorubicin trapped inside the cells to allow the drug to work for longer. This impressive display of multifunctional nanoparticle design and synthesis demonstrates the power of nanomedicine for producing synergistic effects, offering new solutions to previously unsurmountable problems.

Personalizing nanoparticles to better target tumours Optimising the killing of tumor cells by targeted CNTs Silica nanoparticles suppress tumour growth

View post:
Nanomedicine enables all-in-one cancer treatment - nanotechweb.org

Small Caps Daily Features NanoViricides’ Progress on Developing a Therapy To Help Kids Return To School Safely – Yahoo Finance

New York, New York--(Newsfile Corp. - August 31, 2020) - NanoViricides, Inc. (AMEX: NNVC) (the "Company") a global leader in the development of highly effective antiviral therapies based on a novel nanomedicines platform, has been the focus of recent coverage on leading financial news website and publisher, Small Caps Daily. NanoViricides' progress on developing a therapy to combat COVID-19 and also addressing the existing, global concern of how to get kids back to their classrooms, were two of the major topics covered in the Small Caps Daily article. Globally, nearly 850,000 lives have already been lost due to COVID-19, so it is very promising that NanoViricides' drug candidates showed strong effectiveness in the animal model as compared to remdesivir and have also outperformed favipiravir in its cell culture studies. NanoViricides has successfully carried out a safety and tolerability study on rats and the excellent results have now cleared the way for NanoViricides for moving forward to human clinical trials.

Key Takeaways from the SmallCapsDaily article featuring NanoViricides:

For more insight into NanoViricides, Inc., and to continue reading the Small Caps Daily featured article, please click here: https://smallcapsdaily.com/nanoviricides-working-to-get-kids-back-to-school-safely/.

About NanoViricides, Inc.

NanoViricides, Inc. (www.nanoviricides.com) is a development stage company that is creating special purpose nanomaterials for antiviral therapy. The Company's novel nanoviricide class of drug candidates are designed to specifically attack enveloped virus particles and to dismantle them. Our lead drug candidate is NV-HHV-101 with its first indication as dermal topical cream for the treatment of shingles rash. The Company is in the process of completing an IND application to the US FDA for this drug candidate. The Company cannot project an exact date for filing an IND because of its dependence on a number of external collaborators and consultants, and the effects of recent COVID-19 restrictions.

The Company is also developing drugs against a number of viral diseases including oral and genital Herpes, viral diseases of the eye including EKC and herpes keratitis, H1N1 swine flu, H5N1 bird flu, seasonal Influenza, HIV, Hepatitis C, Rabies, Dengue fever, and Ebola virus, among others. NanoViricides' platform technology and programs are based on the TheraCour nanomedicine technology of TheraCour, which TheraCour licenses from AllExcel. NanoViricides holds a worldwide exclusive perpetual license to this technology for several drugs with specific targeting mechanisms in perpetuity for the treatment of the following human viral diseases: Human Immunodeficiency Virus (HIV/AIDS), Hepatitis B Virus (HBV), Hepatitis C Virus (HCV), Rabies, Herpes Simplex Virus (HSV-1 and HSV-2), Varicella-Zoster Virus (VZV), Influenza and Asian Bird Flu Virus, Dengue viruses, Japanese Encephalitis virus, West Nile Virus and Ebola/Marburg viruses. The Company has executed a Memorandum of Understanding with TheraCour that provides a limited license for research and development for drugs against human coronaviruses. The Company intends to obtain a full license and has begun the process for the same. The Company's technology is based on broad, exclusive, sub-licensable, field licenses to drugs developed in these areas from TheraCour Pharma, Inc. The Company's business model is based on licensing technology from TheraCour Pharma Inc. for specific application verticals of specific viruses, as established at its foundation in 2005.

Forward-looking Statements

This press release contains forward-looking statements that reflect the Company's current expectation regarding future events. Actual events could differ materially and substantially from those projected herein and depend on a number of factors. Certain statements in this release, and other written or oral statements made by NanoViricides, Inc. are "forward-looking statements" within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934. You should not place undue reliance on forward-looking statements since they involve known and unknown risks, uncertainties and other factors which are, in some cases, beyond the Company's control and which could, and likely will, materially affect actual results, levels of activity, performance or achievements. The Company assumes no obligation to publicly update or revise these forward-looking statements for any reason, or to update the reasons actual results could differ materially from those anticipated in these forward-looking statements, even if new information becomes available in the future. Important factors that could cause actual results to differ materially from the company's expectations include, but are not limited to, those factors that are disclosed under the heading "Risk Factors" and elsewhere in documents filed by the company from time to time with the United States Securities and Exchange Commission and other regulatory authorities. Although it is not possible to predict or identify all such factors, they may include the following: demonstration and proof of principle in preclinical trials that a nanoviricide is safe and effective; successful development of our product candidates; our ability to seek and obtain regulatory approvals, including with respect to the indications we are seeking; the successful commercialization of our product candidates; and market acceptance of our products. FDA refers to US Food and Drug Administration. IND application refers to "Investigational New Drug" application. CMC refers to "Chemistry, Manufacture, and Controls".

Story continues

Read more from the original source:
Small Caps Daily Features NanoViricides' Progress on Developing a Therapy To Help Kids Return To School Safely - Yahoo Finance

Nanomedicine Biotherapeutics Journals | High Impact …

Nanomedicine is an application of nanotechnology which made its debut with greatly increased possibilities in the field of medicine. Nanomedicine desires to deliver research tools and clinically reformative devices in the near future.

Journal of Nanomedicine & Biotherapeutic Discovery is a scholarly open access journal publishing articles amalgamating broad range of fields of novel nano-medicine field with life sciences. Nanomedicine & Biotherapeutic Discovery is an international, peer-reviewed journal providing an opportunity to researchers and scientist to explore the advanced and latest research developments in the field of nanoscience & nanotechnology.

This is the best academic journal which focuses on the use nanotechnology in diagnostics and therapeutics; pharmacodynamics and pharmacokinetics of nanomedicine, drug delivery systems throughout the biomedical field, biotherapies used in diseases treatment including immune system-targeted therapies, hormonal therapies to the most advanced gene therapy and DNA repair enzyme inhibitor therapy. The journal also includes the nanoparticles, bioavailability, biodistribution of nanomedicines; delivery; imaging; diagnostics; improved therapeutics; innovative biomaterials; regenerative medicine; public health; toxicology; point of care monitoring; nutrition; nanomedical devices; prosthetics; biomimetics and bioinformatics.

The journal includes a wide range of fields in its discipline to create a platform for the authors to make their contribution towards the journal and the editorial office promises a peer review process for the submitted manuscripts for the quality of publishing. Biotherapeutics journals impact factors is mainly calculated based on the number of articles that undergo single blind peer review process by competent Editorial Board so as to ensure excellence, essence of the work and number of citations received for the same published articles.

The journal is using Editorial Manager System for quality peer review process. Editorial Manager is an online manuscript submission, review and tracking systems. Review processing is performed by the editorial board members of Journal of Nanomedicine & Biotherapeutic Discovery or outside experts; at least two independent reviewers approval followed by editor approval is required for acceptance of any citable manuscript. Authors may submit manuscripts and track their progress through the system, hopefully to publication. Reviewers can download manuscripts and submit their opinions to the editor. Editors can manage the whole submission/review/revise/publish process.

Submit manuscript at http://editorialmanager.com/chemistryjournals/ or send as an e-mail attachment to the Editorial Office atnanomedicine@molecularbiologyjournals.com

OMICS International through its Open Access Initiative is committed to make genuine and reliable contributions to the scientific community. OMICS International hosts over 700 leading-edge peer reviewed Open Access Journals and organizes over 1000 International Conferences annually all over the world. OMICS International journals have over 10 million readers and the fame and success of the same can be attributed to the strong editorial board which contains over 50000 eminent personalities that ensure a rapid, quality and quick review process. OMICS International signed agreements with more than 1000 International Societies to make healthcare information Open Access. OMICS International Conferences make the perfect platform for global networking as it brings together renowned speakers and scientists across the globe to a most exciting and memorable scientific event filled with much enlightening interactive sessions, world class exhibitions and poster presentations.

Antibody Drug Conjugates (ADC) is also called as smart bombs which are designed to target the cancer cells without disturbing the healthy cells. Nanotherapeutics, Lipid Nanoparticle siRNA Deliverey, Polymeric Nanoparticles, is used in the development of Antibody Drug Conjugates.

Related Journals of Antibodies Drug Conjugates

NanomedicineJournal, InternationalJournal of Nanomedicine, Journal of Nanomaterials & Molecular Nanotechnology, Artificial Cells,Nanomedicineand Biotechnology, Journal of Nanomedicine and Nanotechnology, European Journal ofNanomedicine, OpenNanomedicineJournal, NatureNanotechnology, Nanotechnology, Journal of Nanoscience and Nanotechnology

Nanomedicine is the application of nanotechnology (the engineering of tiny machines) to the prevention and treatment of disease in the human body. This evolving discipline has the potential to dramatically change medical science. Nanobiotechnology is the application of nanotechnology in biological fields. Nanotechnology is a multidisciplinary field that currently recruits approach, technology and facility available in conventional as well as advanced avenues of engineering, physics, chemistry and biology. Nanobiotechnology is like to be advantageous as: 1. Drug targeting can be achieved by taking advantage of the distinct pathophysiological features of diseased tissues 2. Various nanoproducts can be accumulated at higher concentrations than normal. Related Journals of Nanomedicine and Nanobiotechnology Nanomedicine:Nanotechnology, Biologyand Medicine, Journal of International Journal of Nanomedicine, Journal of Nanomedicine Research, Nanomedicine Journal, Nanomedicine Biotherapeutics Journals, European Journal of Nanomedicine

Nanomedicine is the application of nanotechnology (the engineering of tiny machines) to the prevention and treatment of disease in the human body. This evolving discipline has the potential to dramatically change medical science. Nanomedicine will employ molecular machine systems to address medical problems, and will use molecular knowledge to maintain and improve human health at the molecular scale. Nanomedicine will have extraordinary and far-reaching implications for the medical profession, for the definition of disease, for the diagnosis and treatment of medical conditions including aging, and ultimately for the improvement and extension of natural human biological structure and function. "Nanomedicine is the preservation and improvement of human health using molecular tools and molecular knowledge of the human body." Related Journals of Nanomedicine InternationalJournal of Nanomedicine, EuropeanJournal of Nanomedicine Nanomedicine, NanomedicineNanotechnology Journals, Journal of International Journal of Nanomedicine, Journal of Nanomedicine Research, Nanomedicine Journal, Nanomedicine Biotherapeutics Journals, European Journal of Nanomedicine

Nanotechnology is the branch of technology that deals with dimensions and tolerances of less than 100 nanometres, especially the manipulation of individual atoms and molecules. 'Nanotechnology' refers to the projected ability to construct items from the bottom up, using techniques and tools being developed today to make complete, high performance products. Nanotechnology is helping to considerably improve, even revolutionize, many technology and industry sectors: information technology, energy , environmental science, medicine, homeland security, food safety, and transportation, among many others. Related Journals of Nanotechnology

JournalJournal of Interdisciplinary Nanomedicine, Journalof Nanomedicine Research, International Journal of Green Nanotechnology, Beilstein Journal of Nanotechnology, Journal of Nanotechnology, Science and Applications, American Journal of Nanotechnology, Journal of Nano Research

Biotherapeutics are the essential tools of modern therapies derived from living organisms. The living organisms or the cells are modified such that they produce proteins that treat diseases and help to improve health. These help in preventing serious disease and illnesses, such as rheumatoid arthritis, multiple sclerosis and cancer.

Related Journals of Clinical Biotherapeutics

JSMNanotechnology & Nanomedicine, InternationalJournal of Nanomaterials, Journal of Genetic Syndromes & Gene Therapy, Clinical Therapeutics, Journal of Clinical Pharmacy and Therapeutics, Journal of Nanoscience and Nanotechnology, Nanomedicine:Nanotechnology, Biology, and Medicine, IEEE Transactions onNanotechnology, Journal of BiomedicalNanotechnology, International Journal ofNanotechnology, Beilstein Journal ofNanotechnology

Many approaches have been applied in preclinical and clinical strategies to overcome cancer for example chemosensitizers and nanomedicine. Nanomedicine is used as delivery vehicles that increase the influx of the drugs into the cancer cells. Carbon nanotubes are also a very important in the field of medicine due to its property of drug delivery systems and diagnostics. Experts in the field of nanomedicine say that there are wide ranges of uses of this field in the discovery of spherical nucleic acid nanoparticles, nanoscale engineering behind organs-on-a chip, precision medicine.

Related Journals of Experts Opinion on Nanomedicine

Nanotechnologyand Nanomedicine, InternationalJournal of Nanomedicine and Nanosurgery, Journalof Nanomedicine & Nanotechnology, International Journal ofGreen Nanotechnology, RSC Nanoscience and Nanotechnology, OpenNanomedicine Journal, Nanomaterials andNanotechnology,NanotechnologyPerceptions, NanoscienceandNanotechnology- Asia, International Journal ofGreenNanotechnology, RSC Nanoscience andNanotechnology

Nanobiotechnology has a great impact on the health issues of humans, as nanoparticles and nanomaterials have provided targeted drug delivery system. Thus, providing human race to fight against diseases such as cancer, diabetes, to combat antimicrobial resistance, and many more. Coming to the implications of this technology has few backdrops such as the nanopollutant which is generated during the manufacturing of nanomaterials, may lead to unwanted hazards to environment by penetrating into plants or animal tissue.

Related Journals of Implementation and Implications of Nanomedicine

Journalof Nanotechnology: Nanomedicine & Nanobiotechnology,AustinJournal of Nanomedicine & Nanotechnology, Biosensors Journal, Journal of Tissue Science & Engineering, Nanomedicine: Nanotechnology, Biology, and Medicine, Nanomedicine, International Journal of Nanomedicine, Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, Artificial Cells, Nanomedicine and Biotechnology, Journal of Nanomedicine and Nanotechnology, European Journal of Nanomedicine, Open Nanomedicine Journal

One particular type of nanoparticle involves the use of liposomes as drug molecule carriers. The diagram on the right shows a standard liposome. It has a phospholipid bilayer separating the interior from the exterior of the cell.

Related Journals of Lipid bases Nanoparticles

TheOpen Nanomedicine Journal, CancerNanomedicine

Nanobiopharmaceutics is the application of nanotechnology into the world of medicine. It is an inter-disciplinary field involving the usage of nanoparticles to deliver biopharmaceutical products into the body. It involves knowledge from nanobiotechnology, biotechnology and biopharmaceutics.

Related Journals of Nanobiopharmaceuticals

Journalof Nanotoxicology and Nanomedicine, GlobalJournal of Nanomedicine

Nanoemulisers are another form for nanoparticle delivery systems using oil-in-water emulsions done on a nano-scale. This process uses common biocompatible oils such as triglycerides and fatty acids, and combines them with water and surface-coating surfactants.

Related Journals of Nanoemulsions

HenryJournal of Nanoscience, Nanomedicine& Nanobiology, Journalof Biosensors & Bioelectronics, NanotechnologyLaw andBusiness, Journal ofNanotechnologyin Engineering andMedicine, Nanotechnologyand Precision Engineering,Nanomaterials andNanotechnology,NanotechnologyPerceptions, NanoscienceandNanotechnology- Asia International Journal ofGreenNanotechnology, RSC Nanoscience andNanotechnology

Targeted medicine for the treatment of cancer can be obtained with the application of nanotechnology in gene-delivery method. With the use of nanocarriers genes can be administered into the target cells. With the use of Solid lipid nanoparticles as potential tools for gene therapy, in vivo protein expression was observed after intravenous administration.

Related Journals of Nanomedical Tools in Gene Therapy

SM Journal of Nanotechnology and Nanomedicine, Nanomedicine Journal, Journal of Nanomaterials & Molecular Nanotechnology, Nano Research & Applications, IEEE Transactions onNanotechnology, Journal of BiomedicalNanotechnology, International Journal ofNanotechnology, Beilstein Journal ofNanotechnology, Recent Patents onNanotechnology, e-Journal of Surface Science andNanotechnology, Nanoscience andNanotechnologyLetters, Nanotechnology, Science and Applications

Disease diagnosis, target specific drug delivery, molecular imaging is possible with the application of nanotechnology in medicine. Nanoparticles are engineered in an extent that they get attracted to the diseased cells and allows for detection of disease. Nanomedicine is applicable in drug delivery, therapy techniques, diagnostic techniques, anti-microbial techniques, cell repair.

Related Journals of Nanomedicine Applications

NanomedicineJournal, InternationalJournal of Nanomedicine, Journal of Biomimetics Biomaterials and Tissue Engineering, Advances in Natural Sciences: Nanoscience and Nanotechnology, Nanotechnology Law and Business, Interdisciplinary Reviews:Nanomedicineand Nanobiotechnology, Artificial Cells,Nanomedicineand Biotechnology, Journal of Nanomedicine and Nanotechnology, European Journal ofNanomedicine, OpenNanomedicineJournal

Nanomedicine is a novel medical application extended in the field of cancer studies. A wide range of nanotechnology tools have provided platform for the early diagnosis, improved imaging and targeted therapies. Cancer nanomedicine has remained progressively applied in areas including nanodrug delivery systems, nanopharmaceuticals, and nanoanalytical contrast reagents in laboratory and animal model research.

Related Journals of Nanomedicine in Cancer

Nanomedicine:Nanotechnology, Biologyand Medicine, Journalof Nanomedicine & Nanotechnology, International JournalofNanotechnology, Beilstein Journal ofNanotechnology,Recent Patents onNanotechnology, e-Journal of Surface ScienceandNanotechnology, NanoscienceandNanotechnologyLetters, Nanotechnology, Science andApplications

Nanomedicine is playing a key role in the growing part of pharmaceutical research and development (R&D), largely in the form of nanoparticle-based delivery systems for drugs. Researchers are developing advanced drug delivery systems by researching drug conjugates and nanoformulations; polymer, lipid, peptide, and protein nanoparticles; biopharmaceutical protein engineering and chemical conjugation; and self-assembly and processing of nanomedicines.

Related Journals of Nanomedicine in Drug Discovery

InternationalJournal of Nanomedicine, EuropeanJournal of Nanomedicine Nanomedicine, Journalof Tissue Science & Engineering, Journal ofBiochips & Tissue Chips, Nanomedicine: Nanotechnology,Biology, and Medicine, Nanomedicine, International JournalofNanomedicine, InterdisciplinaryReviews:Nanomedicineand Nanobiotechnology, ArtificialCells,Nanomedicineand Biotechnology, Journal ofNanomedicine and Nanotechnology, European JournalofNanomedicine

Nanoparticles are 1 and 100 nanometers in size particles that are used in medicine which delivers drug specifically to the target cells. These nanoparticles have many advantages over the age old drug delivery systems as nanoparticles are more specific drug delivery systems, reduced toxic effects while continuing therapeutic effects, biocompatible and faster and safe medicine. Some of the major application of these nanoparticles are protein filled nanoparticles, cerium oxide nanoparticles that acts as an antioxidant, chemotherapy drugs attached to nanodiamonds, nickel nanoparticles and a polymer, low cost electrodes for fuel cells.

Related Journals of Nanoparticles

Journalof Interdisciplinary Nanomedicine, Journalof Nanomedicine Research, Journalof Nanomedicine & Nanotechnology, Nanotechnology, Scienceand Applications, Advances in Natural Sciences: NanoscienceandNanotechnology, NanotechnologyLaw andBusiness, Journal ofNanotechnologyin Engineering andMedicine, Nanotechnologyand Precision Engineering,CancerNanotechnology, Journal ofNanotechnology,International Journal of GreenNanotechnology: Biomedicine

Polymeric nanoparticle delivery is the mechanism for the transport of polymer-based nanoparticles across the blood-brain barrier and has been characterized as receptor-mediated endocytosis by the brain capillary endothelial cells.

Related Journals of Polymeric Nanoparticle Delivery

JSMNanotechnology & Nanomedicine, InternationalJournal of Nanomaterials, Journalof Nanomedicine & Nanotechnology, Nanomedicine:Nanotechnology, Biology, and Medicine, Nanomedicine, InternationalJournal ofNanomedicine, InterdisciplinaryReviews:Nanomedicineand Nanobiotechnology, ArtificialCells,Nanomedicineand Biotechnology, Journal ofNanomedicine and Nanotechnology, European JournalofNanomedicine, OpenNanomedicineJournal

Polymeric nanoparticles, self-emulsifying delivery systems, liposomes, microemulsions, micellar solutions and recently solid lipid nanoparticles (SLN) have been exploited as probable possibilities as carriers for oral intestinal lymphatic delivery.

Related Journals of Solid Lipid Nanoparticles

Nanotechnologyand Nanomedicine, InternationalJournal of Nanomedicine and Nanosurgery, Journalof Biosensors & Bioelectronics,OpenNanomedicineJournal, NatureNanotechnology,Nanotechnology, Journal of Nanoscience and Nanotechnology,Nanomedicine:Nanotechnology, Biology, and Medicine, IEEETransactions onNanotechnology, Journal ofBiomedicalNanotechnology, International JournalofNanotechnology

Immunotherapy has a great significance in the cancer therapy. Nanotechnology-based therapeutic agents and drug carriers are formulated so that they attack only the cancer cells. Nanocarriers using the DNA, RNA, proteins have shown better results in cancer immunotherapy.

Related Journals of Therapeutic Agents

Journalof Nanotechnology: Nanomedicine & Nanobiotechnology,AustinJournal of Nanomedicine & Nanotechnology, Journal of Genetic Syndromes & Gene Therapy, Journal of BiomedicalNanotechnology, International Journal ofNanotechnology, Beilstein Journal ofNanotechnology, Recent Patents onNanotechnology, e-Journal of Surface Science andNanotechnology, Nanoscience andNanotechnologyLetters, Nanotechnology, Science and Applications, Advances in Natural Sciences: Nanoscience andNanotechnology

Nanotoxicology is the study of the toxicity of nanomaterials. Because of quantum size effects and large surface area to volume ratio, nanomaterials have unique properties compared with their larger counterparts.

Related Journals of Toxicity of Nanomaterials

TheOpen Nanomedicine Journal, CancerNanomedicine, Journalof Biosensors & Bioelectronics, JournalofNanotechnology, International Journal ofGreenNanotechnology: Biomedicine, NanomaterialsandNanotechnology, NanotechnologyPerceptions,International Journal of GreenNanotechnology: Physics andChemistry, Nanoscience andNanotechnology- Asia

See the rest here:
Nanomedicine Biotherapeutics Journals | High Impact ...

Nominations invited for $250000 Kabiller Prize in Nanoscience and Nanomedicine – Northwestern University NewsCenter

EVANSTON - Northwestern Universitys International Institute for Nanotechnology (IIN) is now accepting nominations for two prestigious international prizes: the $250,000 Kabiller Prize in Nanoscience and Nanomedicine and the $10,000 Kabiller Young Investigator Award in Nanoscience and Nanomedicine.

The deadline for nominations is May 15, 2017. Details are available on the IIN website.

Our goal is to recognize the outstanding accomplishments in nanoscience and nanomedicine that have the potential to benefit all humankind, said David G. Kabiller, a Northwestern trustee and alumnus. He is a co-founder of AQR Capital Management, a global investment management firm in Greenwich, Connecticut.

The two prizes, awarded every other year, were established in 2015 through a generous gift from Kabiller. Current Northwestern-affiliated researchers are not eligible for nomination until 2018 for the 2019 prizes.

The Kabiller Prize the largest monetary award in the world for outstanding achievement in the field of nanomedicine celebrates researchers who have made the most significant contributions to the field of nanotechnology and its application to medicine and biology.

The Kabiller Young Investigator Award recognizes young emerging researchers who have made recent groundbreaking discoveries with the potential to make a lasting impact in nanoscience and nanomedicine.

The IIN at Northwestern University is a hub of excellence in the field of nanotechnology, said Kabiller, chair of the IIN executive council and a graduate of Northwesterns Weinberg College of Arts and Sciences and Kellogg School of Management. As such, it is the ideal organization from which to launch these awards recognizing outstanding achievements that have the potential to substantially benefit society.

Nanoparticles for medical use are typically no larger than 100 nanometers comparable in size to the molecules in the body. At this scale, the essential properties (e.g., color, melting point, conductivity, etc.) of structures behave uniquely. Researchers are capitalizing on these unique properties in their quest to realize life-changing advances in the diagnosis, treatment and prevention of disease.

Nanotechnology is one of the key areas of distinction at Northwestern, said Chad A. Mirkin, IIN director and George B. Rathmann Professor of Chemistry in Weinberg. We are very grateful for Davids ongoing support and are honored to be stewards of these prestigious awards.

An international committee of experts in the field will select the winners of the 2017 Kabiller Prize and the 2017 Kabiller Young Investigator Award and announce them in September.

The recipients will be honored at an awards banquet Sept. 27 in Chicago. They also will be recognized at the 2017 IIN Symposium, which will include talks from prestigious speakers, including 2016 Nobel Laureate in Chemistry Ben Feringa, from the University of Groningen, the Netherlands.

The winner of the inaugural Kabiller Prize, in 2015, was Joseph DeSimone the Chancellors Eminent Professor of Chemistry at the University of North Carolina at Chapel Hill and the William R. Kenan Jr. Distinguished Professor of Chemical Engineering at North Carolina State University and of Chemistry at UNC-Chapel Hill.

DeSimone was honored for his invention of particle replication in non-wetting templates (PRINT) technology that enables the fabrication of precisely defined, shape-specific nanoparticles for advances in disease treatment and prevention. Nanoparticles made with PRINT technology are being used to develop new cancer treatments, inhalable therapeutics for treating pulmonary diseases, such as cystic fibrosis and asthma, and next-generation vaccines for malaria, pneumonia and dengue.

Warren Chan, professor at the Institute of Biomaterials and Biomedical Engineering at the University of Toronto, was the recipient of the inaugural Kabiller Young Investigator Award, also in 2015. Chan and his research group have developed an infectious disease diagnostic device for a point-of-care use that can differentiate symptoms.

In total, the IIN represents and unites more than $1 billion in nanotechnology infrastructure, research and education. These efforts, plus those of many other groups, have helped transition nanomedicine from a laboratory curiosity to life-changing technologies that are positively impacting the world.

The IIN houses numerous centers and institutes, including the Ronald and JoAnne Willens Center for Nano Oncology, an NIH Center of Cancer Nanotechnology Excellence, an Air Force Center of Excellence for Advanced Bioprogrammable Nanomaterials, and the Convergence Science & Medicine Institute.

More here:
Nominations invited for $250000 Kabiller Prize in Nanoscience and Nanomedicine - Northwestern University NewsCenter

Woogs World: Lots to learn from Westporters new book – Westport News

Elephants have many more cells than humans. However, they dont get cancer.

Eagles can see eight times the magnification of our own eyes. They also perceive ultraviolet light.

Bacteria defend themselves against viral attacks by cutting their own DNA.

Human beings can learn a lot from other living things as small as microbes, as large as elephants and whales.

And what better way to learn about what we can learn than by reading Michael Hehenbergers new book. The longtime Westport resident has just published Our Animal Connection.

In 339 pages, it explores the many ways we can learn about different species adaptations to extreme conditions, their evolution of special capabilities, and the ways they defend against predators and diseases. By studying the vast variety of life forms on earth particularly the top performers Hehenberger hopes that humans can learn and benefit.

Its a dense book, but the author knows his stuff. Hes spent a lifetime studying scientific questions, then coming up with solutions, and hes done it on both molecular and cosmic scales.

Born in Austria, Hehenberger earned a Ph.D. in quantum chemistry at the esteemed Uppsala University in Sweden. He worked for IBM in Europe, specializing in computational chemistry and biology, structural engineering, campus networks and high-performance computing. He moved in 1993 to their research center in San Jose, Calif.

Throughout his IBM career, Hehenberger led collaborations with academic and industrial life sciences organizations. The partnerships were based on joint desires to extend the frontiers of molecular biology, information-based medicine, bio-pharmaceutical research, unstructured data analytics, genomics and nanomedicine.

Three years later, he came east. IBM has facilities in Armonk, Yorktown Heights, White Plains and Somers, N.Y.. But, like many of the companys employees, he found Fairfield County taxes and housing better than Westchesters. He joined the large IBM contingent living in Westport.

His wife met a Wilton Road neighbor, Arlene Skutch, and took painting classes with her. Hehenberger traveled often, and was less involved in the town.

But when he retired in 2013, he joined the Ys Men. Like many retirees in that organization, he kept working. He formed the HM NanoMed Partnership, which organizes conferences and pursues nonomedical and genomic research topics.

And Hehenberger decided to write a book.

Nanomedicine: Science, Business, and Impact was published two years later. Hehenberger describes nanotechnologys intersection with life sciences and healthcare with depth and breadth.

His audience was politicians and businesspeople, including pharmaceutical and biotech executives. The book good excellent feedback. But his publisher priced it high nearly $100 so sales were limited.

Hehenbergers daughter, who has worked with Johnson & Johnson, McKinsey and Harvard, has diabetes. Insulin was first extracted from pigs and cattle. Hehenberger donated a kidney to his daughter, but knows that additional help in fighting the disease could come from animals.

He planned his next book the one about what we can learn from animals as a collaborative effort with a colleague, Zhi Xia, and his daughter. But she got busy, starting a company for patients with chronic diseases, and raising a child, so only he and Zhi worked together.

Zhi is co-founder of BGI, one of the worlds foremost genome sequencing companies. He has published dozens of academic papers and 14 books. They are professional colleagues and share a love for mountains too. Together, theyve traveled to Tibet and the Mount Everest base camp.

The message of their new book, which just started shipping, is simple, Hehenberger says: We need to respect animals, and all living organisms. We can learn a lot from them.

While the human brain is impressive, he notes enabling us to invent microscopes to study tiny organisms and telescopes to search the universe our visual perception cant compare to birds of prey, or even certain insects.

Although we are proud of our ability to run, jump, swim and climb mountains, our best Olympic performances lag behind potential animal competitors.

Our resistance to diseases and the way we recover from injuries are other areas where human performance is not always iimpressive.

The audience for Our Animal Connection is, the author says, anyone interested in animals, science, evolution and our planet.

Unfortunately, it too is priced high: $75.95 for hardcover and $79.95 for Kindle. Hehenberger worries it wont reach as many readers as hed like (hes working on discounts: email mhehen@gmail.com. Hes also hoping for a paperback edition).

As for his passion for mountains, Hehenberger is in the process of comparing the DNA of legendary climbers, like Tibetans, with those of people who live at lower altitudes. The way that mountain dwellers have evolved to deal with hypoxia may have relevance for COPD and cancer.

Who knows? It may also be the subject of his next book.

Dan Woog is a Westport writer, and his Woog's World appears each Friday. He can be reached at dwoog@optonline.net. His personal blog is danwoog06880.com.

Excerpt from:
Woogs World: Lots to learn from Westporters new book - Westport News

Global Nanomedicine Market 2019 GE Healthcare, Johnson & Johnson, Mallinckrodt plc, Merck & Co. Inc., Nanosphere Inc., Pfizer Inc. – The…

Market Research Store has announced the addition of a new market intelligence report. The Nanomedicine report serves with all-inclusive, highly-effective, and thoroughly analyzed information in a well-organized manner, based on actual facts, about the Global Nanomedicine Market 2019. The whole information from the scratch to the financial and management level of the established industries associated with the Global Nanomedicine at the global level is initially acquired by the dedicated team.

The gathered data involves the information about the industrys establishment, type and the form of products it manufactures, annual sales and revenue generation, the demand of the manufactured product in the market, marketing trends followed by the industry, and a lot more important information. The industries majorly comprise the global leading industries that are putting their extreme efforts to maintain the hold over the highly-competitive Global Nanomedicine Market 2019, about which the thorough information is provided in the report.

Request Free Sample Global Nanomedicine Market 2019 Report @ http://www.mrsresearchgroup.com/report/170399#request-sample

Some of the Major Global Nanomedicine Market 2019 Players Are: Market_Manufacturers

GE Healthcare, Johnson & Johnson, Mallinckrodt plc, Merck & Co. Inc., Nanosphere Inc., Pfizer Inc., Sigma-Tau Pharmaceuticals Inc., Smith & Nephew PLC, Stryker Corp, Teva Pharmaceutical Industries Ltd., UCB (Union chimique belge) S.A

The industry analysts begin their task by compiling this huge pile of information, graphically expressing, anticipating the future market growth, offering the ways to improve the business, and many other important viewpoints explained by them in the Global Nanomedicine Market 2019 report. The report delivers the analytically data in several parts based on the fragments of the Nanomedicine Regenerative Medicine, In-vitro & In-vivo Diagnostics, Vaccines, Drug Delivery, Market its end-users, Clinical Cardiology, Urology, Genetics, Orthopedics, Ophthalmology,and others of the market; additionally,

The Global Nanomedicine Market 2019 report elucidates the comprehensive analysis of the market-derived on the basis of regional division [Latin America, North America, Asia Pacific, Middle & East Africa, and Europe]. The Global Nanomedicine Market 2019 report also delivers the accurately estimated pattern of CAGR to be followed by the market in the future. The numerous highlighted features and enactment of the Global Nanomedicine Market 2019 are examined based on the qualitative and quantitative technique to deliver the whole scenario of the current and future evaluation in a more-effective and better understandable way.

Inquire more about this report @www.mrsresearchgroup.com/report/170399#inquiry-for-buying

Major Key Points Covered in Nanomedicine Market 2019:

At that point, the report crosses the Global and Chinese major Nanomedicine contenders inside and out. In this area, the report speaks to the organization portfolio, item stipulation, limit, generation esteem, and Nanomedicine shares for each organization.

The study destinations are

Also, Research Report Examines:

Thanks for reading this article; you can also get individual chapter wise section or region wise report version like North America, Europe or Asia.

Sorry! The Author has not filled his profile.

See the original post:
Global Nanomedicine Market 2019 GE Healthcare, Johnson & Johnson, Mallinckrodt plc, Merck & Co. Inc., Nanosphere Inc., Pfizer Inc. - The...

Growth in Nanomedicine market-2017 trends, forecasts, analysis – satPRnews (press release)

The report firstly introduced the Nanomedicine basics: definitions, classifications, applications and industry chain overview; industry policies and plans; product specifications; manufacturing processes; cost structures and so on. Then it analyzed the worlds main region market conditions, including the product price, profit, capacity, production, capacity utilization, supply, demand and industry growth rate etc. In the end, the report introduced new project SWOT analysis, investment feasibility analysis, and investment return analysis.

Download sample pages of this report: http://www.kminsights.com/request-sample-1892

Nanomedicine is a branch of medicine that applies the knowledge and tools of nanotechnology to the prevention and treatment of disease. Nanomedicine involves the use of nanoscale materials, such as biocompatible nanoparticles and nanorobots, for diagnosis, delivery, sensing or actuation purposes in a living organism.

The ongoing market trends of Nanomedicine market and the key factors impacting the growth prospects are elucidated. With increase in the trend, the factors affecting the trend are mentioned with perfect reasons. Top manufactures, price, revenue, market share are explained to give a depth of idea on the competitive side.

Each and every segment type and their sub types are well elaborated to give a better idea about this market during the forecast period of 2017respectively.

Download sample pages of this report: http://www.kminsights.com/request-sample-1892

About Us:Key Market Insights is a stand-alone organization with a solid history of advancing and exchanging market research reports and logical surveys delivered by our numerous transnational accomplices, which incorporate both huge multinationals and littler, more expert concerns.

Contact:sales@kminsights.com+1 (888) 278-7681

View post:
Growth in Nanomedicine market-2017 trends, forecasts, analysis - satPRnews (press release)

Electroplating method makes conductive nanostraws for injecting into and sampling from cells – Chemical & Engineering News

Credit: ACS Appl. Mater. Interfaces

An array of platinum nanostraws can be used to deliver molecules to cells or sample their contents.

Hollow nanosized needles, or nanostraws, are a promising tool for opening up tiny, temporary holes in cell membranes to deliver molecules or sample a cells contents. Nanostraws could also deliver gene editors into cells for immunotherapy, cutting the need to use costly viruses for the job. But making nanostraws requires expensive manufacturing equipment in a clean room facility, and using nanostraws often requires applying a high voltage in order to open up the cell membrane. Now, researchers have developed a more affordable fabrication approach that can be done in an ordinary lab. Whats more, the new nanostraws are conductive, thus lowering the amount of voltage needed to levels less likely to damage cells (ACS Appl. Mater. Interfaces 2019, DOI: 10.1021/acsami.9b15619).

Researchers made earlier iterations of nanostraws with atomic layer deposition (ALD), which grows thin films of materials such as metal oxides one layer of atoms at a time. In their new approach, Xi Xie of Sun Yat-Sen University and colleagues replaced ALD with electroplating, a simple process which uses an electrical potential to deposit ions in a solution onto a surface.

Sign up for C&EN's must-read weekly newsletter

They first sputtered a thin layer of gold on the bottom surface of a polycarbonate template containing an array of pores in order to make a conductive base layer. Then they electroplated platinum, gold, or the conductive polymer poly(3,4-ethylenedioxythiophene)three common materials used in electrophysiology studiesfrom the top. The materials lined the pores of the template, creating the hollow nanostraws. The team then used mechanical polishing and oxygen plasma etching to remove the polycarbonate template, revealing an array of vertical nanostraws, each a few hundred nanometers in diameter. According to Xie, their method can work with templates of various pore sizes or pore densities, or with other plating materials.

Ciro Chiappini, a nanomedicine researcher at Kings College London, says this study is a needed and significant step toward developing affordable nanostraws.

Using a representative platinum nanostraw array, Xie and colleagues demonstrated that they could deliver a fluorescent dye into cultured human cells and extract intracellular materials to examine how the levels of an enzyme changed over time.

The conductivity of the new nanostraws allowed the researchers to open tiny pores in the cell membrane by applying a voltage of only 35 V, a safer range for cells compared with 1020 V needed when using nonconductive nanostraws.

These straws could make cellular treatments such as CAR-T therapy faster, safer, and cheaper, says Nicholas A. Melosh, a materials scientist at Stanford University who has done nanostraw research. Typical immunotherapy delivers therapy to a patients immune cells using viruses, which is costly and carries the risk of dangerous immune responses once the cells are put back into the patient, he says. Nanostraws could potentially deliver the necessary therapies to cells without the need for viruses.

Continue reading here:
Electroplating method makes conductive nanostraws for injecting into and sampling from cells - Chemical & Engineering News

Nanomedicine: A Vast Horizon on a Molecular Landscape – Part IX, Organs-on-a-chip II – Lexology (registration)

This is the ninth article in a review series on Nanomedicine. We reviewed the major research and entrepreneurial development of nanomedicine and the relevant patent landscape (Part I and Part II). The first topic we discussed was Organs-on-a-chip (Part III). Here, we continue our discussion in this field with focus on entrepreneurial developments. We also have other reviews about nanoparticles for drug delivery (Part IV), cancer therapeutics (Part V), and bio-imaging (Part VI). We also included a discussion about functional nanoparticles: quantum dots (Part VII) and magnetic nanoparticles (Part VIII). As in the past, those patent documents cited in the article are summarized in a table at the end.

Recently, Draper announced a three-year agreement with Pfizer. This collaboration focuses on developing effective disease models for testing potential drug candidates based on microphysiological systems, also known as organs-on-a-chip.

The organs-on-a-chip technology is a three-dimensional microfluidic based multi-cell co-culture system that models the physiological, mechanical, and molecular environment of the human body and mimics the physiological functions of human organs. This technology offers unique in vitro disease models for new drug screening and toxicology testing. This technology has attracted attentions not only from academic institutes but also from the pharmaceutical industry. One of the main reasons for this interest is the potential cost and time savings for drug research and the development process. As required by the FDA drug approval process, new drug chemical entities are tested in animals before going into human Phase I testing for the drug approval process. The preclinical animal testing process is tedious and extremely expensive. Additionally, animal models are not always predictive for characterizing drug safety in humans. About 40% of drug compounds fail in Phase I clinical trials (Clinical Development Success Rates 2006-2015, BIO Industry Analysis, June 2016). To address these challenges, organs-on-a-chip has been proposed as a novel method to develop human disease models and replace preclinical animal testing.

We have briefly reviewed the research development and IP landscape in organs-on-a-chip. Here we would like to focus on the entrepreneurial developments in this field. As in the past, those patent documents cited in the article are summarized in the table at the end.

AxoSim Technologies

AxoSim is a New Orleans based startup launched in 2014. Its main pipeline is a Nerve-On-A-Chip, which is a 3D cell-based model mimicking living nerve tissue. It aims at preclinical prediction of neurological safety and efficacy in the early stages of drug development. This technology was developed from Dr. Michael J. Moores group at Tulane University (US 20150112244).

Draper

The Charles Stark Draper Laboratory is an American not-for-profit research and development organization, having a long history from 1932. In 2009, Draper initiated a new area of medical systems. Draper closely collaborated with scientists at MIT to develop microphysiological systems to emulate human organs and create disease models. At the end of 2016, Draper announced a 3-year agreement with Pfizer, using the organs-on-a-chip technology to facilitate pre-clinical drug development with a focus on personalized medicine. Currently Draper has built three microphysiological systems for modeling liver, vasculature and gastrointestinal organs (US 7,670,797, US 8,951,302, US 9,067,179, US 9,528,082).

Emulate Bio

Emulate Bio is a Wyss Institute spin-off company launched in 2014. It focuses on developing multiple organ-on-a-chip systems to model human physiological systems. The technology is based on discoveries in Dr. Donald Ingbers lab, using models of the lung, liver, intestine, skin and brain (US 8,647,861). This lab is also interested in other organ systems such as the kidney and heart. In 2015, Emulate collaborated with Johnson & Johnson and Merck using organs-on-a-chip for drug discovery and development processes. In 2016, Emulate announced a collaboration with Seres Therapeutics to investigate Novel Microbiome Therapeutics for inflammatory Bowel Disease.

Hepregen

Hepregen is a MIT spin-off company founded in 2007, based on a technique developed in Dr. Sangeeta Bhatias lab (US 6,133,030). Its main product, HepetoPac Assay, utilizes a micropatterned hepatocyte co-culture system to model the metabolic activities of a liver system and was released in 2013. Their other pipeline product is HepetoMune, targeting an inflamed human liver model.

HREL

HREL is a Merck supported company, which was incubated in New Jersey from 2007-2011. Its technology originated from Dr. Michael Shulers group at Cornell University (US 7,288,405 and US 8,748,180). In 2013, HREL launched three liver-on-a-chip products for human, rat and dog. HREL has also established a collaboration with Sanofi for pre-clinic drug development.

InSphero

InSphero is a Swiss company founded in 2009. They use a scaffold-free 3D cell culture technique to generate self-assembled microtissues, emulating human organ systems (US 9,267,103 and WO/2017/001680). Their current pipelines include liver, pancreas, tumor, and skin microtissue systems and in vitro toxicology and drug discovery services.

Nortis

Nortis is a Seattle based company, spun out of the University of Washington in 2012. Nortis developed a microfluidic kidney-on-a-chip for drug testing and launched its commercial product on 2015 (US 7,622,298 and US 20150240194A1).

Tara Biosystems

Tara Biosystems is a New York-based Columbia University spin out company founded in 2014. Their focus is on developing a heart-on-a-chip system. The technology is based on research from Dr. Gordana Vunjak-Novakovics group at Columbia University and Dr. Milica Radisics group at Toronto University (US 20170002330A1 and US 20160282338). Tara Biosystems uses a Biowire platform, to introduce electrical stimulation on a microchip to stimulate stem cells to mature into heart tissue. This microtissue mimics adult heart muscles, offering a platform for drug discovery, cardiac toxicology, and personalized cardiology.

TissUse

TissUse is a Berlin, Germany-based company developing a Multi-Organ-Chip platform based on technology discovered in Dr. Roland Lausters lab at Technische Universitat Berlin (US 20130295598). This company uses a multi-organ-chip as a platform to emulate human metabolic activities and accelerate the development of pharmaceutical, chemical, cosmetic, and personalized medical products. Currently, TissUse has announced their 2-Organ-Chip and 4-Organ-Chip products, involving simultaneously culturing from 2 to 4 different organ equivalents on a single chip connected to each other by perfusion channels or vasculature. Their next goal is to develop a human-on-a-chip system, with a larger number of organs cocultured on a single chip.

The Charles Stark Draper Laboratory

The Charles Stark Draper Laboratory

Massachusetts Institute of Technology

Massachusetts Institute of Technology

Wolfgang MORITZ;

Jens KELM

See more here:
Nanomedicine: A Vast Horizon on a Molecular Landscape - Part IX, Organs-on-a-chip II - Lexology (registration)

Researchers develop new tumor-shrinking nanoparticle to fight cancer, prevent recurrence – Phys.Org

May 1, 2017 Credit: CC0 Public Domain

A Mayo Clinic research team has developed a new type of cancer-fighting nanoparticle aimed at shrinking breast cancer tumors, while also preventing recurrence of the disease. In the study, published today in Nature Nanotechnology, mice that received an injection with the nanoparticle showed a 70 to 80 percent reduction in tumor size. Most significantly, mice treated with these nanoparticles showed resistance to future tumor recurrence, even when exposed to cancer cells a month later.

The results show that the newly designed nanoparticle produced potent anti-tumor immune responses to HER2-positive breast cancers. Breast cancers with higher levels of HER2 protein are known to grow aggressively and spread more quickly than those without the mutation.

"In this proof-of-concept study, we were astounded to find that the animals treated with these nanoparticles showed a lasting anti-cancer effect," says Betty Y.S. Kim, M.D., Ph.D., principal investigator, and a neurosurgeon and neuroscientist who specializes in brain tumors at Mayo Clinic's Florida campus. "Unlike existing cancer immunotherapies that target only a portion of the immune system, our custom-designed nanomaterials actively engage the entire immune system to kill cancer cells, prompting the body to create its own memory system to minimize tumor recurrence. These nanomedicines can be expanded to target different types of cancer and other human diseases, including neurovascular and neurodegenerative disorders."

Dr. Kim's team developed the nanoparticle, which she has named "Multivalent Bi-specific Nano-Bioconjugate Engager," a patented technology with Mayo Clinic Ventures, a commercialization arm of Mayo Clinic. It's coated with antibodies that target the HER2 receptor, a common molecule found on 40 percent of breast cancers. It's also coated with molecules that engage two distinct facets of the body's immune system. The nanoparticle hones in on the tumor by recognizing HER2 and then helps the immune cells identify the tumor cells to attack them.

The molecules attached to the nanoparticle rev up the body's nonspecific, clean-up cells (known as macrophages and phagocytes) in the immune system that engulf and destroy any foreign material. The design of the nanoparticle prompts these cells to appear in abundance and clear up abnormal cancer cells. These clean-up cells then relay information about the cancer cells to highly specialized T-cells in the immune system that help eradicate remaining cancer cells, while maintaining a memory of these cells to prevent cancer recurrence. It's the establishment of disease-fighting memory in the cells that makes the nanoparticle similar to a cancer vaccine. Ultimately, the body's own cells become capable of recognizing and destroying recurrent tumors.

Since the late 1990s, the field of nanomedicine has focused on developing nanoparticles as simple drug delivery vehicles that can propel chemotherapy drugs to tumors. One pitfall is that the body tends to purge the particles before they reach their destination.

"Our study represents a novel concept of designing nanomedicine that can actively interact with the immune cells in our body and modulate their functions to treat human diseases," says Dr. Kim. "It builds on recent developments in cancer immunotherapy, which have been successful in treating some types of tumors; however, most immunotherapy developed so far does not harness the power of the entire immune system. We've developed a new platform that reaches tumor cells and also recruits abundant clean-up cells for a fully potent immune response."

Future studies in the lab will explore the ability of the nanoparticle to prevent long-term recurrence of tumors, including metastases at sites distant from the primary tumor. What's more, the nanoparticle is designed to be modular, meaning it can carry molecules to fight other types of disease. "This approach hopefully will open new doors in the design of new nanomedicine-based immunotherapies," she says.

Explore further: Nanoparticles target and kill cancer stem cells that drive tumor growth

More information: Multivalent Bi-Specific Nano-Bioconjugate Engager for Targeted Cancer Immunotherapy, Nature Nanotechnology (2017). nature.com/articles/doi:10.1038/nnano.2017.69

Journal reference: Nature Nanotechnology

Provided by: Mayo Clinic

Many cancer patients survive treatment only to have a recurrence within a few years. Recurrences and tumor spreading are likely due to cancer stem cells that can be tough to kill with conventional cancer drugs. But now researchers ...

For all the success of a new generation of immunotherapies for cancer, they often leave an entire branch of the immune system's disease-fighting forces untapped. Such therapies act on the adaptive immune system, the ranks ...

Researchers from Mayo Clinic have quantified the numbers of various types of immune cells associated with the risk of developing breast cancer. The findings are published in a study in Clinical Cancer Research.

In several types of cancer, elevated expression of the chemokine receptor CCR4 in tumors is associated with poor patient outcomes. Communication through CCR4 may be one mechanism that cancer cells use to create a pro-tumor ...

Researchers at the University of Michigan have had initial success in mice using nanodiscs to deliver a customized therapeutic vaccine for the treatment of colon and melanoma cancer tumors.

Researchers at the University of Cincinnati (UC) College of Medicine have been able to generate multifunctional RNA nanoparticles that could overcome treatment resistance in breast cancer, potentially making existing treatments ...

A team of researchers, led by the University of Minnesota, have discovered a new nano-scale thin film material with the highest-ever conductivity in its class. The new material could lead to smaller, faster, and more powerful ...

In normal conductive materials such as silver and copper, electric current flows with varying degrees of resistance, in the form of individual electrons that ping-pong off defects, dissipating energy as they go. Superconductors, ...

A pioneering new technique that encourages the wonder material graphene to "talk" could revolutionise the global audio and telecommunications industries.

An international team of scientists has developed a new way to produce single-layer graphene from a simple precursor: ethene - also known as ethylene - the smallest alkene molecule, which contains just two atoms of carbon.

Researchers at North Carolina State University have developed a new approach for manipulating the behavior of cells on semiconductor materials, using light to alter the conductivity of the material itself.

A new method combining tumor suppressor protein p53 and biomineralization peptide BMPep successfully created hexagonal silver nanoplates, suggesting an efficient strategy for controlling the nanostructure of inorganic materials.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Read more:
Researchers develop new tumor-shrinking nanoparticle to fight cancer, prevent recurrence - Phys.Org

Nanomedicine provides HIV treatment alternative – Healio

The results of two trials, which examined the use of nanotechnology to improve drug therapies for HIV patients, found that a new nanomedicine method has the potential to cut the dose of leading HIV treatment in half, according to new evidence presented at the Conference of Retroviruses and Opportunistic Infections.

Nanomedicine, the application of nanotechnology to prevent and treat disease, can be used to develop smaller pills that are better for patients who experience high pill burden, like those with HIV, and less expensive to manufacture.

Led by the University of Liverpool in collaboration with the St. Stephens AIDS Trust at the Chelsea & Westminster Hospital in London, researchers examined the use of orally dosed nanomedicine to better deliver drugs to patients with HIV. Because there is a high pill burden associated with treating HIV, nanomedicine, with the potential to develop smaller pills that are better for patients and less expensive to make, can change how the disease is managed.

To develop these new oral therapies, the investigators used Solid Drug Nanoparticle (SDN) technology, which can improve drug absorption into the body and lead to reductions in the dose and cost per dose. According to the trial results, using new approaches to formulation of efavirenz (EFV) and lopinavir (LPV) can potentially cut the dose of leading HIV treatment 50% while still maintaining therapeutic exposure. This University of Liverpool-led trial correlates with their work as part of OPTIMIZE, the global partnership working to improve access to simpler, safer and more affordable HIV treatment.

By aligning efforts, these integrated investments offer the potential to reduce the doses required to control the HIV virus even further, resulting in real benefits globally, Benny Kottiri, MD, division chief of USAIDs office of HIV/AIDS research, said in the press release. This would enable the costs of therapy to be reduced, which is particularly beneficial for resource-limited countries, where the burden of disease is highest. by Savannah Demko

References:

Owen A, et al. Abstract 459. Presented at: Conference on Retroviruses and Opportunistic Infections; Feb. 13-16, 2017; Seattle.

Disclosure: Infectious Disease News was unable to confirm any relevant financial disclosures at the time of publication.

Read more from the original source:
Nanomedicine provides HIV treatment alternative - Healio

Premium Insight of Global Nanomedicine Market 2016-2021 – MilTech

Global Nanomedicine Market Research Report 2016 Purchase This Report by calling ResearchnReports.com at +1-888-631-6977.

The Global Nanomedicine Sales Market 2016 Research Report is a professional in-depth study report and indeed a valuable source of guidance and direction for companies and individuals interested in the market.

There has been an increasing demand for Global Nanomedicine Sales Market, so several market analysts have dedicated time and effort to get into the bottom of the trend and see whether theres basis for this significant market performance. With the most current research data, analysts were able to understand the concept behind Global Nanomedicine Market.

Get Sample Copy of This Report: http://www.researchnreports.com/request_sample.php?id=26205

Market research reports for the Global Nanomedicine Sales Market included detailed segmentation of international, analysis of supply and demand trends, 5-year forecast of market growth, volumes of historic brand market, analysis of the production, importation and exportation, and transparent market methodology. In-depth studies regarding Global Nanomedicine Sales Market, with data from 2011 and projects of compound annual growth rates (CAGRs) are also used as basis for research. Lastly, there are examinations of the Global demand for the market and profiles of the major players of the industry.

Get 30% Discount on this Premium Report: https://www.researchnreports.com/ask_for_discount.php?id=26205

With all the data gathered and analyzed using SWOT analysis, there was a clearer picture of the competitive landscape of the Global Nanomedicine Sales Market. Sources for the future market growth were uncovered and outlying competitive threats also surfaced. There was strategic direction eminent in the market and this shows in the key trends and developments studied. By getting market background and using current norms, policies, and trends of other leading markets for cross-references, market data was completed.

Place a direct purchase order on this Global Nanomedicine Sales Market report at USD 2900 (Single User License): http://www.researchnreports.com/checkout.php?id=26205

Table of Contents

Global Nanomedicine Sales Market Research Report 2021

1 Nanomedicine Sales Overview

1.1 Product Overview and Scope of Nanomedicine Sales

1.2 Nanomedicine Sales Segment by Types

1.3 Nanomedicine Sales Segment by Applications

1.4 Nanomedicine Sales Market by Regions

1.5 Global Market Size (Value and Volume) of Nanomedicine Sales (2011-2021)

2 Global Nanomedicine Sales Market Competition by Manufacturers

2.1 Global Nanomedicine Sales Production and Share by Manufacturers (2015 and 2016)

2.2 Global Nanomedicine Sales Revenue and Share by Manufacturers (2015 and 2016)

2.3 Global Nanomedicine Sales Average Price by Manufacturers (2015 and 2016)

2.4 Manufacturers Nanomedicine Sales Manufacturing Base Distribution and Product Types

2.5 Competitive Situation and Trends

3 Global Nanomedicine Sales Analysis by Regions

4 Global Nanomedicine Sales Analysis by Types

5 Global Nanomedicine Sales Market Analysis by Applications

6 Global Nanomedicine Sales Manufacturers Analysis

7 Nanomedicine Sales Technology and Development Trend

8 Research Findings and Conclusion

Complete report at: https://www.researchnreports.com/pharma-healthcare/Global-Nanomedicine-Market-Research-Report-2016-26205

About Research n Reports:

Research N Reports is a new age market research firm where we focus on providing information that can be effectively applied. Today being a consumer driven market, companies require information to deal with the complex and dynamic world of choices. Where relying on a sound board firm for your decisions becomes crucial. Research N Reports specializes in industry analysis, market forecasts and as a result getting quality reports covering all verticals, whether be it gaining perspective on current market conditions or being ahead in the cut throat Global competition. Since we excel at business research to help businesses grow, we also offer consulting as an extended arm to our services which only helps us gain more insight into current trends and problems. Consequently we keep evolving as an all-rounder provider of viable information under one roof.

Contact us:

Mr. Sunny Denis

Contact No. +1-888-631-6977

sales@researchnreports.com

(ResearchnReports)

Read more:
Premium Insight of Global Nanomedicine Market 2016-2021 - MilTech

Protein corona: a new approach for nanomedicine design – Dove Medical Press

Back to Browse Journals International Journal of Nanomedicine Volume 12

Van Hong Nguyen, Beom-Jin Lee

Department of Pharmacy, Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Suwon, Republic of Korea

Abstract: After administration of nanoparticle (NP) into biological fluids, an NPprotein complex is formed, which represents the true identity of NP in our body. Hence, proteinNP interaction should be carefully investigated to predict and control the fate of NPs or drug-loaded NPs, including systemic circulation, biodistribution, and bioavailability. In this review, we mainly focus on the formation of protein corona and its potential applications in pharmaceutical sciences such as prediction modeling based on NP-adsorbed proteins, usage of active proteins for modifying NP to achieve toxicity reduction, circulation time enhancement, and targeting effect. Validated correlative models for NP biological responses mainly based on protein corona fingerprints of NPs are more highly accurate than the models solely set up from NP properties. Based on these models, effectiveness as well as the toxicity of NPs can be predicted without invivo tests, while novel cell receptors could be identified from prominent proteins which play important key roles in the models. The ungoverned protein adsorption onto NPs may have generally negative effects such as rapid clearance from the bloodstream, hindrance of targeting capacity, and induction of toxicity. In contrast, controlling protein adsorption by modifying NPs with diverse functional proteins or tailoring appropriate NPs which favor selective endogenous peptides and proteins will bring promising therapeutic benefits in drug delivery and targeted cancer treatment.

Keywords: protein-nanoparticle interaction, protein corona, exchange of adsorbed protein, toxicity reduction, predictive modeling, targeting drug delivery

This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Originally posted here:
Protein corona: a new approach for nanomedicine design - Dove Medical Press

New Technique Cuts HIV Treatment in Half – Controlled Environments Magazine

Successful results of a University of Liverpool-led trial that utilized nanotechnology to improve drug therapies for HIV patients has been presented at the Conference on Retroviruses and Opportunistic Infections (CROI) in Seattle, a leading annual conference of HIV research, clinical practice, and progress.

The healthy volunteer trial, conducted by the collaborative nanomedicine research program led by Pharmacologist Professor Andrew Owen and Materials Chemist Professor Steve Rannard, and in collaboration with the St Stephens AIDS Trust at the Chelsea & Westminster Hospital in London, examined the use of nanotechnology to improve the delivery of drugs to HIV patients. The results were from two trials which are the first to use orally dosed nanomedicine to enable HIV therapy optimization.

Nanotechnology is the manipulation of matter on an atomic, molecular, and supramolecular scale. Nanomedicine is the application of nanotechnology to the prevention and treatment of disease in the human body. By developing smaller pills that are better for patients and less expensive to manufacture, this evolving discipline has the potential to dramatically change medical science and is already having an impact in a number of clinically used therapies and diagnostics worldwide.

Currently, the treatment of HIV requires daily oral dosing of HIV drugs, and chronic oral dosing has significant complications that arise from the high pill burden experienced by many patients across populations with varying conditions leading to non-adherence to therapies.

Recent evaluation of HIV patient groups has shown a willingness to switch to nanomedicine alternatives if benefits can be shown. Research efforts by the Liverpool team have focused on the development of new oral therapies, using Solid Drug Nanoparticle (SDN) technology which can improve drug absorption into the body, reducing both the dose and the cost per dose and enabling existing healthcare budgets to treat more patients.

The trial results confirmed the potential for a 50 percent dose reduction while maintaining therapeutic exposure, using a novel approach to formulation of two drugs: efavirenz (EFV) and, lopinavir (LPV). EFV is the current WHO-recommended preferred regimen, with 70 percent of adult patients on first-line taking an EFV-based HIV treatment regimen in low- and middle-income countries.

The trial is connected to the Universitys ongoing work as part of the multinational consortium OPTIMIZE, a global partnership working to accelerate access to simpler, safer and more affordable HIV treatment. Funded by the U.S. Agency for International Development, OPTIMIZE is led by the Wits Reproductive Health & HIV Institute in Johannesburg, South Africa, and includes the interdisciplinary Liverpool team, Columbia University, Mylan Laboratories, and the Medicines Patent Pool (MPP). OPTIMIZE is supported by key partners including UNITAID and the South African Medical Research Council (SAMRC).

Benny Kottiri, USAIDs Office of HIV/AIDS Research Division Chief, says, The potential applications for HIV treatment are incredibly promising. By aligning efforts, these integrated investments offer the potential to reduce the doses required to control the HIV virus even further, resulting in real benefits globally. This would enable the costs of therapy to be reduced which is particularly beneficial for resource-limited countries where the burden of disease is highest.

Source: University of Liverpool

More:
New Technique Cuts HIV Treatment in Half - Controlled Environments Magazine

New Nano Approach Could Cut Dose of Leading HIV Treatment in … – Infection Control Today

Successful results of a University of Liverpool-led trial that utilized nanotechnology to improve drug therapies for HIV patients has been presented at the Conference on Retroviruses and Opportunistic Infections (CROI) in Seattle, a leading annual conference of HIV research, clinical practice and progress.

The healthy volunteer trial, conducted by the collaborative nanomedicine research program led by pharmacologist Andrew Owen and materials chemist Steve Rannard, and in collaboration with the St Stephen's AIDS Trust at the Chelsea & Westminster Hospital in London, examined the use of nanotechnology to improve the delivery of drugs to HIV patients. The results were from two trials which are the first to use orally dosed nanomedicine to enable HIV therapy optimization.

Nanotechnology is the manipulation of matter on an atomic, molecular, and supramolecular scale. Nanomedicine is the application of nanotechnology to the prevention and treatment of disease in the human body. By developing smaller pills that are better for patients and less expensive to manufacture, this evolving discipline has the potential to dramatically change medical science and is already having an impact in a number of clinically used therapies and diagnostics worldwide.

Currently, the treatment of HIV requires daily oral dosing of HIV drugs, and chronic oral dosing has significant complications that arise from the high pill burden experienced by many patients across populations with varying conditions leading to non-adherence to therapies.

Recent evaluation of HIV patient groups have shown a willingness to switch to nanomedicine alternatives if benefits can be shown. Research efforts by the Liverpool team have focused on the development of new oral therapies, using Solid Drug Nanoparticle (SDN) technology which can improve drug absorption into the body, reducing both the dose and the cost per dose and enabling existing healthcare budgets to treat more patients.

The trial results confirmed the potential for a 50 percent dose reduction while maintaining therapeutic exposure, using a novel approach to formulation of two drugs: efavirenz (EFV) and, lopinavir (LPV). EFV is the current WHO-recommended preferred regimen, with 70% of adult patients on first-line taking an EFV-based HIV treatment regimen in low- and middle-income countries.

The trial is connected to the University's ongoing work as part of the multinational consortium OPTIMIZE, a global partnership working to accelerate access to simpler, safer and more affordable HIV treatment. Funded by the U.S. Agency for International Development, OPTIMIZE is led by the Wits Reproductive Health & HIV Institute in Johannesburg, South Africa, and includes the interdisciplinary Liverpool team, Columbia University, Mylan Laboratories and the Medicines Patent Pool (MPP). OPTIMIZE is supported by key partners including UNITAID and the South African Medical Research Council (SAMRC)

Benny Kottiri, USAID's Office of HIV/AIDS Research Division Chief, said: "The potential applications for HIV treatment are incredibly promising. By aligning efforts, these integrated investments offer the potential to reduce the doses required to control the HIV virus even further, resulting in real benefits globally. This would enable the costs of therapy to be reduced which is particularly beneficial for resource-limited countries where the burden of disease is highest."

Source: University of Liverpool

The rest is here:
New Nano Approach Could Cut Dose of Leading HIV Treatment in ... - Infection Control Today

The First European Nanomedicine Mentoring Program Launches a New Edition – Apply to boost your project … – Cordis News

The Nanomedicine Translation Advisory Board (NanomedTAB) offers a free-of-charge mentoring program to promising nanomedicine teams and projects at any stage of development to assess, advise and accelerate their translation and get to commercial application faster and more reliably. To reach this objective, the TAB counts on 11 experts from the industry, specifically recruited for their diverse, extensive and complementary experience in the translation of innovative technologies for healthcare.

The fourth TABs round is now open to companies, public and private research entities, and other organisations leading nanomedicine innovative projects in Europe. Deadline for applications is 27th February 2017.

Selected projects in this round will be invited to attend the TAB-In Session, designed as 2-hour face-to-face meetings with the experts. These meetings will be organised on 4th April 2017 in London in the framework of the European Nanomedicine Meeting 2017 (http://www.britishsocietynanomedicine.org/enm-2017-conference1.html).

Applications to the TAB should be submitted through the following link: http://www.nanomedtab.eu/?apply.

See original here:
The First European Nanomedicine Mentoring Program Launches a New Edition - Apply to boost your project ... - Cordis News

New nano approach could cut dose of leading HIV treatment in half – Phys.Org

February 21, 2017 Credit: University of Liverpool

Successful results of a University of Liverpool-led trial that utilised nanotechnology to improve drug therapies for HIV patients has been presented at the Conference on Retroviruses and Opportunistic Infections (CROI) in Seattle, a leading annual conference of HIV research, clinical practice and progress.

The healthy volunteer trial, conducted by the collaborative nanomedicine research programme led by Pharmacologist Professor Andrew Owen and Materials Chemist Professor Steve Rannard, and in collaboration with the St Stephen's AIDS Trust at the Chelsea & Westminster Hospital in London, examined the use of nanotechnology to improve the delivery of drugs to HIV patients. The results were from two trials which are the first to use orally dosed nanomedicine to enable HIV therapy optimisation.

Manipulation of matter

Nanotechnology is the manipulation of matter on an atomic, molecular, and supramolecular scale. Nanomedicine is the application of nanotechnology to the prevention and treatment of disease in the human body. By developing smaller pills that are better for patients and less expensive to manufacture, this evolving discipline has the potential to dramatically change medical science and is already having an impact in a number of clinically used therapies and diagnostics worldwide.

Currently, the treatment of HIV requires daily oral dosing of HIV drugs, and chronic oral dosing has significant complications that arise from the high pill burden experienced by many patients across populations with varying conditions leading to non-adherence to therapies.

Developing new therapies

Recent evaluation of HIV patient groups have shown a willingness to switch to nanomedicine alternatives if benefits can be shown. Research efforts by the Liverpool team have focused on the development of new oral therapies, using Solid Drug Nanoparticle (SDN) technology which can improve drug absorption into the body, reducing both the dose and the cost per dose and enabling existing healthcare budgets to treat more patients.

The trial results confirmed the potential for a 50 percent dose reduction while maintaining therapeutic exposure, using a novel approach to formulation of two drugs: efavirenz (EFV) and, lopinavir (LPV). EFV is the current WHO-recommended preferred regimen, with 70% of adult patients on first-line taking an EFV-based HIV treatment regimen in low- and middle-income countries.

The trial is connected to the University's ongoing work as part of the multinational consortium OPTIMIZE, a global partnership working to accelerate access to simpler, safer and more affordable HIV treatment. Funded by the U.S. Agency for International Development, OPTIMIZE is led by the Wits Reproductive Health & HIV Institute in Johannesburg, South Africa, and includes the interdisciplinary Liverpool team, Columbia University, Mylan Laboratories and the Medicines Patent Pool (MPP). OPTIMIZE is supported by key partners including UNITAID and the South African Medical Research Council (SAMRC).

Potential applications

Benny Kottiri, USAID's Office of HIV/AIDS Research Division Chief, said: "The potential applications for HIV treatment are incredibly promising. By aligning efforts, these integrated investments offer the potential to reduce the doses required to control the HIV virus even further, resulting in real benefits globally. This would enable the costs of therapy to be reduced which is particularly beneficial for resource-limited countries where the burden of disease is highest."

Explore further: New nanomedicine approach aims to improve HIV drug therapies

More information: The presentation is available online: http://www.croiwebcasts.org/console/player/33376?mediaType=slideVideo&

As devices become smaller and more powerful, they require faster, smaller, more stable batteries. University of Illinois chemists have developed a superionic solid that could be the basis of next-generation lithium-ion batteries.

Cells within our bodies divide and change over time, with thousands of chemical reactions occurring within each cell daily. This makes it difficult for scientists to understand what's happening inside. Now, tiny nanostraws ...

DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.

Drugs disguised as viruses are providing new weapons in the battle against cancer, promising greater accuracy and fewer side effects than chemotherapy.

The precise control of electron transport in microelectronics makes complex logic circuits possible that are in daily use in smartphones and laptops. Heat transport is of similar fundamental importance and its control is ...

A new technique using liquid metals to create integrated circuits that are just atoms thick could lead to the next big advance for electronics.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Link:
New nano approach could cut dose of leading HIV treatment in half - Phys.Org

Nanomedicine – Wikipedia

Nanomedicine is the medical application of nanotechnology.[1] Nanomedicine ranges from the medical applications of nanomaterials and biological devices, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology such as biological machines. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials (materials whose structure is on the scale of nanometers, i.e. billionths of a meter).

Functionalities can be added to nanomaterials by interfacing them with biological molecules or structures. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical therapy applications, and drug delivery vehicles.

Nanomedicine seeks to deliver a valuable set of research tools and clinically useful devices in the near future.[2][3] The National Nanotechnology Initiative expects new commercial applications in the pharmaceutical industry that may include advanced drug delivery systems, new therapies, and in vivo imaging.[4] Nanomedicine research is receiving funding from the US National Institutes of Health, including the funding in 2005 of a five-year plan to set up four nanomedicine centers.

Nanomedicine sales reached $16 billion in 2015, with a minimum of $3.8 billion in nanotechnology R&D being invested every year. Global funding for emerging nanotechnology increased by 45% per year in recent years, with product sales exceeding $1 trillion in 2013.[5] As the nanomedicine industry continues to grow, it is expected to have a significant impact on the economy.

Nanotechnology has provided the possibility of delivering drugs to specific cells using nanoparticles.

The overall drug consumption and side-effects may be lowered significantly by depositing the active agent in the morbid region only and in no higher dose than needed. Targeted drug delivery is intended to reduce the side effects of drugs with concomitant decreases in consumption and treatment expenses. Drug delivery focuses on maximizing bioavailability both at specific places in the body and over a period of time. This can potentially be achieved by molecular targeting by nanoengineered devices.[6][7] More than $65 billion are wasted each year due to poor bioavailability.[citation needed] A benefit of using nanoscale for medical technologies is that smaller devices are less invasive and can possibly be implanted inside the body, plus biochemical reaction times are much shorter. These devices are faster and more sensitive than typical drug delivery.[8] The efficacy of drug delivery through nanomedicine is largely based upon: a) efficient encapsulation of the drugs, b) successful delivery of drug to the targeted region of the body, and c) successful release of the drug.[citation needed]

Drug delivery systems, lipid- [9] or polymer-based nanoparticles,[10] can be designed to improve the pharmacokinetics and biodistribution of the drug.[11][12][13] However, the pharmacokinetics and pharmacodynamics of nanomedicine is highly variable among different patients.[14] When designed to avoid the body's defence mechanisms,[15] nanoparticles have beneficial properties that can be used to improve drug delivery. Complex drug delivery mechanisms are being developed, including the ability to get drugs through cell membranes and into cell cytoplasm. Triggered response is one way for drug molecules to be used more efficiently. Drugs are placed in the body and only activate on encountering a particular signal. For example, a drug with poor solubility will be replaced by a drug delivery system where both hydrophilic and hydrophobic environments exist, improving the solubility.[16] Drug delivery systems may also be able to prevent tissue damage through regulated drug release; reduce drug clearance rates; or lower the volume of distribution and reduce the effect on non-target tissue. However, the biodistribution of these nanoparticles is still imperfect due to the complex host's reactions to nano- and microsized materials[15] and the difficulty in targeting specific organs in the body. Nevertheless, a lot of work is still ongoing to optimize and better understand the potential and limitations of nanoparticulate systems. While advancement of research proves that targeting and distribution can be augmented by nanoparticles, the dangers of nanotoxicity become an important next step in further understanding of their medical uses.[17]

Nanoparticles can be used in combination therapy for decreasing antibiotic resistance or for their antimicrobial properties.[18][19][20] Nanoparticles might also used to circumvent multidrug resistance (MDR) mechanisms.[21]

Two forms of nanomedicine that have already been tested in mice and are awaiting human trials that will be using gold nanoshells to help diagnose and treat cancer,[22] and using liposomes as vaccine adjuvants and as vehicles for drug transport.[23][24] Similarly, drug detoxification is also another application for nanomedicine which has shown promising results in rats.[25] Advances in Lipid nanotechnology was also instrumental in engineering medical nanodevices and novel drug delivery systems as well as in developing sensing applications.[26] Another example can be found in dendrimers and nanoporous materials. Another example is to use block co-polymers, which form micelles for drug encapsulation.[10]

Polymeric nano-particles are a competing technology to lipidic (based mainly on Phospholipids) nano-particles. There is an additional risk of toxicity associated with polymers not widely studied or understood. The major advantages of polymers is stability, lower cost and predictable characterisation. However, in the patient's body this very stability (slow degradation) is a negative factor. Phospholipids on the other hand are membrane lipids (already present in the body and surrounding each cell), have a GRAS (Generally Recognised As Safe) status from FDA and are derived from natural sources without any complex chemistry involved. They are not metabolised but rather absorbed by the body and the degradation products are themselves nutrients (fats or micronutrients).[citation needed]

Protein and peptides exert multiple biological actions in the human body and they have been identified as showing great promise for treatment of various diseases and disorders. These macromolecules are called biopharmaceuticals. Targeted and/or controlled delivery of these biopharmaceuticals using nanomaterials like nanoparticles and Dendrimers is an emerging field called nanobiopharmaceutics, and these products are called nanobiopharmaceuticals.[citation needed]

Another highly efficient system for microRNA delivery for example are nanoparticles formed by the self-assembly of two different microRNAs deregulated in cancer.[27]

Another vision is based on small electromechanical systems; nanoelectromechanical systems are being investigated for the active release of drugs. Some potentially important applications include cancer treatment with iron nanoparticles or gold shells.Nanotechnology is also opening up new opportunities in implantable delivery systems, which are often preferable to the use of injectable drugs, because the latter frequently display first-order kinetics (the blood concentration goes up rapidly, but drops exponentially over time). This rapid rise may cause difficulties with toxicity, and drug efficacy can diminish as the drug concentration falls below the targeted range.[citation needed]

Some nanotechnology-based drugs that are commercially available or in human clinical trials include:

Existing and potential drug nanocarriers have been reviewed.[38][39][40][41]

Nanoparticles have high surface area to volume ratio. This allows for many functional groups to be attached to a nanoparticle, which can seek out and bind to certain tumor cells. Additionally, the small size of nanoparticles (10 to 100 nanometers), allows them to preferentially accumulate at tumor sites (because tumors lack an effective lymphatic drainage system).[42] Limitations to conventional cancer chemotherapy include drug resistance, lack of selectivity, and lack of solubility. Nanoparticles have the potential to overcome these problems.[43]

In photodynamic therapy, a particle is placed within the body and is illuminated with light from the outside. The light gets absorbed by the particle and if the particle is metal, energy from the light will heat the particle and surrounding tissue. Light may also be used to produce high energy oxygen molecules which will chemically react with and destroy most organic molecules that are next to them (like tumors). This therapy is appealing for many reasons. It does not leave a "toxic trail" of reactive molecules throughout the body (chemotherapy) because it is directed where only the light is shined and the particles exist. Photodynamic therapy has potential for a noninvasive procedure for dealing with diseases, growth and tumors. Kanzius RF therapy is one example of such therapy (nanoparticle hyperthermia) .[citation needed] Also, gold nanoparticles have the potential to join numerous therapeutic functions into a single platform, by targeting specific tumor cells, tissues and organs.[44][45]

In vivo imaging is another area where tools and devices are being developed. Using nanoparticle contrast agents, images such as ultrasound and MRI have a favorable distribution and improved contrast. This might be accomplished by self assembled biocompatible nanodevices that will detect, evaluate, treat and report to the clinical doctor automatically.[citation needed]

The small size of nanoparticles endows them with properties that can be very useful in oncology, particularly in imaging. Quantum dots (nanoparticles with quantum confinement properties, such as size-tunable light emission), when used in conjunction with MRI (magnetic resonance imaging), can produce exceptional images of tumor sites. Nanoparticles of cadmium selenide (quantum dots) glow when exposed to ultraviolet light. When injected, they seep into cancer tumors. The surgeon can see the glowing tumor, and use it as a guide for more accurate tumor removal.These nanoparticles are much brighter than organic dyes and only need one light source for excitation. This means that the use of fluorescent quantum dots could produce a higher contrast image and at a lower cost than today's organic dyes used as contrast media. The downside, however, is that quantum dots are usually made of quite toxic elements.[citation needed]

Tracking movement can help determine how well drugs are being distributed or how substances are metabolized. It is difficult to track a small group of cells throughout the body, so scientists used to dye the cells. These dyes needed to be excited by light of a certain wavelength in order for them to light up. While different color dyes absorb different frequencies of light, there was a need for as many light sources as cells. A way around this problem is with luminescent tags. These tags are quantum dots attached to proteins that penetrate cell membranes. The dots can be random in size, can be made of bio-inert material, and they demonstrate the nanoscale property that color is size-dependent. As a result, sizes are selected so that the frequency of light used to make a group of quantum dots fluoresce is an even multiple of the frequency required to make another group incandesce. Then both groups can be lit with a single light source. They have also found a way to insert nanoparticles[46] into the affected parts of the body so that those parts of the body will glow showing the tumor growth or shrinkage or also organ trouble.[47]

Nanotechnology-on-a-chip is one more dimension of lab-on-a-chip technology. Magnetic nanoparticles, bound to a suitable antibody, are used to label specific molecules, structures or microorganisms. Gold nanoparticles tagged with short segments of DNA can be used for detection of genetic sequence in a sample. Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots into polymeric microbeads. Nanopore technology for analysis of nucleic acids converts strings of nucleotides directly into electronic signatures.[citation needed]

Sensor test chips containing thousands of nanowires, able to detect proteins and other biomarkers left behind by cancer cells, could enable the detection and diagnosis of cancer in the early stages from a few drops of a patient's blood.[48]Nanotechnology is helping to advance the use of arthroscopes, which are pencil-sized devices that are used in surgeries with lights and cameras so surgeons can do the surgeries with smaller incisions. The smaller the incisions the faster the healing time which is better for the patients. It is also helping to find a way to make an arthroscope smaller than a strand of hair.[49]

Research on nanoelectronics-based cancer diagnostics could lead to tests that can be done in pharmacies. The results promise to be highly accurate and the product promises to be inexpensive. They could take a very small amount of blood and detect cancer anywhere in the body in about five minutes, with a sensitivity that is a thousand times better than in a conventional laboratory test. These devices that are built with nanowires to detect cancer proteins; each nanowire detector is primed to be sensitive to a different cancer marker. The biggest advantage of the nanowire detectors is that they could test for anywhere from ten to one hundred similar medical conditions without adding cost to the testing device.[50] Nanotechnology has also helped to personalize oncology for the detection, diagnosis, and treatment of cancer. It is now able to be tailored to each individuals tumor for better performance. They have found ways that they will be able to target a specific part of the body that is being affected by cancer.[51]

Magnetic micro particles are proven research instruments for the separation of cells and proteins from complex media. The technology is available under the name Magnetic-activated cell sorting or Dynabeads among others. More recently it was shown in animal models that magnetic nanoparticles can be used for the removal of various noxious compounds including toxins, pathogens, and proteins from whole blood in an extracorporeal circuit similar to dialysis.[52][53] In contrast to dialysis, which works on the principle of the size related diffusion of solutes and ultrafiltration of fluid across a semi-permeable membrane, the purification with nanoparticles allows specific targeting of substances. Additionally larger compounds which are commonly not dialyzable can be removed.[citation needed]

The purification process is based on functionalized iron oxide or carbon coated metal nanoparticles with ferromagnetic or superparamagnetic properties.[54] Binding agents such as proteins,[53]antibodies,[52]antibiotics,[55] or synthetic ligands[56] are covalently linked to the particle surface. These binding agents are able to interact with target species forming an agglomerate. Applying an external magnetic field gradient allows exerting a force on the nanoparticles. Hence the particles can be separated from the bulk fluid, thereby cleaning it from the contaminants.[57][58]

The small size (< 100nm) and large surface area of functionalized nanomagnets leads to advantageous properties compared to hemoperfusion, which is a clinically used technique for the purification of blood and is based on surface adsorption. These advantages are high loading and accessibility of the binding agents, high selectivity towards the target compound, fast diffusion, small hydrodynamic resistance, and low dosage.[59]

This approach offers new therapeutic possibilities for the treatment of systemic infections such as sepsis by directly removing the pathogen. It can also be used to selectively remove cytokines or endotoxins[55] or for the dialysis of compounds which are not accessible by traditional dialysis methods. However the technology is still in a preclinical phase and first clinical trials are not expected before 2017.[60]

Nanotechnology may be used as part of tissue engineering to help reproduce or repair or reshape damaged tissue using suitable nanomaterial-based scaffolds and growth factors. Tissue engineering if successful may replace conventional treatments like organ transplants or artificial implants. Nanoparticles such as graphene, carbon nanotubes, molybdenum disulfide and tungsten disulfide are being used as reinforcing agents to fabricate mechanically strong biodegradable polymeric nanocomposites for bone tissue engineering applications. The addition of these nanoparticles in the polymer matrix at low concentrations (~0.2 weight%) leads to significant improvements in the compressive and flexural mechanical properties of polymeric nanocomposites.[61][62] Potentially, these nanocomposites may be used as a novel, mechanically strong, light weight composite as bone implants.[citation needed]

For example, a flesh welder was demonstrated to fuse two pieces of chicken meat into a single piece using a suspension of gold-coated nanoshells activated by an infrared laser. This could be used to weld arteries during surgery.[63] Another example is nanonephrology, the use of nanomedicine on the kidney.

Neuro-electronic interfacing is a visionary goal dealing with the construction of nanodevices that will permit computers to be joined and linked to the nervous system. This idea requires the building of a molecular structure that will permit control and detection of nerve impulses by an external computer. A refuelable strategy implies energy is refilled continuously or periodically with external sonic, chemical, tethered, magnetic, or biological electrical sources, while a nonrefuelable strategy implies that all power is drawn from internal energy storage which would stop when all energy is drained. A nanoscale enzymatic biofuel cell for self-powered nanodevices have been developed that uses glucose from biofluids including human blood and watermelons.[64] One limitation to this innovation is the fact that electrical interference or leakage or overheating from power consumption is possible. The wiring of the structure is extremely difficult because they must be positioned precisely in the nervous system. The structures that will provide the interface must also be compatible with the body's immune system.[65]

Molecular nanotechnology is a speculative subfield of nanotechnology regarding the possibility of engineering molecular assemblers, machines which could re-order matter at a molecular or atomic scale. Nanomedicine would make use of these nanorobots, introduced into the body, to repair or detect damages and infections. Molecular nanotechnology is highly theoretical, seeking to anticipate what inventions nanotechnology might yield and to propose an agenda for future inquiry. The proposed elements of molecular nanotechnology, such as molecular assemblers and nanorobots are far beyond current capabilities.[1][65][66][67] Future advances in nanomedicine could give rise to life extension through the repair of many processes thought to be responsible for aging. K. Eric Drexler, one of the founders of nanotechnology, postulated cell repair machines, including ones operating within cells and utilizing as yet hypothetical molecular machines, in his 1986 book Engines of Creation, with the first technical discussion of medical nanorobots by Robert Freitas appearing in 1999.[1]Raymond Kurzweil, a futurist and transhumanist, stated in his book The Singularity Is Near that he believes that advanced medical nanorobotics could completely remedy the effects of aging by 2030.[68] According to Richard Feynman, it was his former graduate student and collaborator Albert Hibbs who originally suggested to him (circa 1959) the idea of a medical use for Feynman's theoretical micromachines (see nanotechnology). Hibbs suggested that certain repair machines might one day be reduced in size to the point that it would, in theory, be possible to (as Feynman put it) "swallow the doctor". The idea was incorporated into Feynman's 1959 essay There's Plenty of Room at the Bottom.[69]

More:
Nanomedicine - Wikipedia

Japan Nanomedicine Industry Market Research Report 2017 – cHollywood News Portal (press release)

Ask a sample report, please email to:

lemon@qyresearchglobal.com or lemon@qyresearch.com

Report Summary

The Japan Nanomedicine Industry Market Research Report 2017 is a professional and in-depth study on the current state of the Nanomedicine industry.

The report provides a basic overview of the industry including definitions, classifications, applications and industry chain structure. The Nanomedicine market analysis is provided for the Japan markets including development trends, competitive landscape analysis, and key regions development status.

Development policies and plans are discussed as well as manufacturing processes and Bill of Materials cost structures are also analyzed. This report also states import/export consumption, supply and demand Figures, cost, price, revenue and gross margins.

The report focuses on Japan major leading industry players providing information such as company profiles, product picture and specification, capacity, production, price, cost, revenue and contact information. Upstream raw materials and equipment and downstream demand analysis is also carried out. The Nanomedicine industry development trends and marketing channels are analyzed. Finally the feasibility of new investment projects are assessed and overall research conclusions offered.

This report studies Nanomedicine focuses on top manufacturers in Japan market, with capacity, production, price, revenue and market share for each manufacturer, covering:

Affilogic

LTFN

Bergmannstrost

Grupo Praxis

Biotechrabbit

Bracco

Materials ResearchCentre

Carlina technologies

ChemConnection

CIC biomaGUNE

CIBER-BBN

Contipro

Cristal Therapeutics

DTI

Endomagnetics

Fraunhofer ICT-IMM

Ask a sample or any question, please email to:

lemon@qyresearchglobal.com or lemon@qyresearch.com

Key Topics Covered:

Chapter One Industry Overview

Chapter Two Manufacturing Cost Structure Analysis of Nanomedicine

Chapter Three Technical Data and Manufacturing Plants Analysis

Chapter Four Sales Analysis of Nanomedicine by Regions, Product Type, and Applications

Chapter Five Sales Revenue Analysis of Nanomedicine by Regions,Product Type, and Applications

Chapter Six Analysis of Nanomedicine Production, Supply, Sales and Demand Market Status 2010-2016

Chapter Seven Analysis of Nanomedicine Industry Key Manufacturers

Chapter Eight Price and Gross Margin Analysis

Chapter Nine Marketing Trader or Distributor Analysis of Nanomedicine

Chapter Ten Analysis of Nanomedicine Production, Supply, Sales and Demand Development Forecast 2017-2021

Chapter Eleven Industry Chain Suppliers of Nanomedicine with Contact Information

Chapter Twelve New Project Investment Feasibility Analysis of Nanomedicine

Chapter Thirteen Conclusion of the Japan Nanomedicine Industry Report 2017

Related Reports:

Global Nanomedicine Industry Market Research Report 2017

China Nanomedicine Industry Market Research Report 2017

Europe Nanomedicine Industry Market Research Report 2017

United States Nanomedicine Industry Market Research Report 2017

India Nanomedicine Industry Market Research Report 2017

Note:We also offer

Germany/Korea/Australia/Brazil/Russia/India/Indonesia/ Malaysia/Saudi Arabia/Middle East/Europe/Asia/Asia-Pacific/Southeast Asia/North America/ Latin America/South America/AMER/EMEA/Africa etc Countries/Regions and Sales/Industry Versions Respectively

Thank you for your reading and interest in our report.

If you need the report or have any question, please feel free to contact me~O(_)O~

Lemon Koo|Sr. Manager Global Sales

QYResearchCO.,LIMITED

Professional Market Research Report Publisher

Email:lemon@qyresearchglobal.com

Web:http://qyresearchglobal.com

QYResearch focus on Market Survey and Research

See original here:
Japan Nanomedicine Industry Market Research Report 2017 - cHollywood News Portal (press release)

Bio-identical Hormone Pellet Therapy | Hormone Replacement

BioTE Hormone Pellet Therapy is plant based and uses no synthetic hormones. Learn more about the pellet therapy process below and then look for a BioTE Medical Provider in your area to get started.

Pellets are tiny, custom-compounded therapies for symptoms that stem from hormonal imbalances. This therapy keeps hormone levels consistent through the day and avoids rollercoaster-like effects from orally administered or topically administered hormones. The pellets BioTE uses contains bio-identical hormones, derived from natural sources. The pellets contain hormones identical to the ones found in the human body. Studies have shown that bio-identical hormones have fewer side effects than synthetic hormones.

The hormones BioTE Medical uses in our pellets are custom-compounded. BioTE Medical uses highly specialized pharmacies that are registered with the FDA. The pellets are compliant to the FDA sterility process. BioTE Medical pharmacies employ environmental monitoring per every pellet batch. This is all overseen by a dedicated FDA compliance officer.

BioTE Medical uses bio-identical estradiol in the pellets, meaning that the chemical structure is the same as the hormones naturally produced in your body.

As each patients symptoms are unique, so is each patient's path to hormone optimization. Most patients report some symptom resolution in as little as two to four weeks, but full optimization may take up to six months. Your journey will be customized to fit your specific needs. It takes more than one to two weeks for your hormones to get out of balance, so expect it to take time to resolve.

Are you ready to feel better? To get started today, find your local BioTE Medical provider. We have thousands of certified BioTE providers in our network, so its likely theres a qualified provider near you!

BioTE Medical provides training for physicians across the United States and internationally so they can help their patients feel their best at any age. Our thousands of certified BioTE Providers nationwide are available to help you age healthier, live happier and feel like yourself again. Find the BioTE Medical provider near you, and begin your return to wellness.

See the rest here:
Bio-identical Hormone Pellet Therapy | Hormone Replacement