It’s not pulp fiction

Stem cell therapy is poised to become the next big thing in the treatment of major diseases. Even those extracted from dental pulp can be preserved for future use

Watching his five-year-old pull at his loose tooth, dad Shekar remembered something he had read in a dental clinic. Stem cells from teeth, called dental pulp stem cells (DPSCs) could be preserved and retrieved to treat his son if he had a major ailment in future. Stemade, a private company, would arrange to collect DPSCs through its Smile Clinics and store them in state-of-the-art labs in several cities across the country. His thought: Stem cell technology is the next big step in medical treatment. Banking SCs is medical bio-insurance for his kid.

Stem cell therapy didn't jump out of a box yesterday. We've heard of it being used in treating leukaemia. Patients with spinal cord injury have spent huge sums on it hoping to get up and walk. Some ask: If a house lizard can grow back its tail, why can't we get our systems to re-start with a million multiplying stem cells?

Kinds of cells

The best cells for banking are embryonic cells which are programmed to develop and grow. But harvesting these is banned. Ethical issues, you know. Adult SCs beyond the embryonic stage are classified as haematopoietic (from umbilical cord blood and bone marrow) and mesenchymal (tissues and organs). While haematopoietic cells are used in the treatment of blood-related diseases such as haemophilia, blood cancer and skin troubles, tissue cells are tried on all problems other than these. HSCs are collected only from the umbilical cord and bone marrow. Tissue cells are taken from many body sources such as bone marrow, placenta, menstrual blood, cornea, outer layer of the heart, liposuction waste and teeth pulp.

Among these DPSCs are perhaps the best option, says Shailesh Gadre, MD, Stemade Biotech. We all lose our milk teeth and cell extraction here is almost painless. As for the permanent teeth, we can harvest the pulp when people have to lose them for orthodontic (cosmetic) reasons, as when braces are fixed or teeth are extracted because of poor positioning. Of course, they need to be free of caries and other dental infections.

But as we age, our cells age too, so DPSCs are best extracted and preserved when we're very young, when the cells are virile and robust. DPSCs have extraordinary doubling properties that give them a huge advantage over other stem cells, says Dr. Julian Deepak, Medical Advisor, Stemade. They are derived from the same source as nerve cells, with the same capacity as neuron cells, making them a better option for treating Parkinson's, Alzheimer's and muscular dystrophy. Work is on to see their effectiveness in curing diabetes.

Back to the kid's tooth. After the dad's call, a dentist from Stemade will check if Milan's tooth is free of disease. At a Smile Clinic he will extract it and take a blood sample. The dentist will then place the tooth in a specially-designed vial of antibiotic solution. The vial will be packed in ice-gel to keep the temperature low during transport. At their lab (which I visited) in suburban Chennai, a visual inspection is done, the tooth is flooded with anti-bacterial solution and broken open. The pulp is extracted, divided into parts for quality control and sterility (aerobic/anaerobic) tests. The processing is done in zero-contamination conditions and the cells are put in 5 different vials and placed in the vapour phase of liquid nitrogen for cryo-preservation. It is complete, patented technology. The cells are stored in raw format and can be retrieved when needed. Shekar gets a certificate and a CR Management number which will be part of his son's medical records.

These are your own (autologous) cells and will need no matching should you need them for treatment of tissue-and-organ-related diseases such as spinal cord/bone/liver/cartilage regeneration, diabetes, eye-care, etc., says Shailesh. Adds Dr. Julian, Now for most diseases we just do maintenance therapy. With their regenerative property, stem cells will cure diseases in the future.

Fine, but for a few details. One, is the banking fee? Yes, you have to pay for the banking facility, but we can help you with EMIs, says Shailesh. Subsidies are given to the poor as part of CSR. We want to reach as many households as possible. Others are the right to will it and fool-proof identification of the cells. We may store DPSCs at six and may need them at sixty.

Read this article:
It's not pulp fiction

Texas family turned to Bonita stem cell doctor, but 5-year-old died before ‘miracle’

Jason Bell

BONITA SPRINGS Jimmy and Jennifer Bell were scrambling to save their 5-year-old-son, Jason, last fall.

Shell-shocked with a diagnosis that their youngest child had primary pulmonary hypertension, a rare lung disorder, they decided to take a chance. If not, a heart-lung transplant would be their son's only chance.

They put their trust in a Southwest Florida cardiologist, Dr. Zannos Grekos, more than 1,000 miles from their Texas home. They learned Grekos performs an experimental stem cell therapy that possibly could help. That's despite a lack of clinical studies and scientific papers.

The U.S. Food and Drug Administration hasn't approved stem cell therapy despite a buzz of optimism of its potential for repairing damaged tissue.

"I was willing to do anything to give my son a fighting chance," said Jimmy Bell, 43, who owns a landscaping company in Keller, a suburb of Fort Worth. "When you are given no other option, you've got to try something."

The treatment would involve a trip to Bonita Springs where Grekos has his practice, Regenocyte; a trip to the Dominican Republic where the treatment would be done, and an up-front payment of $57,000.

"They looked at his medical records first. They didn't know if they could treat him," Bell said. "Once they agreed to treat him, I talked to Grekos. It was the greatest news in my life. I broke down. I just knew this was going to be the miracle to save his life."

* * * * *

The family wired the money in late October 2011 to a Regenocyte account in the Dominican Republic, according to a copy of the paid invoice furnished to the Daily News.

Originally posted here:
Texas family turned to Bonita stem cell doctor, but 5-year-old died before 'miracle'

Angiogenesis and Stem Cell Therapy Key to Treating Heart Patients: Dr Mukesh Hariawala

Cardiac cellular therapies are undergoing global clinical trials with "encouraging early results" and these economical options will soon be available in India which could bring relief to patients who cannot afford the currently available expensive surgical treatments, says Indian American cardiac surgeon Dr Mukesh Hariawala.

Delivering a special invited plenary lecture on the "Novel Cellular Therapies for Heart Disease" at the recently concluded Healthcare India 2012 convention in New Delhi, the renowned cardiac surgeon asserted that the new developments in cardiac cellular therapies would bring down the alarming healthcare costs globally.

Dr Hariawala is internationally acclaimed as a pioneer of cardiovascular surgical techniques using Therapeutic Angiogenesis. He said Therapeutic Angiogenesis is a fast emerging science of stimulating growth of new blood vessels in the heart which acts as natural bypasses to areas lacking in blood supply.

Dr Hariawala demonstrated angiogenesis along with bypass surgery, lasers and stem cell injections as a novel "Combo Therapy."

Like us on Facebook

The laser energy acts by creating channels in the diseased heart muscle which also triggers Angiogenesis. Stem cells are then injected directly into coronary arteries feeding the diseased territory or in the stimulated lasered muscle during the open heart surgery. This option could be very helpful in Indian patients with diffused distal small caliber coronary arteries and diabetes, who are not amicable to routinely offered current interventions, he said.

Dr Hariawala acknowledged that only a combination of these four therapies could give it the "Therapeutic Threshold Power" and bring about optimum results and relief of patients symptoms. Standalone, each of these therapies is weak to treat a large muscular pumping organ like the heart.

Stem cells have a therapeutic role and hold enormous promise for the future as they are harvested from the patient's own tissues. Currently, adult stem cell extraction is done from one's own hip bone and patients do not have to worry about rejection phenomenon occurring as they are native cells unlike transplanted from another donor. In the future, stem cell banks could proliferate allowing donors to freeze and store cells for family members who could be treated for many diseases, he added.

Harvard-trained Dr Hariawala's studies have been published in several scientific surgical journals and medical text books.

To report problems or to leave feedback about this article, e-mail: To contact the editor, e-mail:

Read more:
Angiogenesis and Stem Cell Therapy Key to Treating Heart Patients: Dr Mukesh Hariawala

Stem-cell pawns

To read Hard Cell by Mayrav Saar (PostScript, Feb. 26), one would think the only form of stem-cell therapy is the embryo-destroying kind. There wasnt a single mention of non-embryonic adult stem cells.

One attraction of embryonic versus non-embryonic research for some is political the chance to stick it to pro-lifers. But it grieves me to see ailing people used as pawns in this culture war and being denied the possible benefits of adult stem-cell research.

Flushing such an idea down the memory hole, as you help do with this article, is against the spirit of scientific inquiry.

Bob Hunt, Hillsborough, NJ

Wrong on the right

If social conservatives had won out in history, women would not be able to vote and we would still have slavery (Why Social Issues Matter, Jeffrey Bell, PostScript, Feb. 26).

Their thinking denigrates the role of science and promotes antiquated religious beliefs. Many of the causes taken up by social conservatives have been seen to be wrong in light of later progressive thought.

While social conservatives say some good things, history has shown that their views work against American freedoms an obscurantism that continues today.

Jeffrey Bell should balance his thought with facts and not be led blindly by evangelicals.

Eduardo Rodriguez, Corona

Visit link:
Stem-cell pawns

Pat was Diagnosed with “CMT” Disease and was Given a Second Chance with a Stem Cell Treatment

Pat receive a life altering Stem Cell Treatment with the help of World Stem Cells, LLC. Pat went from couch bound to walking 1.5 miles on country dirt road, climbing stairs, gardening and playing piano all thanks to a stem cell treatment.

(PRWEB) March 03, 2012

Pats neurological disorder is hereditary, and the official position of the National Institute of Neurological Disorders and Stroke is that CMT has no cure. Decades ago, Pat had gone to a neurologist for electromyography, or EMG. The purpose of the procedure was to evaluate her muscle function, and it involved painful needles and days of muscle soreness after each session. Pats neurologist had refused to tell her the results because he said that she would just give up if she knew how bad they were. At this point, Pats symptoms were so crippling and unbearable that she contacted World Stem Cells, LLC worldstemcells.com to explore stem cell treatment as an option. She knew that the procedures were still being developed and experimental, and that they came with no guarantees. She remained interested in learning more and becoming educated on the options presented. At the time, she was unable to walk without a four-leg quad cane, and air and car travel were exhausting and caused unbearable pain. Pat has a long history of surgeries and was told that further surgeries would not assist her. She decided that she was not interested in any treatment that involved surgery with incisions, which is an aggressive approach and would demand recovery time. Stem cell therapy met her requirements of being minimally uncomfortable, requiring only hours for recovery and having a high level of safety, along with a good potential for changing her health quotient for the better.

Pat arrived in Cancun, Mexico, to the treatment site of World Stem Cells, LLC contract clinics, doctors, and hospitals. The first day, she met with physicians to be evaluated, discuss her course of treatment and learn what to expect. She had been corresponding with Dr. Alan Kadish, the President of World Stem Cells, LLC. worldstemcells.com

Dr. Kadish is an unusual physician as he has training and practiced integrated primary care medicine combining conventional and naturopathic diagnostics and therapeutics for 27 years. He has been recognized as one of the leading quality physicians, in his field. Dr. Kadish is an American Board of Anti-Aging Medicine diplomat and completed numerous training programs in Achieving Clinical Excellence, or ACE, which provided opportunities to improve his practical skills in diagnosing and treating people based on their individual needs, using functional medical testing and treatment. He has been an advanced level practitioner (Autistic Research Institute) for autistic spectral disorder children and adults, since early 2000 and is certified in chelation therapy. As a naturopathic medical physician he lecturers frequently and is a host and guest on radio and internet outlets along with appearing in a number of print media publications. At World Stem Cells , LLC in addition to his management duties, he is a primary investigator engaged in research and designs of stem cell therapeutic protocols.

In Cancun, Pat met with specialists at Advanced Cellular Medicine Clinic. The clinic is headed by Dr. Sylvia Abblitt, who has the exclusive distinction of being among the few physicians who are licensed to perform autologous and allogeneic stem cell transplants in Mexico. Dr. Abblitt is a board-certified hematologist and oncologist. She has 11 years of expertise as a laboratory director and head of the hematology department at the Fernando Quiroz Hospital. She is a member of the American Association of Blood Banks and the International Cellular Medicine Society (ICMS). The Cancun clinic that Pat visited is a contract clinic of World Stem Cells, LLC. It houses the state-of-the-art Advanced Cellular Engineering Lab. The high-tech lab is suited for providing patients with the most up to date stem cell treatments and for conducting stem cell research to improve future opportunities for health.

After her evaluation and discussion of treatment options, Pat decided to go ahead with the stem cell therapy. The procedure involved a needle puncture to harvest her bone marrow utilizing her own stem cells. Only a local anesthesia was necessary and though she described the procedure as uncomfortable, she added that it was livable. The procedure took less than half an hour, and she experienced no side effects.

Pats improvement was remarkable and rapid. In fact, she did not feel fatigued and overwhelmed with pain, as she had in the past, when she traveled back home from Cancun by airplane and car. Within days, she had regained her ability to play piano. Playing at church concerts had always been a passion of hers, but she had been unable to play before her stem cell treatment because of a lack of coordination. She had much more energy after treatment, and was able to garden, run errands and work, without feeling exhausted. Her sleep was more restful. Her husband and friends noticed that her agility and balance were better. She could climb up and down stairs more easily and walk around the house without clutching the walls. Her speed on the treadmill was increasing gradually and she now walks a mile and a half on country roads.

Pat is extremely grateful to World Stem Cells, LLC for changing her life and giving her hope. For the first time, she has reversed many of the negative changes that she had been experiencing for years due to her CMT and lack of effective treatment. Now, Pat and her husband are experiencing a bright future and thankful that Pat was given this second opportunity, following stem cell therapy. worldstemcells.com.

###

Here is the original post:
Pat was Diagnosed with “CMT” Disease and was Given a Second Chance with a Stem Cell Treatment

Research and Markets: Artificial cells, Cell Engineering and Therapy

DUBLIN--(BUSINESS WIRE)--

Research and Markets(http://www.researchandmarkets.com/research/ad83a7/artificial_cells) has announced the addition of Woodhead Publishing Ltd's new book "Artificial cells, cell engineering and therapy" to their offering.

Artificial cells, cell engineering and therapy are emerging technologies which will make a significant impact on the future of medicine and healthcare. However, research within the field is vast. This unique book provides a comprehensive study of the most recent advances in the field and its practical applications.

The first part of the book offers the reader an introduction to the basics of artificial cell technology with chapters on its origins, design and current status within medicine and future prospects. Part 2 covers apoptosis, the use of bone marrow stromal cells in myocardial regeneration together with signalling and tissue engineering. Part 3 discusses artificial cells for therapy, procedures for various clinical conditions and the current status of the discipline within the field. The book concludes with a final section on the role of artificial cells in medicine with particular focus on the use of artificial cells as blood substitutes and their potential use in myocardial regeneration, drug delivery and in treating kidney and bowel diseases, diabetes and cancer.

Key Topics Covered:

For more information visit http://www.researchandmarkets.com/research/ad83a7/artificial_cells

Read the original here:
Research and Markets: Artificial cells, Cell Engineering and Therapy

Stem cell study ‘should aim at innovation in treatment’

By Bonnie James Deputy News Editor The stem cell and regenerative therapy programme, constituting a major part of research at Qatar Cardiovascular Research Centre (QCRC), has important clinical and scientific implications, co-chairman Prof Sir Magdi Yacoub has said. He was giving a keynote presentation at the Qatar International Conference on Stem Cell Science and Policy 2012, which concluded on Thursday at Qatar National Convention Centre. Myocardium (the muscular tissue of the heart) regeneration and tissue engineering and valves tissue engineering are among the focal areas at QCRC, which aims to establish in Qatar an internationally competitive centre of excellence for cardio-vascular research. QCRC, which has a heart muscle lab and a tissue engineering, regeneration lab, works with a mission to maintain a translational focus, relevant to the development of health policy and practice, and provide opportunities for capacity building, professional development and research collaborations in Qatar. It is also meant to provide opportunities for biotechnology development in Qatar and contribute to cardio-vascular health in the developing world through improved knowledge base, capacity building and development of appropriate tools and strategies focused on poorer countries. Cardio-vascular diseases (CVDs) kill 17mn people per year globally and there is particularly high incidence in the Middle East and Gulf region, Prof Yacoub pointed out. The incidence of CVDs is three times more in the region than in the UK, the US or Europe. Smoking, one of the main reasons for CVDs, is also increasing in the eastern Mediterranean region compared to the Americas. There is a significant lack of clinical, epidemiological and genetic data from this region and an overwhelming need exists to better understand epidemiology and disease mechanisms of CVDs. Research should then be linked to development of appropriate tools and strategies to strengthen prevention, diagnosis and treatment, he said. Pointing out that heart transplant options for those suffering from severe heart failure are becoming increasingly rare, Prof Yacoub observed that the number of donor hearts is going down globally. While we used to do up to 130 heart transplants a year at Royal Brompton and Harefield Hospitals in the UK in the late 80s, now we would be lucky to do 20, he said while emphasising the need to focus more on the reversibility of heart failure. Few recent drug trials have shown evidence of minor reverse remodelling and there have been near-complete reversal of almost every change in myocardium in some patients. There are unprecedented opportunities to unravel the secrets of heart failure at cellular and molecular levels, he stressed.

See the article here:
Stem cell study ‘should aim at innovation in treatment’

Factbox: Neurotechnologies in spotlight of UK ethics review

LONDON (Reuters) - Britain's Nuffield Council on Bioethics, which examines ethical issues raised by new developments in biology and medicine, launched a consultation on Thursday on the ethics of new technologies and devices that intervene in the human brain.

The three main areas of the group's focus are brain-computer interfaces, neurostimulation and neural stem cell therapy.

Here are some details about each area of research and how it is being explored.

* Brain computer interfaces (BCIs)

BCIs measure and analyze a person's brain signals and convert them into an output such as movement.

A paralyzed person, for example, could use a BCI to operate a wheelchair, or someone who has extreme difficulty speaking could use a BCI to communicate via a computer voice.

These sorts of applications have been shown to be successful in a few reported cases, but the technology has not yet been developed for regular clinical use and there are questions over whether these technologies are reliable enough for use in everyday life.

Military applications, such as remote control of vehicles and machinery are not yet in wide use but are being researched and tested, mainly in the United States.

Some commercial BCI developments are already on the market in the gaming sector. Gamers can buy a wireless headset that aims to replace a joystick by controlling game play through brain signals.

The use of BCIs sometimes require surgery to implant electrodes into a person's brain, although the most successful current developments are less invasive ones That detect brain signals from the scalp.

View post:
Factbox: Neurotechnologies in spotlight of UK ethics review

Nuvilex Reveals Goldman Small Cap Research Cites Groundbreaking Cancer Therapy in Updating Buy Recommendation

SILVER SPRING, Md.--(BUSINESS WIRE)--

Nuvilex, Inc. (OTCQB:NVLX), an emerging biotechnology provider of cell and gene therapy solutions, announced today Goldman Small Cap Research has reissued its buy recommendation on Nuvilex with a short term price target of $0.50 per share.

According to the research report prepared by Goldman, The current share price represents but a fraction of its true value, in our view. With recently increased interest and valuation in the pancreatic cancer treatment arena, we believe that Nuvilex is worth $0.20 just on the oncology therapies alone and that the shares will reach $0.50 in the next six months. Looking ahead, as milestone events occur, $1.00 per share is within reach over the next 12-18 months.

Goldman bases this value projection, in part, on the pending acquisition of SG Austria assets, and with it complete control over the cell encapsulation technology that forms the backbone of Nuvilexs planned biotechnology development. The report states in part the following:

Following execution of the SG Austria asset acquisition, we expect to see a flurry of events and progress on the development side which will serve as catalysts, including when management submits its protocol for the next stage pancreatic cancer trial. We would not be surprised to see the stock break through the $0.50 price on such news as well as progress on the next stage of trials for other therapies.

One reason we are so convinced of the great buying opportunity is the fact that pancreatic cancer treatments are currently at the forefront of the biotech space and are enjoying very high valuations. Although Nuvilex is a not a drug producer, but an existing therapy enhancer through the use of its live cell encapsulation enhancement platform, the timing of these milestone events could not be better for Nuvilex and a re-valuation of its offering.

The Goldman report also compares alternative oncology therapies, including Gemzar from Threshold Pharmaceuticals and Merrimack Pharmaceuticals drug encapsulation technology, noting that, contrary to these treatments, the Nuvilex live-cell encapsulation technology is not limited to one specific use, but can be adapted to use for a host of cell types. The report states, Its difficult to compare apples-to-apples in this space as Nuvilex is the only firm utilizing live-cell encapsulation therapy for cancer, while all the other treatments are based upon a particular drug usage. Contrasting the results of different Phase II clinical trials, the Goldman report comments that the pancreatic cancer therapy, based on completed Phase 1/2 data, appears to have yielded statistically greater results than competing technologies.

Commenting on The Goldman Report, Nuvilex Chief Executive Officer, Dr. Robert Ryan, stated, The report did an excellent job highlighting the value and capabilities of our cell encapsulation technology, not just for cancer therapy, but also for the vast array of treatments where live-cell encapsulation can aid multiple diseases. In the case of the completed cancer trials, it generated superior results with lower drug dosages, and reduced chemotherapeutic side effects. As we move forward with diabetes and stem cell therapy treatments, we are confident our success will, as Goldman predicts prompt leaders in multiple treatment segments to partner with Nuvilex in order to maintain their respective market shares.

Investors are recommended to study the Goldman Research Report for a detailed review and valuation methodology regarding Nuvilex.

About Nuvilex

Original post:
Nuvilex Reveals Goldman Small Cap Research Cites Groundbreaking Cancer Therapy in Updating Buy Recommendation

QF honours stem cell researchers

Research on preventing breast cancer recurrence, using organ regeneration to combat obesity-related diseases, and enabling vascular repair for patients suffering from cardiovascular disease has received awards at the ongoing Qatar International Conference on Stem Cell Science and Policy 2012. The award ceremony hosted by Qatar Foundation for Education, Science and Community Development at Qatar National Convention Centre recognised two professional researchers and one student researcher for excellence in stem cell research, with the research exhibited through poster presentations during the conference. Leaders from QF and top figures in the stem cell science and ethics field congratulated the award recipients. Dr Abdelali Haoudi, vice president for research at QF, said: We are truly impressed with the research presented this year in poster presentations, as well as in the oral presentations and panel discussions taking place throughout the conference. He added: Through this conference, we hope to drive further exploration in this field that will lead to even greater progress in applying stem cell science to prevent and treat diseases afflicting communities both in Qatar and around the world. The three posters were selected for recognition by a review committee, comprised of academics, researchers and scientists, including Nobel Laureates and international experts. Pegah Ghiabi, a researcher at the Stem Cell & Microenvironment Laboratory at Weill Cornell Medical College in Qatar, received an award for her poster presentation on research into therapy to inhibit the cancer stem cell population to prevent the recurrence of breast cancer. Research by Lara Bou-Khzam of the McGill University Health Centre Research Institute in Montreal, Canada, also received recognition. The poster focused on her stem cell research towards vascular repair for patients suffering from cardiovascular disease, one of the worlds leading causes of mortality. The final award was presented to Dr Heba al-Siddiqui for her research at the Harvard Stem Cell Institute on preventing chronic obesity-related diseases through tissue engineering and organ regeneration. Dr al-Siddiqui is a trainee in the Qatar Science Leadership Programme, a QF initiative aimed at equipping rising Qatari generations for leading roles in the countrys scientific and research endeavours. The Qatar International Conference on Stem Cell Science and Policy, organised through a partnership between QF and the James A. Baker III Institute of Public Policy at Rice University, will conclude today. The four-day conference, which featured expert panels and presentations on the latest opportunities and challenges in stem cell research, was attended by top figures in the fields of science, ethics and policy of stem cell research from across the Middle East region and around the world.

Continued here:
QF honours stem cell researchers

Stem-Cell Therapy Takes Off in Texas

By David Cyranoski of Nature magazine

With Texas pouring millions of dollars into developing adult stem-cell treatments, doctors there are already injecting paying customers with unproven preparations, supplied by an ambitious new company.

The US Food and Drug Administration (FDA) has not approved any such stem-cell treatment for routine clinical use, although it does sanction them for patients enrolled in registered clinical trials. Some advocates of the treatments argue, however, that preparations based on a patient's own cells should not be classed as drugs, and should not therefore fall under the FDA's jurisdiction.

There are certainly plenty of people eager to have the treatments. Texas governor Rick Perry, for instance, has had stem-cell injections to treat a back complaint, and has supported legislation to help create banks to store patients' harvested stem cells.

One company that has benefited from this buoyant climate is Celltex Therapeutics, which "multiplies and banks" stem cells derived from people's abdominal fat, according to chairman and chief executive David Eller. Its facility in Sugar Land, just outside Houston, opened in December 2011 and houses the largest stem-cell bank in the United States.

Celltex was founded by Eller and Stanley Jones, the orthopaedic surgeon who performed Perry's procedure, and it uses technology licensed from RNL Bio in Seoul. Because clinical use of adult-stem-cell treatments are illegal in South Korea, RNL has since 2006 sent more than 10,000 patients to clinics in Japan and China to receive injections.

Celltex says that although it processes and banks cells, it does not carry out stem-cell injections. It declined to answer Nature's questions about whether its cells have been used in patients. But there is evidence that the company is involved in the clinical use of the cells on US soil, which the FDA has viewed as illegal in other cases.

Public hype

In addition to the publicity surrounding Perry's treatment, a woman named Debbie Bertrand has been blogging about her experiences during a five-injection treatment with cells prepared at Celltex. Her blog (http://debbiebertrand.blogspot.com) hosts photographs of herself alongside Jones; Jennifer Novak, a Celltex nurse; Jeong Chan Ra, chief executive of RNL Bio; and her doctor, Jamshid Lotfi, a neurologist who works for the United Neurology clinic in Houston. Another photo is captioned: "My cells are being processed in here for my next infusion!!!" A third shows Bertrand, Lotfi and a physician called Matthew Daneshmand, who is, according to the caption, injecting Bertrand's stem cells into an intravenous drip, ready for the infusion. Nature has been unable to contact Bertrand.

Lotfi says that he has administered cells processed by Celltex to more than 20 people. "Five or six" -- including Bertrand -- have multiple sclerosis and "four or five" have Parkinson's disease, he says. Lotfi explains that patients sign up for treatment by contacting Novak, and that cells are prepared by removing about five grams of fat -- containing roughly 100,000 mesenchymal stem cells -- from the patient's abdomen. Over a three-week period, the cells are cultured until they reach about 800 million cells. Lotfi says that patients get at least three injections of 200 million cells each, and that the cells do not take effect for a few months. According to Lotfi, Celltex charges US$7,000 per 200 million cells, and pays Lotfi $500 per injection.

Read more:
Stem-Cell Therapy Takes Off in Texas

Baxter Initiates Phase III Adult Stem Cell Clinical Trial for Chronic Cardiac Condition

DEERFIELD, Ill.--(BUSINESS WIRE)--

Baxter International Inc. (NYSE:BAX - News) announced today that it has initiated a phase III pivotal clinical trial to evaluate the efficacy and safety of adult autologous (an individual’s own) CD34+ stem cells to increase exercise capacity in patients with chronic myocardial ischemia (CMI).

Chronic myocardial ischemia (CMI) is one of the most severe forms of coronary artery disease, causing significant long-term damage to the heart muscle and disability to the patient. It is often diagnosed based on symptoms of severe, refractory angina, which is severe chest discomfort that does not respond to conventional medical management or surgical interventions.

“The prospect of using a person’s own adult stem cells to restore and repair blood flow in CMI is a very exciting concept based on a biological regenerative approach,” said Norbert Riedel, Ph.D., Baxter’s chief science and innovation officer. “The goals of this phase III trial are aligned with Baxter’s overall mission to develop life-saving and life-sustaining therapies and it will help us determine if the therapy can make a meaningful difference for CMI patients.”

The trial will enroll approximately 450 patients across 50 clinical sites in the United States, who will be randomized to one of three arms: treatment with their own autologous CD34+ stem cells, treatment with placebo (control), or unblinded standard of care. The primary objective is to evaluate the efficacy of treatment with CD34+ stem cells to improve the functional capacity of patients with CMI, as measured by a change in total exercise capacity at 12 months following treatment. Secondary objectives include reduced frequency of angina episodes at 12 months after treatment and the safety of targeted delivery of the cells.

After stem cell mobilization, apheresis (collecting the cells from the body) and cell processing, participants will receive CD34+ stem cells or placebo in a single treatment via 10 intramyocardial injections into targeted areas of the heart tissue. Efficacy will be measured by a change in total exercise capacity during the first year following treatment and safety data will be collected for two years. Stem cell processing will be conducted in GMP facilities in the United States by Progenitor Cell Therapy (PCT), a subsidiary of NeoStem, Inc. To learn more or enroll, visit http://www.renewstudy.com or http://www.clinicaltrials.gov.

This trial is being initiated based on the phase II data, which indicated that injections of patients’ own CD34+ stem cells may improve exercise capacity and reduce reports of angina episodes in patients with chronic, severe refractory angina.

“The phase II trial provided evidence that this strategy, leveraging the body’s own natural repair mechanisms, can improve exercise capacity and reduce chest pain, the first time these endpoints have been achieved in a population of patients who have exhausted conventional treatment options,” said Douglas Losordo, MD, vice president of new therapeutic development at Baxter.

CD34+ cells, which are blood-forming stem cells derived from bone marrow, are comprised of endothelial progenitor cells (EPCs), which develop into new blood vessels. Previous preclinical studies investigating these cells have shown an increase in capillary density and improved cardiac function in models of myocardial ischemia.

About Baxter

Baxter International Inc., through its subsidiaries, develops, manufactures and markets products that save and sustain the lives of people with hemophilia, immune disorders, infectious diseases, kidney disease, trauma, and other chronic and acute medical conditions. As a global, diversified healthcare company, Baxter applies a unique combination of expertise in medical devices, pharmaceuticals and biotechnology to create products that advance patient care worldwide.

This release includes forward-looking statements concerning the use of adult autologous stem cells to treat CMI, including expectations with respect to the related phase III clinical trial. These statements are based on assumptions about many important factors, including the following, which could cause actual results to differ materially from those in the forward-looking statements: clinical results demonstrating the safety and effectiveness of the use of autologous stem cells to treat CMI; timely submission of regulatory filings; satisfaction of regulatory and other requirements; actions of regulatory bodies and other governmental authorities; the enrollment of a sufficient number of qualified participants in the phase III clinical trial; the successful provision of stem cell processing by PCT, a third party; and other risks identified in Baxter’s most recent filing on Form 10-K and other SEC filings, all of which are available on Baxter’s website. Baxter does not undertake to update its forward-looking statements.

Photos/Multimedia Gallery Available: http://www.businesswire.com/cgi-bin/mmg.cgi?eid=50183372&lang=en

MULTIMEDIA AVAILABLE:http://www.businesswire.com/cgi-bin/mmg.cgi?eid=50183372&lang=en

Read more from the original source:
Baxter Initiates Phase III Adult Stem Cell Clinical Trial for Chronic Cardiac Condition

Nature: BrainStorm’s NurOwn™ Stem Cell Technology Offers Hope for Treating Huntington Disease

NEW YORK & PETACH TIKVAH--(BUSINESS WIRE)--

BrainStorm Cell Therapeutics Inc. (OTCBB: BCLI.OB - News), a leading developer of adult stem cell technologies and therapeutics, announced today that the prestigious Nature Reviews Neurology, a Nature Publishing Group Journal, highlighted recently published preclinical research results indicating that stem cells, generated with Brainstorm’s NurOwn™ technology, provide hope for Huntington disease's patients.

In the preclinical studies conducted by leading scientists including Professors Melamed and Offen of Tel Aviv University and originally reported in Experimental Neurology, patients' bone marrow derived mesenchymal stem cells secreting neurotrophic factors (MSC-NTF) that were transplanted into an animal model of Huntington disease showed therapeutic benefits.

Addressing the role of these MSC-NTF cells in Huntington disease, Professor Daniel Offen explains, "the premise is that such cells can be transplanted safely into affected areas of the brain, and thereby serve as vehicles for delivering neurotrophic factors." Offen expressed his hope that this cell-based therapy may eventually progress to the clinic.

BrainStorm is currently conducting a Phase I/II Human Clinical Trial for Amyotrophic Lateral Sclerosis (ALS) also known as Lou Gehrig’s disease at the Hadassah Medical center. Initial results have shown that Brainstorm’s NurOwn™ therapy is safe, does not show any significant treatment-related adverse events, and have also shown certain signs of beneficial clinical effects.

Follow this link for the Research Highlights page in Nature Reviews Neurology (starts Feb. 28th ): http://www.nature.com/nrneurol/journal/vaop/ncurrent/index.html

To read the Original Article entitled ‘Mesenchymal stem cells induced to secrete neurotrophic factors attenuate quinolinic acid toxicity: A potential therapy for Huntington's disease’ by Sadan et al. follow this link: http://www.sciencedirect.com/science/article/pii/S0014488612000295

About BrainStorm Cell Therapeutics, Inc.

BrainStorm Cell Therapeutics Inc. is a biotech company developing adult stem cell therapeutic products, derived from autologous (self) bone marrow cells, for the treatment of neurodegenerative diseases. The company, through its wholly owned subsidiary Brainstorm Cell Therapeutics Ltd., holds rights to develop and commercialize the technology through an exclusive, worldwide licensing agreement with Ramot (www.ramot.org) at Tel Aviv University Ltd., the technology transfer company of Tel-Aviv University. The technology is currently in a Phase I/II clinical trials for ALS in Israel.

Safe Harbor Statement

Statements in this announcement other than historical data and information constitute "forward-looking statements" and involve risks and uncertainties that could cause BrainStorm Cell Therapeutics Inc.'s actual results to differ materially from those stated or implied by such forward-looking statements, including, inter alia, regarding safety and efficacy in its human clinical trials and thereafter; the Company's ability to progress any product candidates in pre-clinical or clinical trials; the scope, rate and progress of its pre-clinical trials and other research and development activities; the scope, rate and progress of clinical trials we commence; clinical trial results; safety and efficacy of the product even if the data from pre-clinical or clinical trials is positive; uncertainties relating to clinical trials; risks relating to the commercialization, if any, of our proposed product candidates; dependence on the efforts of third parties; failure by us to secure and maintain relationships with collaborators; dependence on intellectual property; competition for clinical resources and patient enrollment from drug candidates in development by other companies with greater resources and visibility, and risks that we may lack the financial resources and access to capital to fund our operations. The potential risks and uncertainties include risks associated with BrainStorm's limited operating history, history of losses; minimal working capital, dependence on its license to Ramot's technology; ability to adequately protect its technology; dependence on key executives and on its scientific consultants; ability to obtain required regulatory approvals; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available at http://www.sec.gov. The Company does not undertake any obligation to update forward-looking statements made by us.

Read more:
Nature: BrainStorm's NurOwn™ Stem Cell Technology Offers Hope for Treating Huntington Disease

Bad breath used as stem cell tool

27 February 2012 Last updated at 00:06 ET

Hydrogen sulphide, the gas famed for generating the stench in stink bombs, flatulence and bad breath, has been harnessed by stem cell researchers in Japan.

Their study, in the Journal of Breath Research, investigated using it to help convert stem cells from human teeth into liver cells.

The scientists claimed the gas increased the purity of the stem cells.

Small amounts of hydrogen sulphide are made by the body.

It is also produced by bacteria and is toxic in large quantities.

Therapy

A group in China has already reported using the gas to enhance the survival of mesenchymal stem cells taken from the bone marrow of rats.

Researchers at the Nippon Dental University were investigating stem cells from dental pulp - the bit in the middle of the tooth.

They said using the gas increased the proportion of stem cells which were converted to liver cells when used alongside other chemicals. The idea is that liver cells produced from stem cells could be used to repair the organ if it was damaged.

Dr Ken Yaegaki, from Nippon Dental University in Japan, said: "High purity means there are less 'wrong cells' that are being differentiated to other tissues, or remaining as stem cells."

One of the concerns with dental pulp as a source of stem cells is the number that can be harvested.

However, the study did not say how many cells were actually produced.

Prof Chris Mason, a specialist in regenerative medicine at University College London, said: "It would be interesting to see how hydrogen sulphide works with other cells types."

See the original post here:
Bad breath used as stem cell tool

Ovarian Stem Cells Produce Eggs in Method That May Aid Fertility Therapy

By Ryan Flinn - Sun Feb 26 18:00:00 GMT 2012

Stem cells taken from human ovaries can produce normal, healthy eggs, scientists demonstrated for the first time in an experiment that may lead to new methods to help infertile women.

Women have a fixed number of eggs from birth that are depleted by the time of menopause. The finding, published today in the journal Nature Medicine, challenges the belief that their ovaries can't make more. The research was led by Jonathan Tilly, director of Massachusetts General Hospital’s Vincent Center for Reproductive Biology.

Tilly discovered in 2004 that ovarian stem cells in mice create new eggs, or oocytes, in a way that's similar to how stem cells in male testes produce sperm throughout a man’s life. His latest study proves the same is true in human ovaries, and may point to new ways to preserve fertility or overcome infertility by delaying when the ovaries stop functioning, Tilly said.

“The 50-year-old belief in our field wasn’t actually based on data proving it was impossible, or not ongoing,'' Tilly said in a telephone interview. ``It was simply an assumption made because there was no evidence indicating otherwise. We have human cells that can produce new oocytes.”

A female is most endowed with oocytes as a fetus, when she has about 7 million. That number that drops to 1 million by birth, and around 300,000 by puberty. By menopause, the number is zero. Since the 1950’s, scientists thought that ovarian stem cells capable of producing new eggs are only active during fetal development.

Rare Protein Expressed

In the study, healthy ovaries were obtained from consenting patients undergoing sex reassignment surgery. The researchers were able to identify ovarian stem cells because they express a rare protein that’s only seen in reproductive cells.

The stem cells from the ovaries were injected into human ovarian tissue that was then grafted under the skin of mice, which provided the blood supply that enabled the cells to grow. Within two weeks, early stage human follicles with oocytes had begun to form.

“This paper essentially opens the door to the ability to control oocyte development in human ovaries,” Tilly said.

About 10 percent of women of child-bearing age in the U.S., or 6.1 million, have difficulty getting pregnant or staying pregnant, according to the Centers for Disease Control and Prevention. Most cases of female infertility are caused by problems with ovulation, hormone imbalance or age.

Infertility Treatments

Infertility in women is now treated through drugs, surgery, artificial insemination or assisted reproductive technology, in which the woman’s eggs are mixed with sperm outside the body, then reinserted.

The study offers “a new model system for understanding the human egg cell,” according to David F. Albertini, director of the Center for Reproductive Services and professor in the department of molecular and integrative physiology at Kansas University. Still, “there’s a long way to go before this has real practical applications,” he said.

“I’ve spent 35 years of my life studying egg cells and this is a cell that is at least as complicated as a neuron in the brain, if not more,” Albertini said by telephone. “You will need to establish reproducibility from one lab to the next, and hopefully others will be able to confirm his work and extend it, make it into something that will make us confident that the cells are safe to use and we could actually use them to repopulate an egg-depleted ovary.”

New Therapies

Tilly's team is exploring the development of an ovarian stem- cells bank that can be cryogenically frozen and thawed without damage, unlike human eggs, he said. The researchers are also working to identify hormones and other growth factors for accelerating production of eggs from human ovarian stem cells and ways to improve in-vitro fertilization.

“The problem we face with IVF is we don’t have many eggs to work with,” he said. “These cells are renewable. If we are successful -- and it’s a big if -- in generating functioning eggs from these cells, we can generate as many eggs as we need to on a per patient basis.”

Tilly is also collaborating with researchers at the University of Edinburgh in the U.K. to determine whether the oocytes can be developed into fully mature human eggs for fertilizing. The U.S bans creating or fertilizing embryos for experimental purposes, he said.

A company Tilly co-founded, Boston-based OvaScience Inc., has licensed the technology for potential commercial applications.

To contact the reporter on this story: Ryan Flinn in San Francisco at rflinn@bloomberg.net

To contact the editor responsible for this story: Reg Gale at rgale5@bloomberg.net

Excerpt from:
Ovarian Stem Cells Produce Eggs in Method That May Aid Fertility Therapy

BrainStorm Featured on CNBC

NEW YORK & PETACH TIKVAH, Israel--(BUSINESS WIRE)--

BrainStorm Cell Therapeutics Inc. (OTCBB: BCLI.OB - News), a developer of innovative stem cell technologies for neurodegenerative disorders, announced that NurOwn™, its autologous stem cell therapy for amyotrophic lateral sclerosis (ALS), or Lou Gehrig's Disease, was profiled yesterday on CNBC. In the Feature Story about the impact of Iran's nuclear threat, Israeli business and scientific leaders were interviewed about Israel's thriving economy and cutting edge technologies. Among those leaders that met with CNBC were Brainstorm’s President Mr. Chaim Lebovits and Prof. Dimitrios Karussis, Principal Investigator of Brainstorm's Phase I/II clinical trial currently underway at the Hadassah Medical Center in Jerusalem.

Brainstorm recently announced positive initial results from the clinical trial, resulting in approval from Hadassah's Helsinki committee to proceed with the trial. Accordingly, additional patients have been enrolled in the study, and Brainstorm will announce additional results in the coming months.

To see the video online, follow the link at: http://video.cnbc.com/gallery/?video=3000074883

To read the Feature Story online, follow the link at: http://www.cnbc.com/id/46484576

Safe Harbor Statement
Statements in this announcement other than historical data and information constitute "forward-looking statements" and involve risks and uncertainties that could cause BrainStorm Cell Therapeutics Inc.'s actual results to differ materially from those stated or implied by such forward-looking statements. The potential risks and uncertainties include risks associated with BrainStorm's limited operating history, history of losses; minimal working capital, dependence on its license to Ramot's technology; ability to adequately protect the technology; dependence on key executives and on its scientific consultants; ability to obtain required regulatory approvals; and other factors detailed in BrainStorm's annual report on Form 10-K and quarterly reports on Form 10-Q available at http://www.sec.gov. The Company does not undertake any obligation to update forward-looking statements made by us.

Originally posted here:
BrainStorm Featured on CNBC

MediVet-America Partners With Butler Schein Animal Health to Distribute World’s Leading Animal Stem Cell Technology to …

Global leader in animal stem cell technology is poised for significant expansion through new partnership with top U.S. companion animal health distribution company.

Las Vegas, Nevada (PRWEB) February 22, 2012

MediVet-America, the global leader in veterinary stem cell technology and regenerative medicine, has entered into a distribution partnership with Butler Schein Animal Health, a division of Henry Schein, the leading companion animal health distribution company in the U.S., to sell and distribute stem cell kits and equipment to veterinarians serving the nation’s fast-growing $50 billion pet industry.

The announcement was made today at the Western Veterinary Conference in Las Vegas by Jeremy Delk, CEO of MediVet-America.

The two companies will partner to sell and distribute MediVet-America’s advanced stem cell technology to more than 26,000 veterinary clinics nationwide. Adult animal stem cell technology uses the body’s own regenerative healing power to help treat dogs, cats, horses and other animals suffering from painful arthritis, hip dysplasia and tendon, ligament and cartilage injuries and other ailments.

The Adipose-Derived Stem Cell Procedure Kit and state of the art equipment, co-developed with Medical Australia, enable veterinarians to remove a small sample of fat, separate the stem cells, then activate and inject them into affected areas.

“We are pleased to be teaming up with Butler Schein, the largest companion animal health distribution company in the nation,” said Delk. “Their strong track record in sales and distribution will further fuel our rapid growth and bring this breakthrough technology to more leading veterinary practices across the country.”

To introduce the distribution partnership, Delk said MediVet-America has developed an exclusive program of product and service offers that will be made available only to Butler Schein customers.

Veterinary practitioners in more than 200 markets throughout 42 states now perform the drug-free procedure entirely in their own clinics more quickly, effectively and economically than earlier generation animal stem cell therapy. MediVet-America’s new treatment, developed in Australia, is available in 26 countries worldwide.

“This exciting partnership will allow even more of our colleagues unparalleled access to MediVet-America’s superior technology, providing the most affordable and efficacious stem cell therapy in the industry,” said Mike Hutchinson, D.V.M., the world’s leading animal stem cell practitioner. Dr. Hutchinson, who has spoken around the world about stem cell therapy, most recently in Tokyo, has performed more than 300 procedures over the last 18 months in his practice near Pittsburgh, PA.

Partnering with the leading animal health manufacturers in the world, Butler Schein maintains an order-fill ratio greater than 98 percent, and is positioned to bring the broadest selection of veterinary products and strategic business solutions to veterinarians, including:

    A comprehensive product offering for companion animal, equine and large animal practices including biologicals, diagnostics, nutritionals, parasiticides and pharmaceuticals

    Technology hardware and software solutions     Capital equipment, supply products and repair services     Practice design and remodeling, client marketing and financial solutions

Stem cells are basic biological cells with the ability to differentiate into specialized tissue cells and regenerate new cells to replace or repair damaged tissue. The stem cells used in veterinary medicine are not embryonic, which have attracted controversy over the years, but are taken from adipose (fat) tissue of the adult animal.

Americans spent an estimated $50.8 billion in 2011 on their companion animals, according to the American Pet Products Association, up from $28.5 billion in 2001. MediVet-America’s stem cell treatment costs about $1,800 for small animals, $2,400 for horses. Stem cells also can be frozen and banked for future use through MediVet Lab Services.

MEDIVET-AMERICA

A research and development company and global leader in veterinary stem cell technology, MediVet-America provides innovative cell applications for the therapeutic care of animals. Headquartered in Nicholasville, Kentucky, MediVet-America develops advanced cellular designed kits and services for the treatment of arthritis and degenerative joint disease. The company also offers MediVet Lab Services in multiple locations around the world that provides technical support for in-house stem cell vets, as well as regional and national Adipose stem cell processing and cryo banking services for pets at a young age or for a maintenance program, autologous conditioned serum processing, and cell counting for in-house stem cell procedures. http://www.MediVet-America.com

BUTLER SCHEIN ANIMAL HEALTH

Butler Schein Animal Health is the leading U.S. companion animal health distribution company. Headquartered in Dublin, Ohio, the company operates through 18 distribution centers and 12 telecenters. Approximately 900 Butler Schein Animal Health team members, including 300 field sales representatives and 200 telesales and customer support representatives, serve animal health customers in all 50 states. http://www.ButlerShein.com

###

Dick Roberts
Roberts Communications
(412) 535-5000
Email Information

Visit link:
MediVet-America Partners With Butler Schein Animal Health to Distribute World's Leading Animal Stem Cell Technology to ...

Pathfinder Presents Preliminary Data on New Regenerative Approach to Diabetes Treatment

CAMBRIDGE, Mass., Feb. 21, 2012 (GLOBE NEWSWIRE) -- Pathfinder Cell Therapy, Inc. ("Pathfinder," or "the Company") (OTCQB:PFND.PK - News), a biotechnology company focused on the treatment of diabetes and other diseases characterized by organ-specific cell damage, today presented preliminary data highlighting the potential of the Company's unique cell-based therapy for treating diabetes at the 7th Annual New York Stem Cell Summit. Richard L. Franklin, M.D., Ph.D., Founder, CEO and President of Pathfinder, provided an overview of the Company's Pathfinder Cell ("PC") technology, and presented preclinical evidence demonstrating how treatment with PCs was able to reverse the symptoms of diabetes in two different mouse models.

Pathfinder Cells are a newly identified non-stem cell mammalian cell type that has the ability to stimulate regeneration of damaged tissue without being incorporated into the new tissue. In today's presentation, Dr. Franklin showed how recent experiments performed using a non-obese diabetic (NOD) mouse strain were supportive of earlier data that demonstrated complete reversal of diabetes in mice. The earlier results, which used a drug-induced diabetic mouse model, were published in Rejuvenation Research1. Though preliminary, the recent results are encouraging because the NOD mouse model is widely used and highly regarded as being predictive of human type-1 diabetes.

In three separate experiments using this model, 30-50% of the mice treated with PCs at the onset of diabetes returned to normal blood glucose levels. Of the mice that responded well to treatment, the effects tended to be long lasting, up to two months in some cases after just two doses. These results, which were generated by intravenous injection of PC's derived from rat pancreatic tissue, further demonstrate the remarkable ability of Pathfinder Cells to elicit their positive effect regardless of the organ, or even species, of origin.

"We are very encouraged by these preclinical results using NOD mice. This model is the gold standard for type-1 diabetes and the fact that recent experiments mirror what we've seen in previous models may be highly significant," stated Dr. Franklin. "We have many questions to answer about how PCs act in the body, but we believe, based on previous experiments, that PCs may stimulate regeneration of damaged islet cells that produce insulin. The current NOD mouse data also suggest that PCs may have an effect in modulating the auto-immune process in type 1 diabetes. We continue to conduct experiments aimed at elucidating the optimal dosing and other factors that may be responsible for producing a robust and long-lasting response, as this will be critical as we start to think about how PCs may be used in treating human diabetes."

In his presentation today, Dr. Franklin also provided further insight into the mechanism of action of PCs, based on recent animal experiments. It was observed previously that PCs produce microvesicles, which are known to play a role in intercellular communication, but through mechanisms that are poorly understood. In a recent experiment, Pathfinder was able to isolate these microvesicles from the PCs and treat animals directly with an injection containing microvesicles only. Remarkably, both PC- and microvesicle-treated mice exhibited similar reductions in blood glucose compared to controls using the same drug-induced diabetes mouse model. This suggests, not only that the microvesicles produced by PCs are central to the mechanism of action, but that the microvesicles alone appear to be sufficient to produce the full effect.

Dr. Franklin commented, "If confirmed, this finding could have a significant positive impact on the future of PC-based therapy. Due to the relatively small amount of material contained within the microvesicles, determining the specific factor(s) that are responsible for regenerating damaged tissue could be more straightforward than we first anticipated, bringing us closer to understanding the mechanism of action. There may also be a number of potential manufacturing and storage benefits to using microvesicles versus PCs that will be interesting to explore in parallel as we work to advance this innovative new therapeutic approach closer to human clinical development."

The New York Stem Cell Summit brings together cell therapy company executives, researchers, investors and physicians to explore investment opportunities in cell therapy research and innovation. More information can be found at http://www.stemcellsummit.com.

Presentation details Event: 7th Annual New York Stem Cell Summit Date: Tuesday, February 21, 2012 Place: Bridgewaters New York, 11 Fulton Street, New York, NY Time: 3:35 pm ET

About Pathfinder

Pathfinder is developing a novel cell-based therapy and has generated encouraging preclinical data in models of diabetes, renal disease, myocardial infarction, and critical limb ischemia, a severe form of peripheral vascular disease. Leveraging its internal discovery of Pathfinder Cells ("PCs") Pathfinder is pioneering a new field in regenerative medicine.

PCs are a newly identified mammalian cell type present in very low quantities in a variety of organs, including the kidney, liver, pancreas, lymph nodes, myometrium, bone marrow and blood. Early studies indicate that PCs stimulate regeneration of damaged tissues without the cells themselves being incorporated into the newly generated tissue. Based on testing to date, the cells appear to be "immune privileged," and their effects appear to be independent of the tissue source of PCs. For more information please visit: http://www.pathfindercelltherapy.com.

FORWARD LOOKING STATEMENTS

This press release contains forward-looking statements. You should be aware that our actual results could differ materially from those contained in the forward-looking statements, which are based on management's current expectations and are subject to a number of risks and uncertainties, including, but not limited to, our inability to obtain additional required financing; costs and delays in the development and/or FDA approval, or the failure to obtain such approval, of our product candidates; uncertainties or differences in interpretation in clinical trial results, if any; our inability to maintain or enter into, and the risks resulting from our dependence upon, collaboration or contractual arrangements necessary for the development, manufacture, commercialization, marketing, sales and distribution of any products; competitive factors; our inability to protect our patents or proprietary rights and obtain necessary rights to third party patents and intellectual property to operate our business; our inability to operate our business without infringing the patents and proprietary rights of others; general economic conditions; the failure of any products to gain market acceptance; technological changes; and government regulation. We do not intend to update any of these factors or to publicly announce the results of any revisions to these forward-looking statements.

1Karen Stevenson, Daxin Chen, Alan MacIntyre, Liane M McGlynn, Paul Montague, Rawiya Charif, Murali Subramaniam, W.D. George, Anthony P. Payne, R. Wayne Davies, Anthony Dorling, and Paul G. Shiels. Rejuvenation Research. April 2011, 14(2): 163-171. doi:10.1089/rej.2010.1099

Go here to read the rest:
Pathfinder Presents Preliminary Data on New Regenerative Approach to Diabetes Treatment

Celling Biosciences Sponsors 7th Annual Stem Cell Summit

AUSTIN, Texas, Feb. 21, 2012 /PRNewswire/ -- Celling Biosciences announces a sponsorship of the 7th Annual Stem Cell Summit being held on February 21st at Bridgewaters New York in New York City. The Stem Cell Summit is consistently the premiere venue for the world's leaders in regenerative medicine to network and promote next generation technologies and cell therapies.

The meeting will feature more than 30 thought leaders in stem cell therapy including Dr. Kenneth Pettine of the Orthopedic Stem Cell Institute in Loveland, Colorado.  Dr. Pettine has teamed up with Celling Biosciences' SpineSmith Division to present "Adult Stem Cell Therapy for Orthopedic and Spine Conditions Resulting from Injury or Aging."  Dr. Pettine has become an innovator in the regenerative cell therapy market and believes "regenerative therapies will become the next standard of care in treating many orthopedic conditions." 

Following the Stem Cell Summit, Dr. Pettine will be presenting a discussion on regenerative therapies to the trainers and medical staff attending this year's NFL combine.  The NFL has recently gained attention from Peyton Manning going oversees to receive a cell therapy treatment for his cervical spine condition.  Dr. Pettine envisions a day when these professional athletes stop going to foreign countries to receive medical treatment.

The Orthopedic Stem Cell Institute provides state-of-the-art regenerative cell therapy using Celling Biosciences' ART 21 system. The ART 21 system processes bone marrow from the patient at the point of care to consistently produce a concentrate of regenerative cells with high yields of mononuclear stem cells in less than 15 minutes.  Celling Biosciences provides the cell separation systems along with the biomaterials and devices necessary to recreate the environment to promote healing. 

Kevin Dunworth, founder of Celling Biosciences, believes regenerative cell therapy has more to do with creating the optimal environment then just providing cells.  "We believe autologous cell therapy is a viable solution but physicians need to understand that these cells require the necessary substrate for delivery and the proper techniques for retrieval.  Our focus has been on providing not only cell separation technologies, medical devices and biomaterials but also the registered nurses to deliver the service so physicians can have the most consistent, reliable and predictable regenerative cell therapy for their patients."

Contact:
Tracy Gladden
Communications Manager
Tgladden@spinesmithusa.com
512-637-2050

About Celling Biosciences
Celling Biosciences, works closely with surgeons, scientists and engineers to research and develop innovative technologies in the field of regenerative medicine. http://www.cellingbiosciences.com and http://www.spinesmithusa.com

More here:
Celling Biosciences Sponsors 7th Annual Stem Cell Summit

Adult Stem Cell Treatments for COPD -Real patient results, USA Stem Cells- Donald W. Testimonial – Video

20-12-2011 09:01 If you would like more information please call us Toll Free at 877-578-7908. Or visit our website at http://www.usastemcells.com Or click here to have a Free Phone Constultation with Dr. Matthew Burks usastemcells.com Real patient testimonials for USA Stem Cells. Adult stem cell therapy for COPD, Emphysema, and Pulmonary fibrosis.

More here:
Adult Stem Cell Treatments for COPD -Real patient results, USA Stem Cells- Donald W. Testimonial - Video