Nanomedicinecenter.com – Nanomedicine, bionanotechnology …

A lot of patients suffering from colon cancer might well present no symptoms or signs during the earliest stages of the condition. When symptoms do eventually present, they can be many and varied, and can very much depend upon the size of the affliction, how far it has spread and also its actual location. It might be that some symptoms that present are as a result of a condition other than cancer itself, ranging from irritable bowel syndrome (IBS), inflammatory bowel disease (IBD) and occasionally diverticulosis. Also, such problems as abdominal pain or swelling can be symptomatic of colon problems and may well require further investigation.

You may also notice that, upon going to the lavatory, you have some blood in your stools, and this can be a symptom of cancer. Of course, having black poop doesnt ultimately mean that cancer is present. It can, however, also be indicative of other conditions and problems. For example, the kind of bright red blood that you may see on your toilet tissue could be as a result of hemorrhoids or anal fissures. It should also be remembered that various food items can also result in red poop, and these include beetroot and red liquorice. Some medications can also be culprits, and some can also turn the stools black-including iron supplements. Irrespective, any sign of blood or change in your stools should prompt you to seek advice from your GP, as it is always best to be sure that it is not a sign of a more serious condition, and with any cancer,early detection and treatment is essential to a successful recovery.

You should also note-if you are currently concerned-any change in the regularity of your stools-including whether or not they are more thin or irregular than usual-especially over a period of several weeks. Also, be mindful if you have diarrhea for several days in a row or, conversely, constipation.

You might also experience pain in your lower abdomen-including a feeling of hardness. You may also experience persistent pain or discomfort in your abdominal region, and this can include wind and cramps. You may also get the sensation that, when evacuating your bowels, that the bowel doesnt empty fully. Another symptom that you might recognize is colored stool mainly black stool, but could be green stool too. Also, if you have an iron deficiency (or anemia), it may be an indication that there is bleeding in your colon. Also, as in most cases and types of cancer, you should seek medical advice immediately if you experience any sudden and unexpected or unexplained weight loss, as this is one of the principal red flags. Also be aware of more vague, seemingly incidental symptoms, such as fatigue. IF you have a couple of symptoms and also feel fatigued for days in a row inexplicably, then this is also another warning sign and you should seek medical advice. It is important not to panic, but just to be aware of what might be going on.

Remember, cases of colon cancer account for around 90% of all cases of intestinal cancers, and also account for more deaths every year of men and women from cancer. Early treatment is an absolute must.

Originally posted here:

Nanomedicinecenter.com - Nanomedicine, bionanotechnology ...

Global Nanorobotics Market : Industry Analysis and Forecast (2018-2026) – Markets Gazette 24

Global Nanorobotics Marketwas valued at US$ 3.7 Bn in 2017 and is expected to reach US$ 9.2Bn by 2026, at a CAGR of 12.06%during a forecast period.Global Nanorobotics MarketDevelopments in nanotechnology coupled with demand for minimally aggressive procedures are expected to drive market growth over the forecast period. Nanobots possess likely in the medical sector for destroying cancerous cells at the genetic level. Increasing support for nanomedicine by many nations and the increasing geriatric population are factors which can augur market demand.

Utilization of nanobots in the ranostics can be beneficial for the market in the near future. A rise in miniaturization and demand for automation across various sectors are anticipated to fuel market growth. Training of new personnel to use nanobots can restrain market growth in the upcoming years.Nanomedicine application segment to grow at the highest CAGR during the forecast period. Nanorobotics is widely used in nanomedicine owning to its healthcare features. The large share of this application aspects to the large level of commercialization in the healthcare sector for drug delivery, in vivo imaging, biomaterial, in vitro diagnostic, active implants, and drug therapy.

North America region accounted for the largest share of 12.2%, in terms of value, of the nanorobotics market globally. Presence of many nanotechnology companies, well-developed healthcare infrastructure, and government initiatives to create patient awareness are factors driving the market. The U.S is anticipated to contribute to market revenue owing to the increase in cardiovascular diseases and the rising elderly populace.

REQUEST FOR FREE SAMPLE REPORT:https://www.maximizemarketresearch.com/request-sample/30888

Europe follows North America as the second biggest nanorobotics market. Presence of chronic diseases and the burgeoning population are factors expected to indicate the Europe nanobots market. Establishment of organizations to develop standards pertaining to nanotechnology can expand market growth. In 2018, DNA-Robotics, an organization including 12 European companies, has outlined steps to expedite production of nanobots on a large scale. These standards can help scale the market exponentially in the upcoming years.

A recent development in nanorobotics market: In March 2018, Thermo Fisher Scientific acquired Gatan, an exclusively owned subsidiary of Roper Technologies. Gatan is an electron microscopy solutions provider in the U.S, which accompaniments the Thermo Fisher Scientifics electron microscopy solutions business.In March 2017, Oxford Instruments (U.K) Asylum Research introduced its new SurfRider HQ-Series of high quality, budget-priced AFM probes, which are also existing in a model suitable for nanomechanical image mode.

The objective of the report is to present a comprehensive assessment of the market and contains thoughtful insights, facts, historical data, industry-validated market data and projections with a suitable set of assumptions and methodology. The report also helps in understanding Global Nanorobotics Market dynamics, structure by identifying and analyzing the market segments and project the global market size. Further, the report also focuses on the competitive analysis of key players by product, price, financial position, product portfolio, growth strategies, and regional presence. The report also provides PEST analysis, PORTERs analysis, SWOT analysis to address the question of shareholders to prioritizing the efforts and investment in the near future to the emerging segment in the Global Nanorobotics Market.

DO INQUIRY BEFORE PURCHASING REPORT HERE:https://www.maximizemarketresearch.com/inquiry-before-buying/30888

Scope of the Global Nanorobotics Market

Global Nanorobotics Market, By Type

Nanomanipulatoro Electron Microscope (EM) Scanning Electron Microscope (SEM) Transmission Electron Microscope (TEM)o Scanning Probe Microscope (SPM) Atomic Force Microscopes (AFM) Scanning Tunneling Microscope (STM) Bio-Nanorobotics Magnetically Guided Bacteria-Based

Global Nanorobotics Market, By Application

Nanomedicine Biomedical Mechanical Others

Global Nanorobotics Market, By Region

North America Europe Asia Pacific Middle East and Africa South America

Key players operating in Global Nanorobotics Market:

Bruker JEOL Thermo Fisher Scientific Ginkgo Bioworks Oxford Instruments EV Group Imina Technologies Toronto Nano Instrumentation KlockeNanotechnik KleindiekNanotechnik Xidex Synthace Park Systems Smaract Nanonics Imaging

Key Innovators:

Novascan Technologies Angstrom Advanced Hummingbird Scientific NT-MDT Spectrum Instruments Witec

Browse Full Report with Facts and Figures of nanorobotics Market Report at:https://www.maximizemarketresearch.com/market-report/global-nanorobotics-market/30888/

MAJOR TOC OF THE REPORT

Chapter One: nanorobotics Market Overview

Chapter Two: Manufacturers Profiles

Chapter Three: Global nanorobotics Market Competition, by Players

Chapter Four: Global nanorobotics Market Size by Regions

Chapter Five: North America nanorobotics Revenue by Countries

Chapter Six: Europe nanorobotics Revenue by Countries

Chapter Seven: Asia-Pacific nanorobotics Revenue by Countries

Chapter Eight: South America nanorobotics Revenue by Countries

Chapter Nine: Middle East and Africa Revenue nanorobotics by Countries

Chapter Ten: Global nanorobotics Market Segment by Type

Chapter Eleven: Global nanorobotics Market Segment by Application

Chapter Twelve: Global nanorobotics Market Size Forecast (2019-2026)

About Us:

Maximize Market Research provides B2B and B2C market research on 20,000 high growth emerging technologies & opportunities in Chemical, Healthcare, Pharmaceuticals, Electronics & Communications, Internet of Things, Food and Beverages, Aerospace and Defense and other manufacturing sectors.

Contact info:

Name: Lumawant Godage

Organization: MAXIMIZE MARKET RESEARCH PVT. LTD.

Email: sales@maximizemarketresearch.com

Contact: +919607065656/ +919607195908

Website: http://www.maximizemarketresearch.com

See the rest here:
Global Nanorobotics Market : Industry Analysis and Forecast (2018-2026) - Markets Gazette 24

Healthcare Nanotechnology (Nanomedicine) Market 2019 Industry Outlook, Comprehensive Insights, Growth and Forecast 2025 – WindStreetz

The company provides a detailed analysis of the market and future aspects of the Healthcare Nanotechnology (Nanomedicine) Market. It focuses on critical and critical data that makes it a very important tool for research, experts, analysts, and managers to achieve ready-to-access analysis. The report provides an inclusive analysis of the Healthcare Nanotechnology (Nanomedicine) market size forecast from 2018-2025.

Sample report can be viewed in a PDF form by visiting @ researchunt.com/report/global-healthcare-nanotechnology-nanomedicine-market-size-status-and-forecast-2019-2025/#Free-Sample-Report

The report embraces the complete information of the key players involved in the worldwide Healthcare Nanotechnology (Nanomedicine) market. In addition, it provides its market share by various regions with the company and product introduction and their position in the Healthcare Nanotechnology (Nanomedicine) market. In addition, the report takes into account recent marketing developments as well as their marketing strategies along with an overall business overview. In addition, the report covers market growth factors and restraints of this market.

Prominent players of Healthcare Nanotechnology (Nanomedicine) market:

Product Type Coverage (Market Size & Forecast, Major Company of Product Type etc.):

Application Coverage (Market Size & Forecast, Different Demand Market by Region, Main Consumer Profile etc.):

Regional Segmentation for Healthcare Nanotechnology (Nanomedicine) market:

There are 10 chapters to put on view for Healthcare Nanotechnology (Nanomedicine) market:

Chapter 1: Consumption by Regions

Chapter 2: Production, By Types, Revenue and Market share by Types

Chapter 3: Consumption, By Applications, Market share (%) and Growth Rate by Applications

Chapter 4: Complete profiling and analysis of Manufacturers

Chapter 5: Manufacturing cost analysis, Raw materials analysis, Region-wise manufacturing expenses

Chapter 6: Industrial Chain, Sourcing Strategy and Downstream Buyers

Chapter 7: Marketing Strategy Analysis, Distributors/Traders

Chapter8: Market Effect Factors Analysis

Chapter9: Market Forecast

Chapter 10: Healthcare Nanotechnology (Nanomedicine) Research Findings and Conclusion, Appendix, methodology and data source

Check here for the discount@ researchunt.com/report/global-healthcare-nanotechnology-nanomedicine-market-size-status-and-forecast-2019-2025/#Buying-Enquiry

Customization of the Report:This report can be customized to meet the clients requirements. Please connect with our sales team (sales@researchunt.com), who will ensure that you get a report that suits your needs.

Gareth Jenkinson

Gareth Jenkinson is a journalist and radio presenter based in Durban, South Africa. When hes not talking about sport on the airwaves - hes got his eye on the Cryptocurrency market.

See the rest here:
Healthcare Nanotechnology (Nanomedicine) Market 2019 Industry Outlook, Comprehensive Insights, Growth and Forecast 2025 - WindStreetz

Nanomedicine Market 2020 by Industry Growth And Competitive Landscape Trends, Segmentation SRI International (US), Aditech Ltd. (UK), Anviz Global,…

Introduction:

This exclusive research report on global Nanomedicine market initiated by Orbis Pharma Reports is an demonstrative replica of diverse market relevant factors dominant across historical and current timelines. The report is anticipated to aid market players willing to upscale their business models and ROI. The report carries out a deep analytical study to identify and understand the potential of core factors that stimulate high end growth. In this report, expert research analysts at Orbis Pharma Reports categorically focus on the pre and post pandemic market conditions to equip readers with ample cues on market progression based on which frontline vendors and other contributing players can successfully design and deploy accurate business decisions and apt growth strategies to secure a healthy footing amidst stringent market competition, fast transitioning regulatory framework and vendor preferences.

Get sample copy of Nanomedicine Market report @ https://www.orbispharmareports.com/sample-request/81199

Major Company Profiles operating in the Nanomedicine Market:

CIC biomaGUNESwedNanoTechBiotechrabbitChemConnectionLTFNAffilogicIstec CNREndomagneticsCarlina technologiesVicomtechVITO NVGrupo PraxisCIBER-BBNGIMACTecnaliaBraccoCristal TherapeuticsTeknikerFraunhofer ICT-IMMBergmannstrostMaterials Research CentreContiproDTIIMDEA

Scope:

The report also includes specific details on core developments such as pricing strategies and manufacturer investments towards selecting growth appropriate business decisions, understanding core methodologies, market size, dimensions as well as share, and market CAGR inputs and investments that collectively illuminate growth favorable route in global Nanomedicine market.Based on market research endeavors and gauging into past growth milestones, seasoned in-house researchers at Orbis Pharma Reports are suggesting an impressive comeback of global Nanomedicine market, significantly offsetting the implications of the global pandemic and its aftermath.

Browse the complete report @ https://www.orbispharmareports.com/global-nanomedicine-market-report-2019-competitive-landscape-trends-and-opportunities/

Nanomedicine Market Product Type:

Type 1Type 2Type 3

Nanomedicine Market Application:

Application 1Application 2Application 3

Segmentation by Type and ApplicationThe end-use application segment is thoroughly influenced by fast transitioning end-user inclination and preferences. Product and application-based segments clearly focus on the array of novel changes and new investments made by market forerunners towards improving product qualities to align with end-use needs. Additionally, this report by Orbis Pharma Reports also includes a dedicated section on various categorization of the market based on product type and diversification. Each of the product and service offerings are maneuvered to undergo rapid transitions to improve growth scope and investment returns in the coming years.

Report Offerings in a Gist:

1.The report by Orbis Pharma Reports outlines crucial attributes of the global Nanomedicine market with detailed understanding of major innovations and events, also highlighting growth plot chalked by leading players2.A decisive overview of macro and micro economic factors have also been highlighted in the report to understand major influences and drivers3.An in-depth impression of crucial technological milestones and a value-based and volume-based output of the same have also been pinned in the report.4.Rife predictions on segment performance and opportunity analysis have also been minutely addressed in the report to decipher growth process and futuristic possibilities.

For Any Query on the Nanomedicine Market: https://www.orbispharmareports.com/enquiry-before-buying/81199

About Us :

At Orbispharma we curate the most relevant news stories, features, analysis and research reports on the important challenges undertaken by the pharmaceutical and related sectors. Our editorial philosophy is to bring you sharp, focused and informed perspective of industries, the end users and application of all upcoming trends into the pharma sector. Orbispharma believes in conversations that can bring a change in one of the most crucial economic sectors in the world. With these conversations we wish our customers to make sound business decisions with right business intelligence.

Contact Us :

Here is the original post:
Nanomedicine Market 2020 by Industry Growth And Competitive Landscape Trends, Segmentation SRI International (US), Aditech Ltd. (UK), Anviz Global,...

Nanomedicine Nanotechnology Journals | Peer Review | OMICS

NLM ID: 101562615 Index Copernicus Value: 4.22

You can find a clear view of peer review process by clicking here.

Nanotechnology is the engineering of functional systems at the molecular scale. It is the study and application of extremely small things and can be used across all the other science fields, such as chemistry, biology, physics, materials science, and engineering.

Related Journals of Nanotechnology Nanoscience and Nanotechnology, Nanoscience and Nanotechnology Letters, Journal of Nanomedicine & Biotherapeutic Discovery, IEEE Transactions on Nanobioscience, Journal of Biomedical Nanotechnology, Photonics and Nanostructures - Fundamentals and Applications

Nanobiotechnology is the application of nanotechnology to the life sciences: The technology encompasses precision engineering as well as electronics, and electromechanical systems as well as mainstream biomedical applications in areas as diverse as gene therapy, drug delivery and novel drug discovery techniques.

Related Journals of Nanobiotechnology Journal of Biomedical Nanotechnology, Research Journal of Nanoscience and nanotechnology, Nature Nanotechnology Journal, Nanomaterials & Molecular Nanotechnology, Nature Nanotechnology, Nano Letters, Advanced Materials, Nano Today

A Nanocomposite is a multiphase solid material where one of the phases has one, two or three dimensions of less than 100nm, or structure having nano-scale repeat distance between the different phases that make up the material.

Related Journals of Nanocomposites

Journal of Nanomaterial and Nanotechnology, International Journal of Nanotechnology Impact Factor, Journal of Nanomedicine & Biotherapeutic Discovery, Scripta Materialia, Nanoscale, Lab on a Chip - Miniaturisation for Chemistry and Biology, Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing

The Integrated Project Nanobiopharmaceutics aims at the development of innovative multidisciplinary approaches for the design, synthesis and evaluation of functionalised nano-carriers and nano-particle-based micro-carriers for the treatment of various diseases based on targeted, controlled delivery of therapeutic peptides and proteins (biopharmaceutics).

Related Journals of Nanobiopharmaceutics Journal of Nanomedicine & Biotherapeutic Discovery, Journal of Nanobiomedical Impact Factor, Journal of Obsessive-Compulsive and Related Disorders, Journal of Homotopy and Related Structures, Journal of Venomous Animals and Toxins including Tropical Diseases

Nanoelectronics is one of the major technologies of Nanotechnology. It plays vital role in the field of engineering and electronics.

Related Journals of Nanoelectronics Journal of Nanotechnology and Electrophysics, Nano Research & Applications, ACS Applied Materials and Interfaces, International Journal of Nanotechnology Applications, Biosensors and Bioelectronics, Journal of Physical Chemistry C, Nanomedicine: Nanotechnology, Biology, and Medicine

Nanomedicine is the medical application of nanotechnology. Nanomedicine ranges from the medical applications of nanomaterials, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology.

Related Journals of Nanomedicine Nanomaterials & Molecular Nanotechnology, Pharmaceutical Nanotechnology, Journal of Biomedical Nanotechnology, International Journal of Nanomedicine, Nanomedicine: Nanotechnology, Biology and Medicine, Journal of Nanomedicine Research, European Journal of Nanomedicine

Nanotoxicology is a branch of toxicology concerned with the study of the toxicity of nanomaterials, which can be divided into those derived from combustion processes (like diesel soot), manufacturing processes (such as spray drying or grinding) and naturally occurring processes (such as volcanic eruptions or atmospheric reactions).

Related Journals of Nanotoxicology Nanomedicine & Nanotechnology, Nanotechnology Journal Lists, Nano Journal Impact Factor, Microscale Thermophysical Engineering, Microelectronic Engineering, Nano Biomedicine and Engineering, Nano-Micro Letters

Nanoengineering is the practice of engineering on the nanoscale. It derives its name from the nanometre, a unit of measurement equalling one billionth of a meter. Nanoengineering is largely a synonym for nanotechnology, but emphasizes the engineering rather than the pure science aspects of the field.

Related Journals of Nanoengineering Journal of Nanoresearch, Review in Nanoscience and Nanotechnology, Nature Nanotechnology Journal, Research & Reviews: Journal of Pharmaceutics and Nanotechnology, Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, Nanotoxicology, Precision Engineering, Nanomedicine, Nanotechnology

The spontaneous association of molecules under equilibrium conditions into stable, structurally well-defined aggregates.

Related Journals of Nanofabrications Journal of Nanotechnology Impact Factor, Nanotechnology Journal Lists, Journal of Nano, Nanomaterials & Molecular Nanotechnology, Microporous and Mesoporous Materials, International Journal of Nanomedicine, Beilstein Journal of Nanotechnology

Nanofluidics is often defined as the study and application of fluid flow in and around nanosized objects.

Related Journals of Nanofluidics Research Journal of Nanoscience and Nanotechnology, Nano Journal Impact Factor, Journal of Nanotechnology and Electrophysics, Journal of Bionanoscience, Nanotechnology, Science and Applications, Journal of Nanobiotechnology, Plasmonics, Biomedical Microdevices

Nanohedron aims to exhibit scientific images, with a focus on images depicting nanoscale objects. The work ranges from electron microscopy images of nanoscale materials to graphical renderings of molecules. Scientific images lying outside the realm of nanoscience such as algorithmic art or confocal microscopy images of cells will also be considered.

Related Journals of Nanohedron Biomicrofluidics, Nanotechnology Journal Lists, Nano Journal Impact Factor, IEEE Transactions on Nanotechnology, Microfluidics and Nanofluidics, Journal of Micromechanics and Microengineering

Nano Cars Into the robotics is new technology which is useful for designing robots. Difference in exisiting robotics and nano cars is this system works as nervous system where as in existing system stepper motors are used.

Related Journals of Nanocars Pharmaceutical Nanotechnology, Journal of Nanobiomedical Impact Factor, Review in Nanoscience and Nanotechnology,Nanomedicine & Biotherapeutic Discovery, ACS Nano, Advanced Functional Materials, Journal of Physical Chemistry Letters, Biomaterials, Small, Nano Research

Nanothermite, as the name suggests, is thermite in which the particles are so small that they are measured in nanometers is an ultra-fine-grained (UFG) variant of thermite that can be formulated to be explosive by adding gas-releasing substances.

Related Journals of Nanothermite Nanoscale Research Letters, Journal of Nanobiomedical Impact Factor, International Journal of Nanoscience, Microelectronics and Reliability, Journal of Nanoparticle Research, AIP Advances

A sequence of nanoscale C60 atoms arranged in a long thin cylindrical structure. Nanotubes are extremely strong mechanically and very pure conductors of electric current. Applications of the nanotube in nanotechnology include resistors, capacitors, inductors, diodes and transistors.

Related Journals of Nanotubes Nanotechnology journals, Nature Nanotechnology Journal, Nano Journal Impact Factor, ACM Journal on Emerging Technologies in Computing Systems, Science of Advanced Materials, Journal of Nanophotonics

Having an organization more complex than that of a molecule.

Realated Journals of Supramolecule Plasmonics, Journal of Biomedical Nanotechnology, International Journal of Nanoscience, Journal of Nanobiomedical Impact Factor, Biomedical Microdevices, Biomicrofluidics, IEEE Transactions on Nanotechnology

Nanoionics is the study and application of phenomena, properties, effects and mechanisms of processes connected with fast ion transport (FIT) in all-solid-state nanoscale systems.

Related Journals of Nanoionics Journal of Nanoresearch, Journal of Nanoscience and Nanotechnology, Journal of Biomedical Nanotechnology, Nanomedicine, Nanotechnology, Microporous and Mesoporous Materials, International Journal of Nanomedicine

Nanolithography is the branch of nanotechnology concerned with the study and application of fabricating nanometer-scale structures, meaning patterns with at least one lateral dimension between 1 and 100 nm.

Related Journals of Nanolithography International Journal of Nanotechnology, Journal of Nanotechnology Impact Factor, Nanoscience and Nanotechnology Letters, Nano Research, Scripta Materialia, Nanoscale, Lab on a Chip - Miniaturisation for Chemistry and Biology

Nanoparticles are particles between 1 and 100 nanometers in size. In nanotechnology, a particle is defined as a small object that behaves as a whole unit with respect to its transport and properties. Particles are further classified according to diameter.

Related Journals of Nanoparticles Journal of Nanoscience and Nanotechnology, International Journal of Nanoscience, Journal of Nanomaterial and Nanotechnology, Journal of Nanoparticle Research, Journal of Nanoparticles, International Journal of Nanoparticles,

Exploitation of biomaterials, devices or methodologies on the nanoscale.

Related Journals of Bionanoscience Pharmaceutical Nanotechnology, Journal of Nanobiomedical Impact Factor, Journal of Biomedical Nanotechnology, Recent Patents in Nanotechnology, Journal of Bionanoscience, BioNanoScience, Nanomedicine, Nanotechnology, Microporous and Mesoporous Materials

See the article here:
Nanomedicine Nanotechnology Journals | Peer Review | OMICS

Nanomedicine – an overview | ScienceDirect Topics

17.8 Commentary on Hurdles in Clinical Translation of Various Nanotechnology Products

Research regarding nanoconstructs development in the cancer treatment field has witnessed a noticeable increase after discovery of the EPR effect. However, the number of anticancer drugs that actually reached the market was considered extremely low, as out of 200,000 anticancer drugs only 15 made it by 2017 (Greish et al., 2018). The reasons why most of the nanomedicines cannot even reach the market are the hardship or inability to maintain detailed characterization of these products, unsuccessful manufacturing on large scales, and issues in their safety and efficacy. These hurdles require many developmental processes to overcome them including a precise understanding of every component and all the possible interactions between them, determination of key characteristics to understand in which possible ways they affect performance, and the extent of it. If key characteristics can be replicated under manufacturing conditions (scaling up), the efficacy of targeting at the site of action and their stability and sterility can be enhanced and/or assessed (Desai, 2012). The majority of these hurdles are summarized in Table 17.5 (Tinkle et al., 2014).

Table 17.5. Major Hurdles That Face the Commercialization of Nanomedicine

Lack of standard nano nomenclature: imprecise definition for nanomedicines

Currently used compounds/components for nanodrug synthesis often pose problems for large-scale good manufacturing (cGMP) production

Lack of precise control over nanoparticle manufacturing parameters and control assays

Lack of quality control: issues pertaining to separation of undesired nanostructures (byproducts, catalysts, starting materials) during manufacturing

Reproducibility issues: control of particle size distribution and mass

Scalability complexities: enhancing the production rate to increase yield

High fabrication costs

Lack of rational preclinical characterization strategies via multiple techniques

Biocompatibility, biodistribution and toxicity issues: lack of knowledge regarding the interaction between nanoparticles and biosurfaces/tissues

Consumer confidence: the publics general reluctance to embrace innovative medical technologies without clearer safety or regulatory guidelines

The relative scarcity of venture funds

Ethical issues and societal issues are hyped up by the media

Big Pharmas continued reluctance to seriously invest in nanomedicine

Patent review delays, patent thickets, and issuance of invalid patents by the US Patent and Trademark Office

Regulatory uncertainty and confusion due to baby steps undertaken by US Food and Drug Administration: a lack of clear regulatory/safety guidelines

One of the major concerns related to NPs is their potential incompatibility and toxicity. Studies showed that inhaling NPs can cause pulmonary inflammation as well as inducing endothelial dysfunction that might lead to further complications in the cardiovascular system. A study for evaluation of iron oxide toxicity showed that monocyte-mediated dissolution and phagocytosis of the NPs have caused severe endothelial toxicity by initiating oxidative stress. Nanomaterials used in oral DDS have been shown to accumulate in hepatic cells, which might induce the immune response and eventually cause permanent damage to the liver. The accumulation of NPs in cells has been found to cause cancer by transforming cells into the tumorous state (Jain et al., 2018; Riehemann et al., 2009). Thus, handling these nanosystems requires special equipment and caution, which increases the cost of the production process and requires further investigations of the safety of nanomaterials to have a better understanding and optimize safety during manufacturing (Hammed et al., 2016). Production of NPs in the laboratory often requires complex, multistep synthesis processes to yield the nanomaterials with the required properties. Aside from the complexity of the process, controlling conditions such as temperature and concentrations precisely is significant to achieve homogeneity of NPs in terms of desired characteristics. However, retaining temperature and concentration in large systems is harder to achieve resulting in NPs with different characteristics (Gomez et al., 2014).

NPs tend to aggregate forming clusters with several microns in size. Aggregation of NPs alters their characteristics such as reactivity, transport, toxicity, and risk in the environment. Dissolution reduces when aggregation occurs due to the decrease in available surface area that will eventually reduce the activity of NPs. For example, dechlorination rate of CT (carbon tetrachloride) by magnetite NPs has shown to decrease when aggregation of the NPs increases resulting in an inverse relationship between dechlorination rate of carbon tetrachloride and aggregation of magnetite NPs (Hotze et al., 2010; Hou and Jafvert, 2009).

All these requirements are extremely important because the majority of the nanomedicines have failed to reach the commercialization step even though their efficacy in animal models was considerably high. Due consideration must be given regarding the several difficulties such as their low targeting, low safety, low efficacy, heterogeneity of disease between individuals, inability to scale-up successfully, and unavailability in determining a convenient characterization methods (Agrahari and Agrahari, 2018; Hare et al., 2017; Kaur et al., 2014). These hurdles that face the research process of accelerated translation are summarized in Fig. 17.8 (Satalkar et al., 2016).

Figure 17.8. Major issues that face accelerated translation process of nanoparticles.

Therefore, more understanding in all aspects of nanomedicine production, characterization, and clinical processes must be fulfilled to control and improve the development processes, and increase the efficacy of the translational methods. Other significant hurdles hindering clinical translation are the insignificant incentives regarding technology transfer, as well as socioeconomic uncertainties along with the safety problems faced. In the majority of cases, consideration of commercialization aspects in early stages of development is hardly even considered thus eliminating the market-oriented development (Rsslein et al., 2017).

Nanomedicines face tough, challenging concerns when it comes to determining the applicable analytical tests in terms of chemical, physical, or biological characterization. This is mainly achieved due to their complex nature in comparison with other pharmaceutical products. Hence, there is a need for more complex and advanced levels of testing to ensure a full accurate characterization of nanomedicine products. Quantification of each component of nanomedicine is considered essential alongside the identification and evaluation of interactions between them. For more possibility in achieving successful manufacturing processes with reproducibility, these products should be investigated and understood more during the early developmental stages to identify their key characteristics. The challenges for nanomedicine during scale-up and manufacturing are considered relatively unique because other pharmaceutical manufacturing processes systems are not three-dimensional multicomponent in nature on the nanometer scale. Therefore, a certain series of obstacles in the scale-up process is required. To reach the desired safety, pharmacokinetic and pharmacodynamic parameters to produce the therapeutic effect are needed. These are further determined by the proper selections of the essential components, determination of the critical manufacturing steps, and key characteristics identification. Several methods of orthogonal analysis are essential for in-process quality controls of nanoparticle products and any deviations from key parameters could result in a significant negative impact on both the safety and efficacy of nanomedicines (Desai, 2012).

Each step in the manufacturing process of NPs must be understood extensively with the need of experienced technicians. The development process also requires more enhancements in both complexity and cost. Inadequate data regarding scaling-up processes of nanomedicine products is a major concern in the commercialization step as there are only a few reports supporting scaling-up developments. Many formulation methods have been developed for manufacturing nanomedicine products. The most common methods are nanoprecipitation and emulsion-based approaches. Generally, formulations are prepared either by precipitating the dissolved molecules (bottom-up method) or by reducing the size of larger drug particles (top-down method). Removal of the solvent in the bottom-up method is not an easy process and it cannot be controlled well either, thus explaining why this method is less often applied in industrial manufacturing (Agrahari and Agrahari, 2018; Vauthier and Bouchemal, 2009). Investments in innovative projects face several issues with the major one being the knowledge that should be obtained from the innovation. Its confidentiality is easily breached when a company uses that knowledge as it cannot prevent other companies from using it. Thus, investors are not attracted to this type of project because the total return on the investment cannot be easily appropriated (Morigi et al., 2012).

The complexities in formulating nanoproducts on large scales are due to the inability of optimization of formulation processes and achieving reproducibility. Whereas formulation steps including size reduction, homogenization, centrifugation, sonication, solvent evaporation, lyophilization, extrusion, and sterilization can be easily optimized on small-scales, its still a challenging process on large-scales. Accordingly, variations between batches cannot be controlled sufficiently thereby limiting the possibility of nanomedicine to get through commercial translation (Anselmo et al., 2017; Desai, 2012).

Another problem is that even slight changes in either the formulation or the manufacturing process can have a significant effect on the nanomedicine physiochemical properties (crystallinity, size, surface charge, release profile), which will ultimately influence the therapeutic outcome. Most of the pharmaceutical industrial facilities cannot manufacture nanomedicines because of the lack of the right equipment for the process. As nanomedicine manufacturing usually involves the use of organic solvents, the ability to correctly process and handle nanoproducts is crucial to control their safety and sterility (Anselmo et al., 2017; Desai, 2012; Kaur et al., 2014). These steps require an expensive and complicated equipment, well-trained staff, and precise control to get the required product in the right quality (Desai, 2012; Kaur et al., 2014; Ragelle et al., 2017).

To date, only 58 nanoformulations are approved based on their clinical efficacy but only a quarter of them are meant for cancer treatment. Majority of the nanoformulations could not even be reproduced successfully due to several factors including the study design, overall analysis, protocols, data collection, and the quality and purity of materials used. Besides, the poor establishment of the correlation and prediction of safety and efficacy of the nanomedicine on patients hinders the successful DDS. Targeting and drug accumulation of anticancer drugs in the site of action is considered relatively poor in mouse models. Many nanoformulations were faced with failure in different clinical trial phases. Some of them got approved but then withdrawn from the market such as peginesatide. Unfortunately, the increased failures will most probably affect the development movement in the pharmaceutical industry (Greish et al., 2018).

At the present time, regulatory agencies such as the FDA and EMEA are examining every new nanomedicine on a product-by-product basis. They are considered a unique category due to the fact that there are no true standards in their examination process (Desai, 2012). Two of the major regulatory issues that emerged at the start of nanomedicine is the lack of scientific experts in the FDA and the difficulty in classifying the product (Morigi et al., 2012). The unique characteristics of nanomedicines are directly related to their regulation hurdles, which is the same as other pharmaceutical systems such as liposomes and polymeric systems (Sainz et al., 2015).

Researchers keep investigating nanomedicines when attached to prodrugs, drugs, tracking entities, and targeting molecules. Development of robust methods and assays in quality control of nanomedicines are required for more effective monitoring and characterizations. Also, estimation of their overall performance in releasing drugs, binding to proteins, and the specificity in cellular uptake must be considered (Sainz et al., 2015; Tinkle et al., 2014).

Nanomedicine products are both complex and diverse requiring explanation of challenges to have a clear definition and an effective regulation. The lack of regulatory guidelines for these products hinders their clinical potential. Drug regulatory authorities must keep up with the rapid pace of the knowledge and technological development as they play a major role translating nanomedicines towards the market. The European Medicines Agency (EMEA) and the FDA have different requirements in evaluating new nanomedicines as well as different definitions regarding nanomedicine. Agreeing on specific regulatory procedures internationally is very important to ease the translational researches of nanomedicines. Also, better long-term monitoring of toxicity should be achieved by prolonging postmarketing surveillance especially for a patient with chronic diseases (Sainz et al., 2015; Tinkle et al., 2014).

Nanomedicines just like any other pharmaceutical formulations must offer higher value to patients to become commercially successful, and have better efficacy and safety. New nanomedicine products follow the same steps in clinical trials as other drugs. It starts with preclinical tests, then be submitted to get the IND (investigational new drug) approval and following that it enters the three stages of clinical trials, one after another to evaluate safety and efficacy of the new drug (Agrahari and Agrahari, 2018).

In recent years, toxicities caused by nanomedicines have drawn attention and been recognized to be unique to nanoparticulate systems. Hence, a minimum set of measurements for the nanoparticle like surface charge, size, and solubility are monitored so as to predict the possible toxicity of NPs. Besides, NPs can stimulate the immune system by acting as an antigen. Immunogenicity is mainly affected by the size of the nanoparticle, its surface characteristics, hydrophobicity, charge, and solubility. Hematologic safety concerns have also been observed such as hemolysis and thrombogenicity (Desai, 2012).

In vivo and in vitro studies provide the proper characterization of the interactions between the product and the biological system. The problem is that the data attained from current toxicity tests are not from clinical trials and it cannot always be extrapolated to humans. Monolayers of cell cultures are currently used to characterize immunogenicity, drug release, cellular uptake, and toxicity. However, the cellular uptake process of nanoformulations is majorly influenced by physicochemical characteristics. Thus, 3D cell systems will probably provide better outcomes (Gupta et al., 2016). More caution should be given when handling any nanosized powder due to the ability of such particles to penetrate the skin and because it can also show pulmonary toxicity (Agrahari and Hiremath, 2017; Nel et al., 2006).

See more here:
Nanomedicine - an overview | ScienceDirect Topics

Nanomedicine Market To Reach USD 343.8 Billion By 2026 | CAGR of 12.6% – PharmiWeb.com

Disclaimer: You are now leaving PharmiWeb.com website and are going to a website that is not operated by us. We are not responsible for the content or availability of linked sites.

ABOUT THIRD PARTY LINKS ON OUR SITE

PharmiWeb.com offers links to other third party websites that may be of interest to our website visitors. The links provided in our website are provided solely for your convenience and may assist you in locating other useful information on the Internet. When you click on these links you will leave the PharmiWeb.com website and will be redirected to another site. These sites are not under the control of PharmiWeb.com.

PharmiWeb.com is not responsible for the content of linked third party websites. We are not an agent for these third parties nor do we endorse or guarantee their products. We make no representation or warranty regarding the accuracy of the information contained in the linked sites. We suggest that you always verify the information obtained from linked websites before acting upon this information.

Also, please be aware that the security and privacy policies on these sites may be different than PharmiWeb.com policies, so please read third party privacy and security policies closely.

If you have any questions or concerns about the products and services offered on linked third party websites, please contact the third party directly.

See original here:
Nanomedicine Market To Reach USD 343.8 Billion By 2026 | CAGR of 12.6% - PharmiWeb.com

Nanotechnology for disease diagnosis and treatment earns Florida Poly professor international award – Yahoo Finance

Florida Poly assistant professor Dr. Ajeet Kaushik has received the 2019 USERN Prize in biological sciences, an international award recognizing his work in the field of nanomaterials for the detection and treatment of diseases.

LAKELAND, Fla., Nov. 18, 2019 /PRNewswire-PRWeb/ -- Dr. Ajeet Kaushik is determined to make detecting and treating diseases easy, accessible, and precise through the use of nanomaterials for biosensing and medicine.

His extensive work and resolute desire to improve the delivery of healthcare has earned Kaushik the prestigious Universal Scientific Education Research Network (USERN) Prize. He was named a laureate in the field of biological sciences during the group's fourth annual congress on Nov. 8 in Budapest, Hungary.

USERN, a non-governmental, non-profit organization and network dedicated to non-military scientific advances, is committed to exploring science beyond international borders.

"I was speechless for a while," said Kaushik, who is an assistant professor of chemistry at Florida Polytechnic University.

Kaushik did not attend the awards ceremony in person but did submit a video to be played at the event. He was among hundreds vying for the prize and one of five people who were recognized in different areas of study.

His submitted project, Nano-Bio-Technology for Personalized Health Care, focuses on using nanomaterials to create biosensors that will detect the markers of a disease at very low levels.

"Biosensing is not a new concept, but now we are making devices that are smarter and more capable," Kaushik said.

He cited the recent zika virus epidemic that affected pregnant women and their fetuses, leading to significant health complications upon birth. "There was a demand to have a system that could detect the virus protein at a very low level, but there was no device. There was no diagnostic system," he said.

Kaushik worked on the development of a smart zika sensor that could detect the disease at these low levels. "The kind of systems I'm focusing on can be customized in a way that we carry like a cell phone and do the tests wherever we need to do them," he said.

In addition to using nanotechnology for the detection of diseases like zika, his research on nanoparticles is advancing efforts to precisely deliver medicine to a specific part of the body without affecting surrounding tissue or other parts of the body.

"The drugs we use now do not go only where they need to go, or sometimes they have side effects. We are treating one disease but creating other symptoms," Kaushik said. "I'm exploring nanotechnology that can carry a drug, selectively go to a place, and release the drug so we avoid using excessive drugs."

This nanomedicine could be used to precisely target brain tumors or other difficult-to-treat conditions. He has published papers in scientific journals about this work and also holds multiple patents.

"My whole approach is using smart material science for better health for everybody, which is accessible to everybody everywhere," Kaushik said.

In addition to his USERN prize, Kaushik was named a USERN junior ambassador for 2020 and will work to advance the organization's mission in the United States.

For the most recent university news, visit Florida Poly News.

About Florida Polytechnic University:

Florida Polytechnic University is accredited by the Southern Association of Colleges and Schools Commission on Colleges and is a member of the State University System of Florida. It is the only state university dedicated exclusively to STEM and offers ABET accredited degrees. Florida Poly is a powerful economic engine within the state of Florida, blending applied research with industry partnerships to give students an academically rigorous education with real-world relevance. Connect with Florida Poly online at http://www.floridapoly.edu.

Visit link:
Nanotechnology for disease diagnosis and treatment earns Florida Poly professor international award - Yahoo Finance

‘Bad cholesterol’ is only as unhealthy as its composition: Research demonstrates that current guidelines for diagnosing risk are ‘dangerously…

New research at Ohio University shows that a particular subclass of low-density lipoproteins (LDL), also known as bad cholesterol, is a much better predictor of potential heart attacks than the mere presence of LDL, which is incorrect more often than not.

The presence of LDL is considered an indicator for the potential risk of heart attacks or coronary disease, but studies have shown that about 75 percent of patients who suffer heart attacks have cholesterol levels that dont indicate a high risk for such an event. Research by Ohio University Distinguished Professor Dr. Tadeusz Malinski and researcher Dr. Jiangzhou Hua in Ohio Universitys Nanomedical Research Laboratory shows that of the three subclasses that comprise LDL, only one causes significant damage.

Our studies can explain why a correlation of total bad cholesterol with a risk of heart attack is poor and dangerously misleading its wrong three quarters of the time, Malinski said. These national guidelines may seriously underestimate the noxious effects of LDL cholesterol, especially in cases where the content of subclass B in total LDL is high (50% or higher).

Malinskis team used nanosensors to measure the concentration of nitric oxide and peroxynitrite in endothelium stimulated by LDL subclasses and reported the findings in a study published in the current issue of International Journal of Nanomedicine. Subclass B of LDL was found to be the most damaging to endothelial function and can contribute to the development of atherosclerosis. Therefore, its not the total amount of LDL cholesterol one has, but rather the concentration of subclass B to the other two, subclass A and subclass I, that should be used to diagnose atherosclerosis and the risk of heart attack.

Understanding this could lead to improving the accuracy of diagnosis for the evaluation of cardiovascular disease rates, Malinski said. Analyzing the mixture of LDL subclasses may provide a parameter-based model for an early medical diagnosis of estimating the risk of cardiovascular disease.

Story Source:

Materials provided by Ohio University. Note: Content may be edited for style and length.

Read more:
'Bad cholesterol' is only as unhealthy as its composition: Research demonstrates that current guidelines for diagnosing risk are 'dangerously...

Nanomedicine and Tissue Engineering: State of the Art and …

Preface

Nanomedicine: From Concept to Reality; Rakhimol K. R., Robin Augustine, Sabu Thomas, and Nandakumar Kalarikkal

Tissue Engineering: Principles, Recent Trends and the Future; Ansuja P Mathew, Robin Augustine, Nandakumar Kalarikkal, and Sabu Thomas

Tailored Heating Superparamagnetic Nanoparticles for Hyperthermia Applications; Vanchna Singh and Varsha Banerjee

Silver Nanoparticles: Newly Emerging Antimicrobials in the 21st Century; M. Saravanan, Vinoy Jacob, K. Ravi Shankar, Karthik Deekonda, Jesu Arockiaraj, and P. Prakash

Tailoring Plasmon Resonances in Metal Nanospheres for Optical Diagnostics of Molecules and Cells; Krystyna Kolwas, Anastasiya Derkachova, and Daniel Jakubczyk

Recent Advances in Nanoparticulate Drug Delivery System for Antiviral Drugs; Dipali M. Dhoke, Rupesh V. Chikhale, Amit M. Pant, Sunil Menghani, Nilesh Rarokar, and Pramod B. Khedekar

Triggerable Liposomes: Newer Approach in Cytoplasmic Drug Delivery; Neeraj K. Sharma and Vimal Kumar

P-gp Inhibitors: A Potential Tool to Overcome Drug Resistance in Cancer Chemotherapy; Ankit Jain, Sanjay K. Jain

Formulation and Evaluation of Self-Nanoemulsifying Drug Delivery System (SNEDDS) for Oral Delivery of Ketoconazole; Poonam Verma, Sandeep K. Singh, Koshy M. Kymonil, and Shubhini A. Saraf

Recent Advances in the Application of Biopolymer Scaffolds for 3D Culture Of Cells; Mala Rajendra and Anantha Suganiya Selvaraj

Electrospun Matrices for Biomedical Applications: Recent Advances; Deepa P. Mohanan, Robin Augustine, Nandakumar Kalarikkal, Radhakrishnan E. K., and Sabu Thomas

Functionalization of Scaffolds with Biomolecules for Various Types of Tissue Engineering Applications; R. Selvakumar, Amitava Bhattacharyya, J. Gopinathan, R. Sournaveni, and Mamatha M. Pillai

Anti Microbial Nano Materials for Wound Dressings; Anantha Suganiya Selvaraj and Mala Rajendran

Cutaneous Wound Care: Grafts to Tissue Engineered Skin Substitutes; Robin Augustine, Bhavana Venugopal, Nandakumar Kalarikkal, and Sabu Thomas

Index

Read the original:
Nanomedicine and Tissue Engineering: State of the Art and ...

Erythrocyte leveraged chemotherapy (ELeCt): Nanoparticle assembly on erythrocyte surface to combat lung metastasis – Science Advances

Abstract

Despite being the mainstay of cancer treatment, chemotherapy has shown limited efficacy for the treatment of lung metastasis due to ineffective targeting and poor tumor accumulation. Here, we report a highly effective erythrocyte leveraged chemotherapy (ELeCt) platform, consisting of biodegradable drug nanoparticles assembled onto the surface of erythrocytes, to enable chemotherapy for lung metastasis treatment. The ELeCt platform significantly extended the circulation time of the drug nanoparticles and delivered 10-fold higher drug content to the lung compared with the free nanoparticles. In both the early- and late-stage melanoma lung metastasis models, the ELeCt platform enabled substantial inhibition of tumor growth that resulted in significant improvement of survival. Further, the ELeCt platform can be used to deliver numerous approved chemotherapeutic drugs. Together, the findings suggest that the ELeCt platform offers a versatile strategy to enable chemotherapy for effective lung metastasis treatment.

Cancer has been one of the leading causes of mortality over the last few decades (1). While early detection of tumor cells in specific tissues or the blood has improved the survival of patients with cancer, current standard-of-care interventions, including surgery, radiation therapy, or chemotherapy, have limited efficacy if cancer is not detected early (14). Early detection, however, is not often feasible, and in most patients, tumors have metastasized to secondary locations by the time of diagnosis (2, 4).

According to the National Cancer Institute, the most common site of metastasis for a variety of primary cancers is the lung, owing to its high vascular density. Lung metastasis is highly fatal if not treated, and currently, there is no specific treatment for it (5, 6). Systemic chemotherapy is one of the standard treatment options for lung metastasis (7, 8). However, its efficacy has been far from desirable due to ineffective targeting and poor accumulation in the lungs. Nanotechnology has played a pivotal role in enhancing the treatment of advanced metastatic cancers (911) and therefore can be applied in the case of lung metastasis as well. However, traditional nanoparticle (NP) delivery often fails to accumulate at the desired site of action due to the existence of biological barriers that impede the intravascularly injected NPs (1217). Active targeting using tissue-specific ligands has often been explored as a strategy to improve tissue accumulation but has only resulted in modest improvement of therapeutic efficacy and decreased translational capability due to increased cost of production (1826).

To achieve efficient drug delivery to enable chemotherapy for effective lung metastasis treatment, we used the unique physiology of the target site and developed a two-pronged strategy [erythrocyte leveraged chemotherapy (ELeCt)]biodegradable drug NPs assembled on the surface of erythrocyte (Fig. 1A). Erythrocytes act as a primary drug delivery system, capable of responsively dislodging the particles in the lung endothelium and tumor nodules in response to the high shear stress experienced by erythrocytes in narrow lung capillaries (27, 28). The biodegradable NPs themselves are capable of encapsulating large amounts of chemotherapeutics and having a characteristic controlled-release mechanism (29, 30). They act as a secondary drug delivery system enabling sustained delivery of the cargo. In this study, superior accumulation and therapeutic efficacy of this lung physiology-assisted NP strategy were demonstrated using a model chemotherapeutic doxorubicin (DOX). This concept was successfully used to combat lung metastasis and improve survival in early- and late-stage melanoma lung metastasis models. The ability to incorporate a plethora of current clinical chemotherapy drugs and drug combinations in the biodegradable NPs and subsequently assemble onto the erythrocytes was demonstrated. The particles also readily assembled to human erythrocytes and dislodged in a shear-dependent manner. Together, ELeCt offers a versatile, potent, and translatable platform to combat lung metastasis.

(A) Schematic illustration of the composition and mechanism of the biodegradable drug NP assembling on the erythrocyte platform (ELeCt) for lung metastasis treatment. (B to D) Average size (B), zeta potential (C), and drug loading contents (D) of plain and drug-loaded NPs. (E) SEM images showing the morphological features of the NPs. Scale bars, 200 nm. (F) Size distribution of plain and drug-loaded NPs. (G) Drug release kinetics from the biodegradable NPs in a complete medium (n = 4). (H and I) Flow cytometry histogram plots (H) and CLSM images (I) showing the interaction of drug-loaded NPs with B16F10-Luc melanoma cells. In (I), cell nuclei were stained using 4,6-diamidino-2-phenylindole (DAPI). (J and K) Dose-response curve (J) and median inhibitory concentration (IC50) values (K) of B16F10-Luc cells after being treated with different formulations for 24 hours (n = 6). n.s., not significantly different (Students t test).

We used DOX as a model drug and prepared drug-loaded biodegradable polymeric [poly(lactic-co-glycolic acid) (PLGA)] NPs using the nanoprecipitation method. The drug-loaded PLGA NPs had a diameter of 136.0 2.7 nm, which was slightly larger than the plain NPs (Fig. 1B). The encapsulation of DOX made the surface of the drug-loaded NPs slightly positive (10.45 0.84 mV) (Fig. 1C), and this can be attributed to the presence of DOX on the NP surface. The drug-loaded PLGA NPs exhibited a high drug loading capacity (196.7 5.8 mg/g) (Fig. 1D). We characterized the morphology of the NPs using scanning electron microscopy (SEM). SEM images shown in Fig. 1E revealed that both the plain and the drug-loaded PLGA NPs were spherical and relatively monodispersed. The dynamic light scattering data (Fig. 1F) confirmed the uniform size distribution of the prepared NPs. To test whether the drug could be released from the PLGA NPs, we assayed their release profile in a complete medium. A burst followed by a sustained-release profile was observed, and most of the drug was released within the first 6 hours (Fig. 1G). Efficient interaction of drug NPs with the target cancer cells is critical for successful drug delivery and efficacy. In this study, we used B16F10-Luc melanoma cells as a model to evaluate the interaction between the drug-loaded biodegradable PLGA NPs and the target cancer cells. As shown in Fig. 1H, the drug-loaded PLGA NPs appeared to be internalized by B16F10-Luc cells quickly and efficiently. Within 20 min of the incubation, a substantial portion of the cells had drug-loaded NPs in them. The confocal laser scanning microscopy (CLSM) images shown in Fig. 1I confirmed the efficient interactions between the NPs and the B16F10-Luc cells. Noticeably, the increase in DOX fluorescence within the cell nucleus suggested an effective intracellular delivery and sufficient release of the loaded drug. We further evaluated the in vitro antitumor efficacy of the drug-loaded PLGA NPs in a two-dimensional culture of the same cell line. As indicated by the dose-response curve (Fig. 1J) and IC50 (median inhibitory concentration) values (Fig. 1K), the drug-loaded PLGA NPs exhibited a slightly weaker cell killing efficacy compared with the free drug. However, the difference between them was not significant.

We first evaluated whether the drug-loaded PLGA NPs could efficiently assemble onto the mouse erythrocytes. To do this, we incubated mouse erythrocytes with the NPs at a range of NP-to-erythrocyte ratios (50:1 to 800:1) and detected the binding of NPs using flow cytometry. As shown in Fig. 2 (A and B), the drug-loaded PLGA NPs indeed assembled onto the mouse erythrocytes efficiently. Particularly, 81.6% of erythrocytes were found to carry NPs when being incubated with NPs at a ratio of 200:1, and this number increased to >96% on further increasing the incubation ratio. The binding efficiency of the NPs to the erythrocytes was also quantified. Unexpectedly, a substantial portion (39.3 to 54.5%) of the incubated NPs assembled onto the mouse erythrocytes, depending on the feed ratio of the NPs to the erythrocytes (Fig. 2C). Because of this high binding efficiency and the high drug loading capacity of the NPs, the mouse erythrocytes were able to carry a high drug dose (as high as 294.1 g per 3 108 erythrocytes) (Fig. 2D). In addition, the drug dose on the mouse erythrocytes could be easily tuned by manipulating the feed ratio of the NPs to the erythrocytes. Next, we visualized the assembly of drug-loaded PLGA NPs onto the mouse erythrocytes using CLSM and SEM. As shown in Fig. 2 (E and F), both the CLSM and SEM data confirmed the efficient assembly of the NPs onto the mouse erythrocytes. Meanwhile, the mouse erythrocytes maintained their biconcave shapes after being hitchhiked by the drug-loaded PLGA NPs (Fig. 2 (E and F)), indicating the assembly of the NPs had caused minimal damage to the carrier erythrocytes. To test the translational potential of the erythrocyte hitchhiking platform, we evaluated the assembly of the drug-loaded PLGA NPs onto the human erythrocytes. Both the CLSM and SEM images shown in Fig. 2 (G and H) suggested that the drug NPs could efficiently assemble onto the human erythrocytes as well. In addition, we also evaluated the assembly of drug-loaded PLGA NPs to human erythrocytes at different NP-to-erythrocyte feed ratios (200:1 to 1600:1). Similar to the murine counterparts, the drug-loaded PLGA NPs assembled onto the human erythrocytes with high efficiency (38.7 to 45.7%) at various NP-to-erythrocyte feed ratios (Fig. 2 (I and J)). Moreover, the drug dose on human erythrocytes could be tuned by changing the incubation ratio, and a very high drug dose (209.1 g per 1.5 108 erythrocytes) could be hitchhiked to human erythrocytes when being incubated at a 1600:1 NP-to-erythrocyte ratio (Fig. 2K).

(A) Flow cytometry analysis of assembly of DOX-loaded PLGA NPs to mouse erythrocytes at different NP-to-erythrocyte ratios (left to right: 0:1, 50:1, 200:1, 400:1, and 800:1). (B) Percentage of mouse erythrocytes carrying at least one NP. (C) Nanoparticle binding efficiency and (D) drug dose on mouse erythrocytes at different NPtomouse erythrocyte ratios. (E) CLSM and (F) SEM images of mouse erythrocytes with drug-loaded NPs assembled on them. Scale bars in (F), 2 m. (G) CLSM and (H) SEM images of human erythrocytes with drug-loaded NPs assembled on them. Scale bars in (H), 2 m. (I) Flow cytometry assay of the assembly of drug-loaded NPs to human erythrocytes at different NP-to-erythrocyte ratios (left to right: 0:1, 200:1, 800:1, and 1600:1). (J) Nanoparticle binding efficiency and (K) drug dose on human erythrocytes at different NP-to-erythrocyte ratios.

We first conducted a pharmacokinetic study to examine the blood circulation time of different drug formulations. As shown in Fig. 3A, by assembling drug NPs to erythrocytes, a higher drug concentration in the blood was achieved at all the tested time points, indicating an extended circulation time of the hitchhiked formulation. Mouse lung capillaries have an average diameter of 5 m, narrowing down up to sizes as small as 1 m, three to four times smaller than the mouse erythrocyte diameter (27). Upon intravenous administration, the drug-loaded NPs assembled onto erythrocytes are expected to detach from the carrier erythrocytes because of the high shear stress and be deposited in the narrow lung capillaries. To test this hypothesis, we first performed an in vitro shear study in which the erythrocytes carrying the drug-loaded NPs were sheared for 20 min at a low (~1 Pa) or high (6 Pa) shear stress. As shown in Fig. 3B, detachment of the drug NPs from the mouse erythrocytes was evidently shear dependent, providing a basis for specific delivery of drug NPs to the diseased lungs. Particularly, 76% of the hitchhiked drug NPs were sheared off at the lung-corresponding shear stress (6 Pa), using a rheometer. Moreover, this shear-dependent detachment of drug NPs was also observed with the human erythrocytes, bolstering the translational potential of this ELeCt platform. To test whether the drug NPs could be sheared off and deposited in the lungs that bear metastasis in vivo, we conducted a biodistribution study in mice bearing B16F10-Luc melanoma lung metastasis and quantified the amount of drug, in this case DOX. As shown in Fig. 3 (C and D), by assembly onto erythrocytes, the drug-loaded NPs delivered 16.6-fold higher drug content to the diseased lungs as compared with their free NP counterparts, 20 min after administration. Even at a longer time point (6 hours), erythrocyte hitchhiking deposited 8.7-fold higher drug content in the lungs as compared with their unhitchhiked counterparts. In addition, erythrocyte hitchhiking delivered a 6.9-fold higher drug content to the lungs with melanoma metastasis as compared with the free drug injection, 20 min after administration. Next, we investigated the distribution of the drug NPs sheared off from the carrier erythrocytes within the lungs bearing metastasis. As shown in Fig. 3E, consistent with the biodistribution data, more drug NPs were found in the lung section being treated with erythrocytes with NPs assembled on them compared with that being treated with the NPs alone. Evidently, a substantial portion, although not all, of the deposited NPs went deep into the tumor metastasis nodules, suggesting the biodegradable drug NP assembling on erythrocyte was able to precisely deliver the payload chemotherapeutic agents to their desired site of action.

(A) Pharmacokinetics of intravenously administered DOX formulations. Extended blood circulation time of DOX was achieved by erythrocyte hitchhiking compared with using free drug or NPs alone (n = 3). Significantly different [one-way analysis of variance (ANOVA)]: *P < 0.05 and **P < 0.01. (B) Hitchhiked drug-loaded NPs could specifically detach from mouse and human erythrocytes under the lung-corresponding shear stress. Samples were sheared for 20 min (n = 3). Low shear indicates rotary shear (~1 Pa), while high shear was at 6 Pa. Significantly different (Students t test): ***P < 0.001. (C) Drug accumulation in the lungs of mice bearing B16F10-Luc lung metastasis at 20 min and 6 hours after intravenous administration of different DOX formulations (n = 3). Significantly different (one-way ANOVA): *P < 0.05 and ***P < 0.001. (D) Comparison of the drug concentration in the lungs of erythrocyte hitchhiking group to that of the free drug and NP-alone groups (n = 3). (E) Drug distribution in the diseased lungs 20 min after intravenous administration of DOX formulations. Dashed lines indicate the edge of metastasis nodules.

To evaluate the efficacy of the biodegradable drug NP assembly on the erythrocyte platform, we established a B16F10-Luc melanoma lung metastasis model and tested the antimetastatic efficacies in both the early and the late stages of the same model. We first tested the efficacy of the developed platform in controlling early-stage lung metastasis. As shown in Fig. 4A, the lung metastasis model was established by intravenously injecting B16F10-Luc cells via the tail vein. Four doses of treatments were given every other day with the first dose being administered 1 day after the tumor cell injection. The lung metastasis burden was measured by the bioluminescence intensity in the lung. As indicated by the bioluminescence images (Fig. 4B) and lung metastasis burden growth curve of individual mouse (Fig. 4C), a significantly better inhibition of the lung metastasis progression was achieved by the ELeCt as compared with using the free drug or NPs alone. Two mice remained completely free of lung metastasis after being treated with the drug NPs assembled on erythrocytes for up to day 31 after tumor inoculation. We also calculated the overall lung metastasis burden based on the bioluminescence intensity in the lungs. As shown in Fig. 4D, in the first 23 days after tumor inoculation, lung metastasis was almost completely inhibited in all mice being treated with the drug NPs assembled on erythrocytes. Particularly, as shown in Fig. 4E, on day 16, free drug and drug NPs alone resulted in a 17.2- and 1.8-fold lower average bioluminescence intensity compared with the control, respectively. In a sharp contrast, ELeCt achieved a 204.8-fold lower average bioluminescence intensity compared with the control. Similar finding was also observed on day 23. As shown in Fig. 4F, compared with using the drug NPs alone, the treatment using drug NPs assembled on erythrocytes led to a 302-fold lower average bioluminescence intensity. The Kaplan-Meier survival analysis (Fig. 4H) further confirmed the significantly improved survival benefit of the ELeCt approach over using the NPs alone. The use of the free drug or NPs alone only improved survival slightly, increasing the median survival time from 29 to 32 days. In a sharp comparison, by the treatment with drug NPs assembled on erythrocytes, the animal median survival time was extended from 29 to 61 days. Moreover, one of seven mice continued to survive for at least 70 days. We also monitored the body weight change of mice during the entire treatment period. No significant body weight loss was detected for any of the treatments, compared with a sharp decline in the body weight during the free drug treatment (Fig. 4G), indicating that only the free drug administration caused obvious toxicity at the current drug dose.

(A) Schematic chart of the treatment schedule. (B) Bioluminescence images of lung metastasis at different time points. EXP indicates Expired. (C) Lung metastasis progression curve as depicted from in vivo bioluminescence signal intensity. (D) Quantification of lung metastasis burden at different time points (n = 7). (E) Scatter plot comparing the lung metastasis burden in different treatment groups as depicted from bioluminescence signal intensity on day 16 (n = 7). Significantly different (Kruskal-Wallis test): *P < 0.05, **P < 0.01, and ****P < 0.0001. (F) Scatter plot comparison of the lung metastasis burden on day 23 (n = 7). Significantly different (Kruskal-Wallis test): *P < 0.05, **P < 0.01, and ****P < 0.0001. (G) Body weight change of mice during the treatment period (n = 7). (H) Survival of mice under different treatments as displayed by Kaplan-Meier curves (n = 7). Significantly different (log-rank test): *P < 0.05 and ***P < 0.001.

Next, we investigated the antimetastatic activity of the developed therapies in late-stage lung metastasis. As shown in Fig. 5A, after intravenous tumor cell injection, mice received four doses of therapies every other day with the first dose being administered a week after inoculation (day 7). According to the bioluminescence images (Fig. 5B) and lung metastasis growth curve (Fig. 5C) of individual mice, using the drug NPs alone did not lead to significant inhibition of lung metastasis progression. However, the drug NPs assembled on erythrocytes (ELeCt) were able to slow down the lung metastasis progression, although not as notably as in the early-stage metastasis model. The overall lung metastasis burden data shown in Fig. 5D confirmed the better efficacy of the hitchhiked drug NPs over using the free NPs alone. In particular, on day 16 after tumor inoculation, the hitchhiked drug NPs exhibited a 2.4-fold better efficacy in terms of inhibiting metastasis growth. On day 16, the lungs were excised, and the surface metastatic nodules on the lungs were counted. The surface nodules data shown in Fig. 5E were consistent with the bioluminescence metastasis burden data evaluated with bioluminescence. A 2.3-fold better efficacy in reducing surface nodules was achieved by assembling the drug NPs to the erythrocytes. The hematoxylin and eosin (H&E) analysis of the lungs of mice confirmed this result (fig. S1). In addition, the body weight change data shown in Fig. 2F and the H &E analysis data shown in fig. S2 suggested that no significant toxicity was associated with any of the treatments. We then conducted a separate study to evaluate the efficacy of the therapies in terms of extending the animal survival time. As shown in Fig. 5G, unlike in the early-stage metastasis model, the use of drug NPs alone did not provide any survival benefit. However, the treatment using drug NPs assembled on erythrocytes (ELeCt) significantly improved the animal survival, extending the median survival time from 28.5 to 37 days. In particular, one of eight mice that received the hitchhiked drug NPs continued to survive for at least 48 days.

(A) Schematic illustration of the treatment schedule. (B) Bioluminescence images of lung metastasis progression at different time points. (C) Lung metastasis growth curve in mice treated with different DOX formulations. (D) Quantitative analysis of lung metastasis burden as depicted from bioluminescence signal intensity (n = 7). Significantly different (one-way ANOVA): *P < 0.05 and **P < 0.01. (E) Quantification of metastasis nodule numbers on excised lungs from mice in different treatment groups on day 16 (n = 7). Significantly different (one-way ANOVA): **P < 0.01 and ***P < 0.001. (F) Body weight change of mice during the treatment period (n = 7). (G) Kaplan-Meier survival curves of mice in different treatment groups. Significantly different (log-rank test): **P < 0.01 and ***P < 0.001.

To test the feasibility of using the ELeCt platform for the delivery of other chemotherapeutic agents, we selected six other common chemotherapeutic agents or their combinations, including camptothecin, paclitaxel, docetaxel, 5-fluorouracil, gemcitabine, methotrexate, and the combination of 5-fluorouracil and methotrexate, and loaded them into the biodegradable PLGA NPs. Despite having diverse physicochemical properties (shown in fig. S3 and table S1), the different chemotherapeutic agentloaded NPs were able to assemble onto erythrocytes (Fig. 6). These data supported that the biodegradable drug NP assembling onto erythrocytes approach (ELeCt) can potentially be a versatile platform to deliver selected chemotherapies to lung metastasis that originated from different primary tumors.

The tested chemotherapeutic agents include camptothecin, paclitaxel, docetaxel, 5-fluorouracil, gemcitabine, methotrexate, and the combination of 5-fluorouracil and methotrexate. Scale bars, 1 m.

Because of its unique physiological features like high blood throughput and high density of narrow capillaries, lung is one of the major organs into which the evaded tumor cells from primary tumor sites can spread (31). Patients with advanced cancer (30 to 55%) have lung metastasis (32). Treating lung metastasis is more challenging than treating the primary tumors because it typically progresses more aggressively (33). Systemic chemotherapy is one standard treatment option for lung metastasis. However, its efficacy is usually far from desirable, attributed to its ineffective targeting and poor accumulation in the lungs. Conventional NP-mediated drug delivery also fails to achieve good localization with the desired site of action (34). Here, we report an erythrocyte hitchhiking platform, ELeCt, consisting of drug-loaded biodegradable NPs assembled on erythrocytes for promoting chemotherapy for effective lung metastasis treatment. Excellent studies have shown NPs hitchhiking on erythrocytes to accumulate in lungs, including recently in metastatic lungs (35); however, the ability of such a mechanism to yield survival benefits has not been known. To that end, we successfully demonstrate the ability of ELeCt to slow down the progression and improve the survival in early- and late-stage experimental melanoma metastasis models, resembling early detection and mid-to-late detection clinical scenarios, respectively.

Conventional nanomedicines use the attachment of active targeting ligands to enhance the targeted delivery of chemotherapeutic payloads (10, 11, 3640). The ELeCt platform developed in this work exploits a completely new paradigm, taking advantage of the unique physiology of the target sites (high shear stress) and responsive dislodging of the chemotherapeutic payloads. Our in vitro drug-release data showed that the biodegradable NPs were able to have burst followed by relatively sustained drug release. Our pharmacokinetic and biodistribution data suggested that the ELeCt platform has two important features compared with the free drug and NPs aloneextended blood circulation time and improved accumulation to lung metastasis. Actually, both features are favorable for lung metastasis treatment. The extended circulation time is consistent with previous reports (27, 41). By hitchhiking to erythrocytes, NPs experience less immune recognition by the reticuloendothelial system organs, enabling them to stay in circulation for a longer time (27, 28, 41). The higher concentration of payload drug in the blood endowed by the ELeCt would allow more drug to interact with and kill the circulating tumor cells. Our in vitro shear study data evidently proved that the detachment of drug NPs from erythrocytes is shear dependent, and this is the basis for using the platform to precisely deliver payload chemotherapeutics to the target lung metastasis sites. It should be noticed that a substantial portion of the drug NPs were also detached at the low shear stress. This factor emphasized the need for investigating the surface modification of the drug NPs to modulate the binding strength of drug NPs to erythrocytes for future explorations with this technology. Our biodistribution data suggested that the biodegradable NP assembly on erythrocyte (ELeCt) platform was able to deliver a high concentration of payload chemotherapeutics to the lung metastatic sites in a short period of time. Impressively, the ELeCt platform delivered 16.6-fold more drug to the lungs bearing metastasis in 20 min compared with using the drug NPs alone. In comparison, the conventional targeted nanomedicine approach using targeting ligands can rarely achieve such high delivery enhancement (17, 42). Moreover, it usually shows a maximum tumor accumulation at a significantly longer time point (12 to 24 hours), depending on the properties of the nanomedicine (43). The quick and targeted delivery of drug NPs by the ELeCt platform would bring benefits for inhibiting tumor growth. For instance, typical nanomedicines, independent of their material origins, usually have an initial burst drug release and thus cause premature drug leakage (44), potentially attenuating the therapeutic efficacy and often leading to toxicity. The quick and targeted delivery achieved by the ELeCt platform has the potential to circumvent this issue. In addition, not unexpectedly, the lung section imaging suggested that the deposited NPs were distributed throughout the lung sections, both the inside and the outside of the lung metastatic nodules. The NPs deposited outside of the metastasis nodules have the potential to serve as a drug reservoir to release drug that can relocate to the metastatic nodules within close proximity.

Our in vivo efficacy data suggested that the enhanced and targeted delivery of chemotherapeutics by the ELeCt platform could bring benefits for inhibiting both the early-stage and the late-stage lung metastasis growth. In the early-stage lung metastasis model, the treatments using free drug or drug NPs alone exhibited some slowdown of the progression of lung metastasis. However, their antimetastatic efficacy was not potent enough to significantly extend the animal survival. In comparison, the ELeCt platform was able to provide a 100- to 300-fold better antimetastatic efficacy compared with using the free drug or drug NPs alone. Its improved antimetastatic efficacy led to a significantly extended animal survival, extending the median survival time of mice bearing lung metastasis by 32 days, compared with the control group. The data suggested that the ELeCt platform has the potential to enable chemotherapy for effective treatment of early-stage lung metastasis. In the late-stage metastasis model, the administration of drug NPs alone failed to significantly inhibit the lung metastasis growth and to improve the survival time. The ELeCt platform was able to significantly slow down the lung metastasis progression and modestly improved animal survival. Evidently, the antimetastatic efficacy of the therapies is closely related to the start time of the therapies. The efficacy of the developed therapies to treat in an even later-stage lung metastasis has not been shown yet. In addition, future studies may also need to be done to unveil the effect of drug dose and schedule of the therapies on their antimetastatic efficacy.

The exact mechanism of the drug-loaded biodegradable NP assembling on erythrocytes is not clear. Previous studies from our laboratory and others have attributed the assembly of NPs to erythrocytes to the noncovalent interactions such as electrostatic interactions, hydrophobic interactions, and H-bonds between the polymeric NPs and domains on the red blood cell (RBC) membrane (27, 28, 35). The assembly is most likely a result of balance between surface tension forces caused by the NP-induced membrane stretching and the noncovalent interactions between the cell membrane and NPs. The balance of the two factors drives stable assembly of the particles onto erythrocytes (27). However, details of this mechanism need future investigation. Our drug NP binding data suggested that the model drugloaded NPs, in this case, DOX, could assemble onto the mouse erythrocytes at a very high binding efficiency. This feature is critical for making the ELeCt platform work. The number of erythrocytes that can be administered has an upper limit, and only having a high drug dose on individual erythrocytes can achieve the therapeutic concentration of chemotherapeutics. In addition, our data also suggested that the drug dose on erythrocytes could be tuned by changing the feed incubation ratios of drug NPs to erythrocytes, thus providing the possibility of changing drug dosage according to specific lung metastasis conditions. Other than DOX, we were able to load different commonly used chemotherapeutic agents or their combinations to the biodegradable NPs. Moreover, these drug-loaded NPs could assemble onto the mouse erythrocytes as well. This opens a new window to use the ELeCt platform to treat lung metastasis originating from different primary sites. Lung metastasis can have different primary tumor origins like breast cancer, bladder cancer, melanoma, and many others. The metastasis derived from different origins is preferably treated by specific chemotherapeutic agents (45, 46). The ELeCt platform has the potential to be a versatile platform to treat different lung metastasis by loading optimal chemotherapeutic agents according to their primary tumor origins. The impact of the chemotherapeutics properties on the performance of the ELeCt platform should be further investigated in future studies. Our data also suggested that the drug-loaded biodegradable NPs efficiently assembled onto human erythrocytes and were detached from them under lung-corresponding shear stress. In addition, the material used to prepare the biodegradable NPs (PLGA) is part of several FDA-approved products (47). Therefore, this platform technology has a translational potential. However, this needs to be explored further in the future.

In summary, the ELeCt platform, drug-loaded biodegradable NP assembling on erythrocyte, was developed, which enables lung physiologyassisted shear-responsive targeted delivery of chemotherapeutic agents to treat lung metastasis. The drug NPs assembled on erythrocytes could be precisely dislodged in the lungs bearing metastasis in response to the intrinsic mechanical high shear stress. Various commonly used chemotherapeutic agents could be loaded into the biodegradable NPs and further made to successfully assemble onto the erythrocytes. This platform successfully delivered one-order-of-magnitude-higher content of the model drug (DOX) to the diseased lungs as compared with using the NPs alone. This platform enabled chemotherapy to effectively inhibit lung metastasis growth and significantly improve the survival. All in all, the ELeCt platform can be a versatile strategy to treat lung metastasis originating from different primary tumors, with a strong translational potential.

PLGA NPs encapsulating DOX were prepared using a nanoprecipitation method. Briefly, 5 mg of DOX was dissolved in 500 l of methanol and 5 l of triethylamine. This was added to 1 ml of acetone containing 20 mg of PLGA. The mixture was then injected into 10 ml of 1% polyvinyl alcohol solution under constant stirring using a syringe pump at 1 ml/min. The particles were kept under constant stirring overnight before removing the organic solvents using rotary evaporation. The formed particles were centrifuged at 12,000g for 15 min, and the supernatant was analyzed to quantify drug loading. The particles were then resuspended in deionized water and assessed for their size, zeta potential, and polydispersity index using dynamic light scattering (Malvern Zen3600) and SEM (Zeiss FESEM Supra 55VP, Zeiss FESEM Ultra 55). The NPs were washed for a total of two washes with deionized water before their final resuspension in phosphate-buffered saline (PBS). Nanoparticles containing other chemotherapeutic drugs were prepared using the similar nanoprecipitation technique described above with minor modifications (details are shown in the Supplementary Materials).

Murine whole blood was collected via cardiac puncture using a heparin precoated syringe and stored in BD Microtainer blood collection tubes prior to use. Whole blood was centrifuged at 1000g for 10 min at 4C to remove the serum and the buffy coat layers from the erythrocyte compartment. The isolated erythrocytes were further washed three times with cold PBS and centrifuged at 650g for 15 min at 4C before their final resuspension at a concentration of 10% hematocrit in PBS (erythrocyte stock solution). Human whole blood obtained from BioIVT (NY, USA) was processed and stored using the same procedure as murine blood. Freshly processed erythrocytes were used for every experiment in this study.

Equal volumes of erythrocyte stock solution and drug NP suspension were mixed in Axygen 1.5-ml Self-Standing Screw Cap Tubes and further thoroughly mixed by inversion and pipetting. The tubes were then allowed to rotate on a tube revolver (Thermo Fisher Scientific) for 40 min. The hitchhiked erythrocytes were then pelleted by centrifugation at 100g for 5 min at 4C, unabsorbed particles were carefully removed, and the pellet was washed again with 1 ml of 1 PBS to remove loosely bound particles. The hitchhiked erythrocytes were finally resuspended at 10% (v/v) in 1 PBS and used for further characterization or in vivo studies.

Hitchhiking efficiency and the drug loading on erythrocytes were determined using fluorescence measurements. For quantification using fluorescence, 25 l of erythrocytes was lysed using deionized water, and the drug content was quantified using DOX fluorescence [excitation (Ex)/emission (Em), 470/590 nm] on a plate reader (Tecan Safire 2, NC, USA). The percentage of erythrocytes carrying NPs for different NP-to-erythrocyte ratios was determined using flow cytometry (BD LSR Analyzer II, CA, USA) using DOX fluorescence (Em/Ex, 470/590 nm) and confirmed by confocal microscopy (Upright Zeiss LSM 710 NLO ready, Germany). Nanoparticle assembly to erythrocytes was confirmed using SEM (Zeiss FESEM Supra 55VP, Zeiss FESEM Ultra 55). Briefly, the hitchhiked erythrocytes were fixed using 2.5% glutaraldehyde solution and washed in an increasing ethanol gradient before being chemically dried using hexamethyldisilazane. Last, the samples were sputter coated (EMT 150T ES metal sputter coater, PA, USA) prior to imaging.

For serum stability studies, hitchhiked murine and human erythrocytes were incubated in 1 ml of fetal bovine serum (FBS) or human serum (from BioIVT) on a tube revolver at 12 rpm at 37C. These conditions simulate low shear physiological environment. After incubation for 20 min, the cells were pelleted by centrifugation at 250g for 5 min and resuspended to 10% (v/v) in 1 PBS. Twenty-five microliters of erythrocytes was then lysed using deionized water, and the remaining drug content was quantified using DOX fluorescence (Ex/Em, 470/590 nm) on a plate reader (Tecan Safire 2).

For shear studies, hitchhiked murine and human erythrocytes were incubated in 10 ml of FBS or human serum. A rotatory shear (6 Pa) was applied to erythrocytes in serum using a cylindrical coquette viscometer (1 mm gap, AR-G2 rheometer, TA instruments, DE, USA) for 20 min. The samples were maintained at 37C during the application of shear using a water jacket. These conditions simulate lung-corresponding high shear physiological environment. After 20 min, the cells were pelleted by centrifugation at 250g for 10 min and resuspended to 10% (v/v) in 1 PBS. Twenty-five microliters of erythrocytes was then lysed using deionized water, and the remaining drug content was quantified using DOX fluorescence (Ex/Em, 470/590 nm) on a plate reader (Tecan Safire 2).

Female C57BL/6 mice (7 to 9 weeks of age) were purchased from Charles River Laboratories (MA, USA). All experiments were performed according to the approved protocols by the Institutional Animal Care and Use Committee of the Faculty of Arts and Sciences, Harvard University, Cambridge.

For the pharmacokinetics study, healthy female C57BL/6 mice were used. Free DOX, DOX-loaded NPs, and drug NPs assembled on erythrocytes (RBC-NPs) (n = 3 for all groups) were injected intravenously into the tail vein at a dose of 5.2 mg/kg. Blood samples were collected from the mice by submandibular bleed at 2 min, 15 min, 30 min, 2 hours, and 5 hours after the injection. The plasma was separated from the cellular component by centrifuging at 5000 rpm for 10 min. DOX was extracted from both the compartments (30 l) using 150 l of acetonitrile. The drug content was quantified using reversed-phase liquid chromatographymass spectroscopy (LC-MS; Agilent 1290/6140 UHPLC, CA, USA) ran through an Agilent C-18 column (Poroshell 120, EC-C18, 3.0 mm by 100 mm, 2.7 m) using a gradient mobile solvent.

For the biodistribution studies, 1 105 B16F10-Luc cells were injected intravenously into the tail vein of female C57BL/6 mice. Fourteen days after inoculation, mice were intravenously injected with free DOX, DOX-loaded NPs, and drug NPs assembled on erythrocytes (RBC-NPs) (n = 3 for all groups) into the tail vein at a dose of 5.2 mg/kg. Mice were euthanized at 20 min and 6 hours after the injection, and organs were harvested for further processing. Organs were rinsed using cold PBS three times to remove the residual blood. One milliliter of cold deionized water was added to each organ, and the organs were homogenized using a high shear homogenizer (IKA T 10 Basic ULTRA-TURRAX, NC, USA). DOX was extracted from the homogenates using acetonitrile (1:4 homogenate:acetonitrile), and the drug content was quantified using DOX fluorescence (Em/Ex, 470/590 nm) on a plate reader (Tecan Safire 2). The data are expressed as drug content (micrograms) normalized to the organ weight.

For NP distribution within the diseased lungs, 1 105 B16F10-Luc cells were injected intravenously into the tail vein of female C57BL/6 mice. Twenty-eight days after inoculation, mice were injected with DOX-loaded NPs and drug NPs assembled on erythrocytes (RBC-NPs). Twenty minutes after the injection, the mice were euthanized, and the intact lungs were collected. Lungs were washed twice with cold 1 PBS before being fixed in a 4% paraformaldehyde solution overnight. The fixed lungs were then frozen in Tissue-Tek OCT compound (Sakura Finetek) and sectioned using a cryostat (Leica CM1950, IL, USA). The sectioned tissue was mounted using Fluroshield to stain for DAPI (4,6-diamidino-2-phenylindole) (Ex/Em, 340/488 nm) and was analyzed using a confocal microscope (Upright Zeiss LSM 710 NLO ready).

An experimental lung metastasis model was established by intravenous injection of 1 105 B16F10-Luc cells into the tail vein of female C57BL/6 mice. Efficacy for the treatment groups was evaluated in early-stage and late-stage metastatic models. Mice were randomized on the basis of the bioluminescence intensity in the lungs 1 day before the first injection of therapies. A control (saline) group and three treatment groups (DOX-NPs, RBC-NPs, and free DOX) at a dose of 5.2 mg/kg were evaluated for their efficacy (n = 7 for all groups, unless otherwise specified).

For the early-stage metastatic model, treatments were given starting the day after the inoculation. Four injections were given over 6 days, i.e., days 1, 3, 5, and 7 after inoculation. On days 6, 8, 10, 12,18, 23, and 31 after inoculation, the mice were imaged using in vivo imaging (PerkinElmer IVIS Spectrum, MA, USA). Briefly, mice were injected intraperitoneally with 150 l of XenoLight-d-luciferin (30 mg/ml) in saline. Fifteen minutes after the injection, mice were imaged using in vivo imaging. The average radiance (bioluminescence intensity) was evaluated using the software Living system. The animals were further monitored for their survival.

For the late-stage metastatic model, treatments were given 1 week after the inoculation. Four injections were given over 6 days, i.e., days 7, 9, 11, and 13 after the inoculation. The mice were imaged on days 6, 8, 10, 12, and 16 using in vivo imaging as described above. The average radiance was evaluated using the software Living system. On day 16, the mice were euthanized, and the lungs were excised and fixed using 10% formalin. The fixed lungs were used for counting of the surface nodules and H&E analysis. Survival in the late-stage model was evaluated by having the injection schedule as described above (n = 8 for the control and treatment groups).

All data are presented as means SEM. Comparison between two groups was conducted using unpaired two-tailed Students t test. Comparisons among multiple groups were conducted using one-way analysis of variance (ANOVA) or Kruskal-Wallis test. Kruskal-Wallis tests were performed for data that were determined to be nonparametric by the normality test. All statistical analyses were carried out using GraphPad Prism 8 software. For the analysis of Kaplan-Meier survival curves, log-rank (Mantel-Cox) analysis was used. P values represent different levels of significance: *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. All the flow cytometry analyses were carried out using the FlowJo software.

Supplementary material for this article is available at http://advances.sciencemag.org/cgi/content/full/5/11/eaax9250/DC1

Supplementary Materials and Methods

Fig. S1. Representative H&E staining images of lungs of mice.

Fig. S2. Representative H&E staining images of organs of mice treated with different drug formulations.

Fig. S3. Size distribution of different chemotherapeutic agentloaded biodegradable PLGA NPs.

Table S1. Physicochemical properties of different chemotherapeutic agentloaded biodegradable PLGA NPs.

This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

Acknowledgments: Funding: This work was financially supported by Wyss Institute at Harvard University. We acknowledge funding from NIH (1R01HL143806-01). Author contributions: Z.Z., A.U., and S.M. conceived the project. Z.Z. and A.U. performed the experiments. Y.G. and J.K. helped with the LC-MS and histology analysis. Z.Z. and A.U. analyzed the data. Z.Z. prepared the graphs. Z.Z., A.U., and S.M. wrote the manuscript. All authors read and approved the manuscript. Competing interests: S.M., A.U., and Z.Z. are inventors on a patent application related to this work filed by Harvard University (no. 62/858,478, filed in June 2019). The authors declare that they have no other competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. Additional data related to this paper may be requested from the authors.

Original post:
Erythrocyte leveraged chemotherapy (ELeCt): Nanoparticle assembly on erythrocyte surface to combat lung metastasis - Science Advances

Nanomedicine Market Segmented by Applications and Geography Trends, Growth and Forecasts 2026 – The Bay State Herald

A new market assessment report on the Nanomedicine market provides a comprehensive overview of the Nanomedicine industry for the forecast period 2019 2026. The analytical study is proposed to provide immense clarity on the market size, share and growth rate across different regions. The profound knowledge and extensive examination of the trends from the yesteryear and future aims at offering the stakeholders, product owners, and marketing personnel a competitive edge over others operating in the Agricultural Tires market for the forecast period, 2019 2026.

The study will also feature the key companies operating in the industry, their product/business portfolio, market share, financial status, regional share, segment revenue, SWOT analysis, key strategies including mergers & acquisitions, product developments, joint ventures & partnerships an expansions among others, and their latest news as well. The study will also provide a list of emerging players in the Nanomedicine market.

In this report, theglobal Nanomedicine marketis valued atUSD xx million in 2019and is expected to reachUSD xx millionby the end of2026, growing at aCAGR of xx.x%between 2019 and 2026.

Download FREE Sample Brochure (Customized Sample PDF File delivered as per your specific requirement) @https://www.reportsanddata.com/sample-enquiry-form/1048

The major manufacturers covered in this report:Arrowhead Pharmaceuticals Inc. AMAG Pharmaceuticals, Bio-Gate AG, Celgene Corporation and Johnson & Johnson. Johnson & Johnson

The study is a professional probe into the revenue generated and capacity estimates for the Nanomedicine market for the forecast period 2019 2026 empower the business owners to maintain a competitive edge over their rivals.

The research further examines and provides data on the market by type, application and geography interspersed with illustrations and other graphical representations. The market analysis not only determines the attractiveness of the industry but also the evolving challenges and opportunities and their association with the weaknesses and strengths of prominent market leaders.

Other factors taken into consideration when studying the industry include profitability, manufacturing capability, distribution channels and industry cost structure and major success factors.

The industry experts have left no stone unturned to identify the major factors influencing the development rate of the Nanomedicine industry including various opportunities and gaps. A thorough analysis of the micro markets with regards to the growth trends in each category makes the overall study interesting. When studying the micro markets the researchers also dig deep into their future prospect and contribution to the Nanomedicine industry.

Product Outlook (Revenue, USD Billion, 2018-2026)

Therapeutics

Regenerative Medicine

In-vitro diagnostics

In-vivo diagnostic

Vaccines

Drug Delivery System Outlook (Revenue, USD Billion, 2018-2026)

Nanobots

Nanoghosts

Nanoclusters

Nanobubbles

Exosomes

Injectable Nanoparticle Generator

Dendrimers

Liposomes

Carbon nanotube

Graphene

Others

Application Outlook (Revenue, USD Million, 2015-2026)

Oncology

Infectious diseases

Cardiology

Orthopedics

Others

!!! Limited Time DISCOUNT Available!!! Get Your Copy at Discounted [emailprotected]https://www.reportsanddata.com/discount-enquiry-form/1048

Key Research:

The main sources are industry experts from the global Nanomedicine industry, including management organizations, processing organizations, and analytical services providers that address the value chain of industry organizations. We interviewed all major sources to collect and certify qualitative and quantitative information and to determine future prospects. Through interviews in the industry experts industry, such as CEO, vice president, marketing director, technology and innovation director, founder and key executives of key core companies.

Secondary Research:

Secondary research studies critical information about the industrial value chain, core pool of people, and applications. We also helped market segmentation based on the industrys lowest level of industry, geographical markets and key developments in market and technology-driven core development.

Geographically, this report studies the key regions, focuses on product sales, value, market share and growth opportunity in these regions, covering:

United States

Europe

China

Japan

Southeast Asia

India

Incorporated with Info-graphics, charts, 75 tables and 105 figures, this 243-page research report NanomedicineMarket Size, Type Analysis, Application Analysis, End-Use Industry Analysis, Regional Outlook, Competitive Strategies And Forecasts, 2019 2026 is based on a complete research of the entire Global market and covering all its sub-segments through comprehensively thorough classifications. Insightful analysis and assessment are created from superior primary and secondary information sources with data and information derived from industry specialists across the value chain. The report provides historical market data for 2014-2018, base year estimates for 2018, and forecasts from 2019 to 2026.

Table of Contents:

Report Overview:It includes the objectives and scope of the study and gives highlights of key market segments and players covered. It also includes years considered for the research study.

Executive Summary:It covers industry trends with high focus on market use cases and top market trends, market size by regions, and global market size. It also covers market share and growth rate by regions.

Key Players:Here, the report concentrates on mergers and acquisitions, expansions, analysis of key players, establishment date of companies, and areas served, manufacturing base, and revenue of key players.

Breakdown by Product and Application:This section provides details about market size by product and application.

Regional Analysis:All of the regions and countries analyzed in the report are studied on the basis of market size by product and application, key players, and market forecast.

Profiles of International Players:Here, players are evaluated on the basis of their gross margin, price, sales, revenue, business, products, and other company details.

Market Dynamics:It includes supply chain analysis, analysis of regional marketing, challenges, opportunities, and drivers analyzed in the report.

Appendix:It includes details about research and methodology approach, research methodology, data sources, authors of the study, and a disclaimer.

For further information on this analysis, please visit @https://www.reportsanddata.com/report-detail/nanomedicine-market

Why Choose Reports and Data?

Request customized copy of Nanomedicine report

We are grateful to you for reading our report. If you wish to find more details of the report or want a customization, contact us. You can get a detailed information of the entire research here. If you have any special requirements, please let us know and we will offer you the report as you want.

Have Any Query? Ask Our Expert @https://www.reportsanddata.com/make-enquiry-form/1048

See the rest here:
Nanomedicine Market Segmented by Applications and Geography Trends, Growth and Forecasts 2026 - The Bay State Herald

Are nano drug delivery and telehealth solutions a deadly combo for disease? – EPM Magazine

Incorporating telehealth solutions into new drug delivery technologies like nanomedicines can potentially give pharmaceuticals the edge they need to win the fight against disease.

Creating drug delivery systems that utilise telehealth solutions like smartphone technologies, Bluetooth, IoT, wearable technologies, and AI would help pharmaceutical companies save money in clinical trials by reducing the financial burden caused by poor medical adherence and provide better patient outcomes through real-time data analysis. Telehealth solutions provide physicians and clinical trial scientists direct access to their patient, and can provide them with valuable data that will improve their performance and the patients health. Access to real-time patient health data is an opportunity for pharmaceutical companies to develop a range of smart drug delivery systems that could potentially change the way an estimated 50% of the population deal with their chronic diseases.

With large numbers living with some form of chronic disease, pharmaceutical companies must incorporate telehealth tech into their drug delivery systems to collect real-time data and use the data to improve patient treatment, clinical trial outcomes and apply the data for further research.

The drug delivery systems available in todays market are honestly not that impressive. A Bluetooth-enabled inhaler, smart automatic injectors, and smart pills are definitely technologies that benefit patient care but lack innovative pizzazz. Bluetooth technology was first introduced in mobile phones in 2000. It has taken 17 years to implement the data-gathering technology into an inhaler/auto injector, often at times requiring user actions like downloading from an SD card. I am surprised it has taken this long for pharma to get where it is today, but there is truly hope on the horizon, with recent advancements in nanotechnology.

The future of pharmaceuticals and population health lies in the utilisation of telehealth solutions like the Internet of Nano Things (IoNT), wearables, smartphones and the latest drug delivery tech likesmart nanoplatforms, nanoparticles/nanomedicines, and nanosensors. These recent technological advancements in drug delivery should change the way we understand and cure diseases.

Northwestern University has developed a nanoplatform that can assess the effectiveness of nanomaterials in regulating gene expression. The nanoplatform allows scientists to observe nanomedicines and particle behaviour in an in vivo setting. Theres no doubt that the relationship between nanomedicines and IoNT is inevitable however there are issues like patient health risks and security that must be taken into account.

Whenever the internet is involved, the issue of security should be raised. Are nanomedicines saving patients lives, while also putting them at risk of body hacking? Although programmable particles are sending signals from within the patients body and providing beneficial information for the doctor/scientist, the idea that a signal can be hacked is a horrific reality. Nanoparticle manipulation is possible by gaining access to the particles using ultrasound and electromagnetic field waves making hacking feasible but extremely difficult and complex. The next question is what happens to the nanoparticles after treatment? Will they pose a later threat and become an access point for hackers?

Nanomedicines, after entering the human body, travel throughout reaching the organs, the bloodstream, the lungs and even crossing the semi-permeable membranes into cells delivering the drugs to exactly the right place at the right time. Their disbursement depends on size and programming. Nanoparticles are metal-based, carbon-based, composites, and dendrimers, and are excreted from the body via faeces and urine. The liver and spleen can also decompose them, however up to 30% can remain in the body for an extended period of time and potentially become an access point for hacking.

Combining telehealth solutions and nanomedicines will benefit the populations health by presenting effective treatments for chronic and deadly pathologies and provide scientists and doctors previously unattainable data for analysis. This previously elusive data has become available thanks to Northwestern Universitys Nanoplatform, which successfully provides imaging of the nanomedicines effectiveness on the MGMT gene, a chemo-resistant cancer gene. This data has already provided a better understanding of the nanomedicines mechanics and provided researchers with the best time, after treatment with nanomedicines, to administer chemotherapy.

Nanoparticles appear to be a solution that can improve the health of the population, however there are still potential risks for patients. Although most nanoparticles are tested in labs and in vitro, a few potential health risks have been observed. Risks like the creation of a protein corona (a shifting population of different molecules) can influence the immune defence system and mistakenly allow the corona to penetrate good non-targeted tissues. The clumping of protein molecules can also be linked to multiple pathologies, including amyloidosis. Some nanoparticles have also been linked to genetic mutations, DNA damage, and chromosomal alterations, however they are rarely attributed to all three at once. It is quite clear that more research and testing is required to truly understand the future of nanomedicine and its effects on the human body.

Nanomedicines target a specific area within the body, can delay activation and have the potential to relay real-time data for analysis. Scientists and doctors can finally have a real-time view of their treatments and understand the pathology and its interaction with the medicines, leading to data that will help the healthcare industry save lives, defeat disease, and save money. The benefits in combining telehealth solutions with nano drug delivery systems is evident and it is the colossal leap forward that the industry has been looking for in the never-ending fight with diseases like cancer.

View post:
Are nano drug delivery and telehealth solutions a deadly combo for disease? - EPM Magazine

Nanoform Wins Award for Drug Development and Delivery – AZoNano

Image Credit: phive/Shutterstock.com

Nanoform, a Finnish nanotechnology and drug particle engineering company, has won the prestigious Excellence in Pharma Award for Formulation at the 16th CPhI Pharma Awards which took place in Germany this November.

The prize sees world-renowned innovative companies competing against one another. This year Nanoforms ingenious medicine enabling nanotechnology, in the form of its CESS nanonization technology, won the highly contested award.

Who are Nanoform?

International pharmaceutical and biotechnology companies are well aware of the work that Nanoform dedicates itself to. Nanoform partners with businesses with the aim to boost their molecules formulation performance as well as to reduce clinical attrition. Nanoform is committed to working with international companies to provide them with cutting-edge, innovative solutions for the development and delivery of drugs.

The technology that won it the esteemed prize at the CPhI Pharma Awards was its multi-patented nanonization process which was designed with the capability of substantially improving dissolution rates and bioavailability, having the impact of doubling the number of drug compounds reaching clinical trials. In addition, the innovation has been shown to add value to the drug delivery spaces of pulmonary, transdermal, ocular and blood-brain barrier.

For this innovative new process, Nanoform surpassed the efforts of other respected companies such as Cambrex, Lonza Capsugel, and Glatt Pharmaceutical Services, who had also entered in the same category.

The Innovation

The new CESS, short for Controlled Expansion of Supercritical Solutions, nanonization technology has multiple patents for its unique design. It creates designed-for-purpose, nano-sized active pharmaceutical ingredient (API) particles, using a process that can control the particles shape, increasing uniformity. The system also has the ability to produce nanoparticles as small as 10 nm.

The method works by controlling the solubility of an API in supercritical carbon dioxide (scCO2) through a bottom-up method of recrystallization. Previous alternatives had been limited, and the CESS system surpasses those due to its utilization of controlled mass transfer, pressure reduction and flow. Another benefit of the system is that it is green, its process is free from using excipients and organic solvents.

Through Nanoforms innovation, novel opportunities are opening up to the field of drug research and development.

The Significance of the CESS System

Nanomaterials have unique properties that differ from their bulk material counterparts. These different properties have made them of special interest to a number of scientific fields, which has boosted exploration into nanoparticles over recent years. It has been found that these unique properties have potential applications in the areas of nanomedicine, therapeutics, medical devices and more. They have been identified as vectors for medical imaging, biological diagnostics and therapeutics.

What has been achieved by Nanoform is that another avenue of potential use has been opened up for nanoparticles. Nanoform has developed a reliable system that allows the benefits of nanoparticles to be harnessed in drug research and development. The unique properties of nanoparticles will be able to be put to use in developing new therapeutic treatments, which could induce a significant shift in the pharmaceutical sector.

It is generally accepted that advancements in the use of nanoparticles in this area would significantly influence the advancement of human therapeutics. Now pharmaceutical companies have access to a system that allows them to tailor-make nanoparticles, the innovation of new therapies that previously would not have been possible could be on the horizon.

Read the original post:
Nanoform Wins Award for Drug Development and Delivery - AZoNano

PhD Research Fellow in Biophysics and Nanomedicine – Times Higher Education (THE)

A PhD research fellowship within the field of biophysics is available at the Department of Physics. The appointments have duration of 3 years with the possibility of until 1 year extension with 25% teaching duties in agreement with the department. Student should start mid-August 2017.

Information about the department The position is organized in the Department of Physics. Currently, there are 22 professors, 12 associate professors, 4 adjunct professors, 72 PhD research fellows and 15 postdoctoral positions appointed at the Department of Physics. Our research spans a broad spectrum of natural sciences and technology, which in turn allows us to offer an education providing a solid basis for future careers. Physics research is carried out in experimental as well as theoretical fields, often across conventional boundaries between disciplines. Research staff at the department makes a special effort to increase the awareness and understanding of the importance and impact of physics in our society. Further information about the department can be found at https://www.ntnu.edu/physics

Job description The PhD student will work on the project Acoustic Cluster Therapy (ACT) for improved treatment of cancer and brain diseases funded by the Research Council of Norway. This project is in collaboration with international universities and two companies Phoenix Solutions who developed a platform for ultrasound activated targeted drug delivery and Cristal therapeutics who developed a pioneering approach to transform drugs into tailor-made nanoparticles. A major challenge in cancer therapy is to obtain adequate delivery of the therapeutic agents to cancer cells, and limit the systemic exposure. The explored concepts utilize an acoustic activated cluster (microbubble/ microdroplet) system and nanoparticles to deliver a drug payload at the targeted pathology. The biodistribution of (novel) biologicals will be assessed using (fluorescence) microscopy other imaging modalities in healthy animals and disease models. In vivo MRI, ultrasound, near-infrared fluorescence (NIRF) imaging, ex vivo analyses, and histological examinations will be used to investigate the in vivo distribution and behavior of the nanoparticles.

The project involves studies in cell cultures and preclinical testing in mice, which require designing and building various experimental setups for ultrasound exposure and imaging. The student should have broad experimental experience especially with imaging techniques like confocal laser scan microscopy (CLSM) or multi photon microscopy (MPM). Knowledge of image analysis methods would be considered an asset. It is essential that the student is willing to work with laboratory animals and thus willing to obtain the FELASA license. Furthermore, it is crucial to be able to travel to workshops and for research collaboration in other EU countries as well as the USA with notice.

Qualifications The student should hold very good grades and a Master of Science in biophysics, bio (nano)technology, biomedical sciences, or related sciences.

The regulations for PhD programs at NTNU state that the applicant must have a master's degree or equivalent with at least 5 years of studies and an average grade of A or B within a scale of A-E for passing grades (A best). Candidates from universities outside Norway are kindly requested to send a Diploma Supplement or a similar document, which describes in detail the study and grade system and the rights for further studies associated with the obtained degree: http://ec.europa.eu/education/tools/diploma-supplement_en.htm

The position requires spoken and written fluency in the English language. Such evidence might be represented by the results of standard tests such as TOEFL, IELTS, Cambridge Certificate in Advanced English (CAE) or Cambridge Certificate of Proficiency in English (CPE). The candidate's language skills might also be assessed in a personal interview.

For more information about the research activities see http://www.ntnu.edu/physics/biophysmedtech/ultrasound

Terms of employment The appointment of the PhD fellows will be made according to Norwegian guidelines for universities and university colleges and to the general regulations regarding university employees. Applicants must agree to participate in organized doctoral study programs within the period of the appointment and have to be qualified for the PhD-study.

NTNUs personnel policy objective is that the staff must reflect the composition of the population to the greatest possible extent.

The position as PhD is remunerated according to the Norwegian State salary scale. There is a 2% deduction for superannuation contribution.

It is expected that the candidate can start in the position within August 2017 (but preferably not later). Further information can be obtained from Professor Catharina Davies, Department of Physics, NTNU, Phone: +47 73593688, e-mail: catharina.davies@ntnu.no or Dr. Annemieke van Wamel, Phone: +47 73593432, e-mail: annemieke.wamel@ntnu.no.

The application The application should contain: -CV -Reference letters -Certificates from Bachelor and Master degrees -List of publications or other scientific work, if any -Statement on research interest (maximum one page) -Documentation of English language proficiency (e.g. TOEFL, IELTS, etc.) if English or a Scandinavian language is not the applicant's mother tongue

Applications must be submitted electronically through this site. Applications submitted elsewhere will not be considered.

The reference number of the position is: NV-40/17

Application deadline: April 6th 2017.

About this job

About applications

Read this article:
PhD Research Fellow in Biophysics and Nanomedicine - Times Higher Education (THE)

The Nanomedicine Market to Grow at a CAGR of 17.1% During the Forecast Period 2017-2023 to Aggregate $392.80 … – Digital Journal

Nanomedicine has the potential to be the future in biotherapeutics replacing the older versions of drug delivery.

Bangalore, India - April 10, 2017 - (Newswire.com)

Infoholic Research LLP, a global market research and consulting organization, has published a study titled Global Nanomedicine Market Drivers, Opportunities, Trends, and Forecasts: 20172023.

According to Infoholic Research, nanomedicine is the future with new revenue stream in the healthcare industry. Nanomedicine could provide cost-effective novel therapies and diagnostics using the empowering capacity of nanotechnology applied in the healthcare industry. Nanomedicine could increase the efficiency and diminish the side effects unlike the other tender therapies for any particular condition. The elementary principles of this technique are based on the targeted drug delivery using nanoparticles (such as nanorobots), proper analysis using sensors and micro electro mechanical system (MEMS), and to diagnose in vivo biochemical activities. The result is an increasingly better understanding of the molecular biology of diseases leading to new targets for more specific and earlier diagnostic and therapeutic treatments. These new options will cause profound changes in future healthcare systems by enabling more personalized, regenerative, and remote medicinal activities. According to Infoholic Research, the Global Nanomedicine market is expected to grow at a CAGR of 17.1% during the forecast period 20172023 to touch an aggregate of $392.80 billion by 2023.

Receive a sample of the report

@https://www.infoholicresearch.com/request-a-sample-report/?repid=4654

The Global Nanomedicine market is analyzed based on two segments application areas and regions. The regions covered in the report are the Americas, Europe, Asia Pacific, and Rest of the World (ROW). In the Americas region, the US and Canada are set to be the leading countries. The Europe is set to be the second leading region and holds more than 23% of the market share in 2016. Germany is one of the leading countries in Europe in terms of revenue. In Asia Pacific, Japan is the most attractive country for the players and holds huge business opportunities. The ROW is set to be an emerging market in the next 56 years.

The application areas covered in the report are Oncology, Cardiovascular, Neurology, Anti-inflammatory, Anti-infective, and other therapeutics. The Cardiovascular, Anti-inflammatory, and Neurology application segments are expected to gain more market share by 2023. The market is expected to be on a positive year on year growth rate, as the Cardiovascular and the Neurology segments have just started to see wide-scale adoption in the field of nanomedicine. The Oncology segment is expected to generate revenue of $144.00 billion by 2023.

Although, the market is experiencing a lack of well-defined FDA directives, which can restore standardization in the field of nanomedicines and related subjects, nanotechnology funding is expected to increase significantly during the forecast period with the increasing investments from government and private sectors. Victor Mukherjee, Assistant Manager (Research Healthcare) at Infoholic Research

Buy complete report onGlobal Nanomedicine market Drivers, Opportunities, Trends, & Forecasts 2017 2023

@https://www.infoholicresearch.com/report/global-nanomedicine-market-trends-2017-2023/

Further, the report also aims to cover the below points:

Provides an in-depth analysis of the key business opportunities in countries and verticals

Provides the complete details about the various types of nanomedicine drugs overview

Provides the complete details about the analysis of top 16 players

Provides industry outlook including current and future market trends, drivers, restraints and emerging technologies

Market is analyzed by countries the US, Germany, Japan, and Others

Press Release Service by Newswire.com

Original Source: The Nanomedicine Market to Grow at a CAGR of 17.1% During the Forecast Period 2017-2023 to Aggregate $392.80 Billion by 2023

Link:
The Nanomedicine Market to Grow at a CAGR of 17.1% During the Forecast Period 2017-2023 to Aggregate $392.80 ... - Digital Journal

Nanomedicine characterization at NCI’s Nanotechnology Characterization Lab (NCL) – Video


Nanomedicine characterization at NCI #39;s Nanotechnology Characterization Lab (NCL)
Speaker: Dr. Scott E. McNeil, Director, Nanotechnology Characterization Laboratory, National Cancer Institute (USA) CLINAM 7/ 2014, 7th Conference and Exhibi...

By: TAUVOD

Read more here:
Nanomedicine characterization at NCI's Nanotechnology Characterization Lab (NCL) - Video

Exclusive Report on Healthcare Nanotechnology (Nanomedicine) Market 2019 | Industry Drivers, Business Plans, Types, Applications, Challenges,…

The Healthcare Nanotechnology (Nanomedicine) Market 2019 report provides market size (value and volume), market share, growth rate by types, applications, and combines both qualitative and quantitative methods to make micro and macro forecasts in different regions or countries. Healthcare Nanotechnology (Nanomedicine) Market report also aims to provide useful and comprehensive insights into current market trends and future growth scenarios. Healthcare Nanotechnology (Nanomedicine) market report contains information like SWOT analysis, business highlights, strength, weakness, threats and opportunities of industry.

Healthcare Nanotechnology (Nanomedicine) Market Report Answers the Following Questions:

For More Information or Query or Customization Before Buying, Visit athttps://www.industryresearch.co/enquiry/pre-order-enquiry/14099195

Key Market Trends:

The Growth of Nanomedicine is Expected to Provide High Opportunities for the Treatment of Neurological Diseases, Over the Forecast Period

A large number of brain disorders with neurological and psychological conditions result in short-term and long-term disabilities. Recent years observed a significant number of research studies being published on methods for the synthesis of nanoparticle-encapsulated drugs within in vivo and in vitro studies. The insufficient absorbance of oral drugs administered for a range of neurological conditions, such as Alzheimers disease, Parkinson disease, tumor, neuro-AIDS, among others, opens up the necessity of nanomedicine with stem cell therapy. Some of the registered nanoparticles for the complex CNS treatment are a gold nanoparticle, lipid nanoparticle, and chitosan nanoparticles.

Other than neurological diseases, research-based progress was found in the treatment of cancers, with the scientific communities identifying new metabolic pathways to find better drug combination using nanomedicine.

North America is Expected to Hold the Largest Share in the Market

In the United States, several companies are closely observing the developments in nanostructured materials across various applications in the healthcare industry, including medical devices, to improve efficiency and efficacy. In the United States, the National Nanotechnology Initiative (NNI), which was initiated in 2000, is among the supreme bodies that manage all nanotechnology-related activities. Under the NNI, several agencies are working in collaboration with companies and universities. For instance, nano-manufacturing in Small Business Innovation Research (SBIR) programs were developed for both commercial and public use. Companies are targeting the treatment of several cancer types and infectious diseases through immunotherapy, where nanoemulsion vaccines and drugs play a significant role. In the United States, one of the major challenges associated with nanotechnology is the ability to integrate nanoscale materials into new devices and systems, along with an application of novel properties at the nano-level. Thus, most of the companies are investing in R&D. Nanotechnology is likely to play a significant role in the delivery of drugs. In the recent strategic plan presented by the NNI in 2016, several programs were identified to further advance the research and development programs, over the forecast period.

Market Dynamics:

The report provides key statistics on the market status of the Healthcare Nanotechnology (Nanomedicine) Market manufacturers and is a valuable source of guidance and direction for companies and individuals interested in the Healthcare Nanotechnology (Nanomedicine).

Purchase this Report (Price 4250 USD for single user license) https://www.industryresearch.co/purchase/14099195

Report Objectives:

Detailed TOC of Healthcare Nanotechnology (Nanomedicine) Market Report 2019-2024:

1 INTRODUCTION1.1 Study Deliverables1.2 Study Assumptions1.3 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET DYNAMICS4.1 Market Overview4.2 Market Drivers4.2.1 Growing Prevalence of Cancer and Genetic and Cardiovascular Diseases4.2.2 Increasing Advancements in Nanoscale Technologies for Diagnostic Procedures4.2.3 Growing Preference for Personalized Medicines4.3 Market Restraints4.3.1 High Cost4.3.2 Stringent Regulations for Commercial Introduction4.4 Porters Five Forces Analysis4.4.1 Threat of New Entrants4.4.2 Bargaining Power of Buyers/Consumers4.4.3 Bargaining Power of Suppliers4.4.4 Threat of Substitute Products4.4.5 Intensity of Competitive Rivalry

5 MARKET SEGMENTATION5.1 By Application5.1.1 Drug Delivery5.1.2 Biomaterials5.1.3 Active Implants5.1.4 Diagnostic Imaging5.1.5 Tissue Regeneration5.1.6 Other Applications5.2 By Disease5.2.1 Cardiovascular Diseases5.2.2 Oncological Diseases5.2.3 Neurological Diseases5.2.4 Orthopedic Diseases5.2.5 Infectious Diseases5.2.6 Other Diseases5.3 Geography5.3.1 North America5.3.1.1 US5.3.1.2 Canada5.3.1.3 Mexico5.3.2 Europe5.3.2.1 France5.3.2.2 Germany5.3.2.3 UK5.3.2.4 Italy5.3.2.5 Spain5.3.2.6 Rest of Europe5.3.3 Asia-Pacific5.3.3.1 China5.3.3.2 Japan5.3.3.3 India5.3.3.4 Australia5.3.3.5 South Korea5.3.3.6 Rest of Asia-Pacific5.3.4 Middle East & Africa5.3.4.1 GCC5.3.4.2 South Africa5.3.4.3 Rest of Middle East & Africa5.3.5 South America5.3.5.1 Brazil5.3.5.2 Argentina5.3.5.3 Rest of South America

6 COMPETITIVE LANDSCAPE6.1 Company Profiles6.1.1 Sanofi SA6.1.2 Celegene Corporation6.1.3 CytImmune Sciences Inc.6.1.4 Johnson & Johnson6.1.5 Luminex Corporation6.1.6 Merck & Co. Inc.6.1.7 Nanobiotix6.1.8 Pfizer Inc.6.1.9 Starpharma Holdings Limited6.1.10 Taiwan Liposome Company Ltd

7 MARKET OPPORTUNITIES AND FUTURE TRENDS

Contact Us:

Name: Ajay More

Phone: US +14242530807/ UK +44 20 3239 8187

Email: [emailprotected]

Our Other Reports:

Tobacco Additives Market 2019 Robust Expansion by Top Key Manufactures | Worldwide Overview by Size, Share, Trends, Segments

AI In Medical Imaging Industry 2019 Global Market Growth, Trends, Revenue, Key Suppliers, Demands and Detailed Insights on Upcoming Trends till 2024,

Internet Security Audit Market 2019 | Global Industry Size, Share, Explosive Factors of Key Players, Future Trends and Industry Growth Rate Forecast to 2023

IT Market 2019 Global Industry Trends, Statistics, Competition Strategies, Revenue Analysis, Key Players, Regional Analysis by Forecast to 2024

Original post:
Exclusive Report on Healthcare Nanotechnology (Nanomedicine) Market 2019 | Industry Drivers, Business Plans, Types, Applications, Challenges,...

In latest generation of tiny biosensors, size isn't everything

4 hours ago by Bill Kisliuk

(Phys.org) When it comes to nanomedicine, smaller issurprisinglynot always better.

UCLA Henry Samueli School of Engineering and Applied Science researchers have determined that the diminutive size of nanowire-based biosensorswhich healthcare workers use to detect proteins that mark the onset of heart failure, cancer and other health risksis not what makes them more sensitive than other diagnostic devices. Rather, what matters most is the interplay between the charged ions in the biological sample being tested and the charged proteins captured on the sensors' surface.

The finding counters years of conventional wisdom that a biosensor can be made more sensitive simply by reducing the diameter of the nanowires that make up the device. This assumption has driven hundreds of costly research-and-development efforts in the field of nanomedicinein which tiny materials and devices are used to detect, diagnose and treat disease.

The research suggests new directions for designing biosensors to improve their sensitivity and make them more practical for doctorsand, eventually, patients themselvesto use.

"This is the first time the understanding of why nanowire biosensing works has been challenged," said Chi On Chui, an associate professor of electrical engineering and bioengineering at UCLA whose lab performed the research. "The advantage is not from the fact that the wires are nanoscale, but rather how their geometry reduces the ability of the ions to inhibit protein detection. This research could be a step toward developing sophisticated, cost-efficient and portable devices to accurately detect a range of illnesses."

The research was published March 25 in the Proceedings of the National Academy of Sciences.

Nanowire biosensors are, in essence, electronic transistors with a diameter smaller than the width of a single red blood cell. When they are exposed to a sample of blood or another bodily fluid, the specific charged proteins being tested for are captured on the nanowires' surfaces. The charge of the captured proteins changes the rate of electric current flowing through the nanowire transistor. By monitoring the electrical current, researchers can quantify the concentration of proteins in the sample, which can give them an indication of heart health, diabetes and a number of other medical conditions.

A challenge to the practical use of the technology is that in addition to the charged proteins, many physiological fluids contain a large concentration of charged ions, such as sodium, potassium and chloride. These ions surround the proteins and mask the protein charge, which prevents the sensor from detecting the proteins.

Researchers in labs can circumvent this problem. But doctors performing tests on their patients or patients monitoring their own health at home cannot do so without the assistance of a technician. This has hampered the adoption of the technology.

Continued here:

In latest generation of tiny biosensors, size isn't everything