Nanomedicine: A Vast Horizon on a Molecular Landscape – Part IX, Organs-on-a-chip II – Lexology (registration)

This is the ninth article in a review series on Nanomedicine. We reviewed the major research and entrepreneurial development of nanomedicine and the relevant patent landscape (Part I and Part II). The first topic we discussed was Organs-on-a-chip (Part III). Here, we continue our discussion in this field with focus on entrepreneurial developments. We also have other reviews about nanoparticles for drug delivery (Part IV), cancer therapeutics (Part V), and bio-imaging (Part VI). We also included a discussion about functional nanoparticles: quantum dots (Part VII) and magnetic nanoparticles (Part VIII). As in the past, those patent documents cited in the article are summarized in a table at the end.

Recently, Draper announced a three-year agreement with Pfizer. This collaboration focuses on developing effective disease models for testing potential drug candidates based on microphysiological systems, also known as organs-on-a-chip.

The organs-on-a-chip technology is a three-dimensional microfluidic based multi-cell co-culture system that models the physiological, mechanical, and molecular environment of the human body and mimics the physiological functions of human organs. This technology offers unique in vitro disease models for new drug screening and toxicology testing. This technology has attracted attentions not only from academic institutes but also from the pharmaceutical industry. One of the main reasons for this interest is the potential cost and time savings for drug research and the development process. As required by the FDA drug approval process, new drug chemical entities are tested in animals before going into human Phase I testing for the drug approval process. The preclinical animal testing process is tedious and extremely expensive. Additionally, animal models are not always predictive for characterizing drug safety in humans. About 40% of drug compounds fail in Phase I clinical trials (Clinical Development Success Rates 2006-2015, BIO Industry Analysis, June 2016). To address these challenges, organs-on-a-chip has been proposed as a novel method to develop human disease models and replace preclinical animal testing.

We have briefly reviewed the research development and IP landscape in organs-on-a-chip. Here we would like to focus on the entrepreneurial developments in this field. As in the past, those patent documents cited in the article are summarized in the table at the end.

AxoSim Technologies

AxoSim is a New Orleans based startup launched in 2014. Its main pipeline is a Nerve-On-A-Chip, which is a 3D cell-based model mimicking living nerve tissue. It aims at preclinical prediction of neurological safety and efficacy in the early stages of drug development. This technology was developed from Dr. Michael J. Moores group at Tulane University (US 20150112244).

Draper

The Charles Stark Draper Laboratory is an American not-for-profit research and development organization, having a long history from 1932. In 2009, Draper initiated a new area of medical systems. Draper closely collaborated with scientists at MIT to develop microphysiological systems to emulate human organs and create disease models. At the end of 2016, Draper announced a 3-year agreement with Pfizer, using the organs-on-a-chip technology to facilitate pre-clinical drug development with a focus on personalized medicine. Currently Draper has built three microphysiological systems for modeling liver, vasculature and gastrointestinal organs (US 7,670,797, US 8,951,302, US 9,067,179, US 9,528,082).

Emulate Bio

Emulate Bio is a Wyss Institute spin-off company launched in 2014. It focuses on developing multiple organ-on-a-chip systems to model human physiological systems. The technology is based on discoveries in Dr. Donald Ingbers lab, using models of the lung, liver, intestine, skin and brain (US 8,647,861). This lab is also interested in other organ systems such as the kidney and heart. In 2015, Emulate collaborated with Johnson & Johnson and Merck using organs-on-a-chip for drug discovery and development processes. In 2016, Emulate announced a collaboration with Seres Therapeutics to investigate Novel Microbiome Therapeutics for inflammatory Bowel Disease.

Hepregen

Hepregen is a MIT spin-off company founded in 2007, based on a technique developed in Dr. Sangeeta Bhatias lab (US 6,133,030). Its main product, HepetoPac Assay, utilizes a micropatterned hepatocyte co-culture system to model the metabolic activities of a liver system and was released in 2013. Their other pipeline product is HepetoMune, targeting an inflamed human liver model.

HREL

HREL is a Merck supported company, which was incubated in New Jersey from 2007-2011. Its technology originated from Dr. Michael Shulers group at Cornell University (US 7,288,405 and US 8,748,180). In 2013, HREL launched three liver-on-a-chip products for human, rat and dog. HREL has also established a collaboration with Sanofi for pre-clinic drug development.

InSphero

InSphero is a Swiss company founded in 2009. They use a scaffold-free 3D cell culture technique to generate self-assembled microtissues, emulating human organ systems (US 9,267,103 and WO/2017/001680). Their current pipelines include liver, pancreas, tumor, and skin microtissue systems and in vitro toxicology and drug discovery services.

Nortis

Nortis is a Seattle based company, spun out of the University of Washington in 2012. Nortis developed a microfluidic kidney-on-a-chip for drug testing and launched its commercial product on 2015 (US 7,622,298 and US 20150240194A1).

Tara Biosystems

Tara Biosystems is a New York-based Columbia University spin out company founded in 2014. Their focus is on developing a heart-on-a-chip system. The technology is based on research from Dr. Gordana Vunjak-Novakovics group at Columbia University and Dr. Milica Radisics group at Toronto University (US 20170002330A1 and US 20160282338). Tara Biosystems uses a Biowire platform, to introduce electrical stimulation on a microchip to stimulate stem cells to mature into heart tissue. This microtissue mimics adult heart muscles, offering a platform for drug discovery, cardiac toxicology, and personalized cardiology.

TissUse

TissUse is a Berlin, Germany-based company developing a Multi-Organ-Chip platform based on technology discovered in Dr. Roland Lausters lab at Technische Universitat Berlin (US 20130295598). This company uses a multi-organ-chip as a platform to emulate human metabolic activities and accelerate the development of pharmaceutical, chemical, cosmetic, and personalized medical products. Currently, TissUse has announced their 2-Organ-Chip and 4-Organ-Chip products, involving simultaneously culturing from 2 to 4 different organ equivalents on a single chip connected to each other by perfusion channels or vasculature. Their next goal is to develop a human-on-a-chip system, with a larger number of organs cocultured on a single chip.

The Charles Stark Draper Laboratory

The Charles Stark Draper Laboratory

Massachusetts Institute of Technology

Massachusetts Institute of Technology

Wolfgang MORITZ;

Jens KELM

See more here:
Nanomedicine: A Vast Horizon on a Molecular Landscape - Part IX, Organs-on-a-chip II - Lexology (registration)

Researchers develop new tumor-shrinking nanoparticle to fight cancer, prevent recurrence – Phys.Org

May 1, 2017 Credit: CC0 Public Domain

A Mayo Clinic research team has developed a new type of cancer-fighting nanoparticle aimed at shrinking breast cancer tumors, while also preventing recurrence of the disease. In the study, published today in Nature Nanotechnology, mice that received an injection with the nanoparticle showed a 70 to 80 percent reduction in tumor size. Most significantly, mice treated with these nanoparticles showed resistance to future tumor recurrence, even when exposed to cancer cells a month later.

The results show that the newly designed nanoparticle produced potent anti-tumor immune responses to HER2-positive breast cancers. Breast cancers with higher levels of HER2 protein are known to grow aggressively and spread more quickly than those without the mutation.

"In this proof-of-concept study, we were astounded to find that the animals treated with these nanoparticles showed a lasting anti-cancer effect," says Betty Y.S. Kim, M.D., Ph.D., principal investigator, and a neurosurgeon and neuroscientist who specializes in brain tumors at Mayo Clinic's Florida campus. "Unlike existing cancer immunotherapies that target only a portion of the immune system, our custom-designed nanomaterials actively engage the entire immune system to kill cancer cells, prompting the body to create its own memory system to minimize tumor recurrence. These nanomedicines can be expanded to target different types of cancer and other human diseases, including neurovascular and neurodegenerative disorders."

Dr. Kim's team developed the nanoparticle, which she has named "Multivalent Bi-specific Nano-Bioconjugate Engager," a patented technology with Mayo Clinic Ventures, a commercialization arm of Mayo Clinic. It's coated with antibodies that target the HER2 receptor, a common molecule found on 40 percent of breast cancers. It's also coated with molecules that engage two distinct facets of the body's immune system. The nanoparticle hones in on the tumor by recognizing HER2 and then helps the immune cells identify the tumor cells to attack them.

The molecules attached to the nanoparticle rev up the body's nonspecific, clean-up cells (known as macrophages and phagocytes) in the immune system that engulf and destroy any foreign material. The design of the nanoparticle prompts these cells to appear in abundance and clear up abnormal cancer cells. These clean-up cells then relay information about the cancer cells to highly specialized T-cells in the immune system that help eradicate remaining cancer cells, while maintaining a memory of these cells to prevent cancer recurrence. It's the establishment of disease-fighting memory in the cells that makes the nanoparticle similar to a cancer vaccine. Ultimately, the body's own cells become capable of recognizing and destroying recurrent tumors.

Since the late 1990s, the field of nanomedicine has focused on developing nanoparticles as simple drug delivery vehicles that can propel chemotherapy drugs to tumors. One pitfall is that the body tends to purge the particles before they reach their destination.

"Our study represents a novel concept of designing nanomedicine that can actively interact with the immune cells in our body and modulate their functions to treat human diseases," says Dr. Kim. "It builds on recent developments in cancer immunotherapy, which have been successful in treating some types of tumors; however, most immunotherapy developed so far does not harness the power of the entire immune system. We've developed a new platform that reaches tumor cells and also recruits abundant clean-up cells for a fully potent immune response."

Future studies in the lab will explore the ability of the nanoparticle to prevent long-term recurrence of tumors, including metastases at sites distant from the primary tumor. What's more, the nanoparticle is designed to be modular, meaning it can carry molecules to fight other types of disease. "This approach hopefully will open new doors in the design of new nanomedicine-based immunotherapies," she says.

Explore further: Nanoparticles target and kill cancer stem cells that drive tumor growth

More information: Multivalent Bi-Specific Nano-Bioconjugate Engager for Targeted Cancer Immunotherapy, Nature Nanotechnology (2017). nature.com/articles/doi:10.1038/nnano.2017.69

Journal reference: Nature Nanotechnology

Provided by: Mayo Clinic

Many cancer patients survive treatment only to have a recurrence within a few years. Recurrences and tumor spreading are likely due to cancer stem cells that can be tough to kill with conventional cancer drugs. But now researchers ...

For all the success of a new generation of immunotherapies for cancer, they often leave an entire branch of the immune system's disease-fighting forces untapped. Such therapies act on the adaptive immune system, the ranks ...

Researchers from Mayo Clinic have quantified the numbers of various types of immune cells associated with the risk of developing breast cancer. The findings are published in a study in Clinical Cancer Research.

In several types of cancer, elevated expression of the chemokine receptor CCR4 in tumors is associated with poor patient outcomes. Communication through CCR4 may be one mechanism that cancer cells use to create a pro-tumor ...

Researchers at the University of Michigan have had initial success in mice using nanodiscs to deliver a customized therapeutic vaccine for the treatment of colon and melanoma cancer tumors.

Researchers at the University of Cincinnati (UC) College of Medicine have been able to generate multifunctional RNA nanoparticles that could overcome treatment resistance in breast cancer, potentially making existing treatments ...

A team of researchers, led by the University of Minnesota, have discovered a new nano-scale thin film material with the highest-ever conductivity in its class. The new material could lead to smaller, faster, and more powerful ...

In normal conductive materials such as silver and copper, electric current flows with varying degrees of resistance, in the form of individual electrons that ping-pong off defects, dissipating energy as they go. Superconductors, ...

A pioneering new technique that encourages the wonder material graphene to "talk" could revolutionise the global audio and telecommunications industries.

An international team of scientists has developed a new way to produce single-layer graphene from a simple precursor: ethene - also known as ethylene - the smallest alkene molecule, which contains just two atoms of carbon.

Researchers at North Carolina State University have developed a new approach for manipulating the behavior of cells on semiconductor materials, using light to alter the conductivity of the material itself.

A new method combining tumor suppressor protein p53 and biomineralization peptide BMPep successfully created hexagonal silver nanoplates, suggesting an efficient strategy for controlling the nanostructure of inorganic materials.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Read more:
Researchers develop new tumor-shrinking nanoparticle to fight cancer, prevent recurrence - Phys.Org

Nanomedicine provides HIV treatment alternative – Healio

The results of two trials, which examined the use of nanotechnology to improve drug therapies for HIV patients, found that a new nanomedicine method has the potential to cut the dose of leading HIV treatment in half, according to new evidence presented at the Conference of Retroviruses and Opportunistic Infections.

Nanomedicine, the application of nanotechnology to prevent and treat disease, can be used to develop smaller pills that are better for patients who experience high pill burden, like those with HIV, and less expensive to manufacture.

Led by the University of Liverpool in collaboration with the St. Stephens AIDS Trust at the Chelsea & Westminster Hospital in London, researchers examined the use of orally dosed nanomedicine to better deliver drugs to patients with HIV. Because there is a high pill burden associated with treating HIV, nanomedicine, with the potential to develop smaller pills that are better for patients and less expensive to make, can change how the disease is managed.

To develop these new oral therapies, the investigators used Solid Drug Nanoparticle (SDN) technology, which can improve drug absorption into the body and lead to reductions in the dose and cost per dose. According to the trial results, using new approaches to formulation of efavirenz (EFV) and lopinavir (LPV) can potentially cut the dose of leading HIV treatment 50% while still maintaining therapeutic exposure. This University of Liverpool-led trial correlates with their work as part of OPTIMIZE, the global partnership working to improve access to simpler, safer and more affordable HIV treatment.

By aligning efforts, these integrated investments offer the potential to reduce the doses required to control the HIV virus even further, resulting in real benefits globally, Benny Kottiri, MD, division chief of USAIDs office of HIV/AIDS research, said in the press release. This would enable the costs of therapy to be reduced, which is particularly beneficial for resource-limited countries, where the burden of disease is highest. by Savannah Demko

References:

Owen A, et al. Abstract 459. Presented at: Conference on Retroviruses and Opportunistic Infections; Feb. 13-16, 2017; Seattle.

Disclosure: Infectious Disease News was unable to confirm any relevant financial disclosures at the time of publication.

Read more from the original source:
Nanomedicine provides HIV treatment alternative - Healio

Premium Insight of Global Nanomedicine Market 2016-2021 – MilTech

Global Nanomedicine Market Research Report 2016 Purchase This Report by calling ResearchnReports.com at +1-888-631-6977.

The Global Nanomedicine Sales Market 2016 Research Report is a professional in-depth study report and indeed a valuable source of guidance and direction for companies and individuals interested in the market.

There has been an increasing demand for Global Nanomedicine Sales Market, so several market analysts have dedicated time and effort to get into the bottom of the trend and see whether theres basis for this significant market performance. With the most current research data, analysts were able to understand the concept behind Global Nanomedicine Market.

Get Sample Copy of This Report: http://www.researchnreports.com/request_sample.php?id=26205

Market research reports for the Global Nanomedicine Sales Market included detailed segmentation of international, analysis of supply and demand trends, 5-year forecast of market growth, volumes of historic brand market, analysis of the production, importation and exportation, and transparent market methodology. In-depth studies regarding Global Nanomedicine Sales Market, with data from 2011 and projects of compound annual growth rates (CAGRs) are also used as basis for research. Lastly, there are examinations of the Global demand for the market and profiles of the major players of the industry.

Get 30% Discount on this Premium Report: https://www.researchnreports.com/ask_for_discount.php?id=26205

With all the data gathered and analyzed using SWOT analysis, there was a clearer picture of the competitive landscape of the Global Nanomedicine Sales Market. Sources for the future market growth were uncovered and outlying competitive threats also surfaced. There was strategic direction eminent in the market and this shows in the key trends and developments studied. By getting market background and using current norms, policies, and trends of other leading markets for cross-references, market data was completed.

Place a direct purchase order on this Global Nanomedicine Sales Market report at USD 2900 (Single User License): http://www.researchnreports.com/checkout.php?id=26205

Table of Contents

Global Nanomedicine Sales Market Research Report 2021

1 Nanomedicine Sales Overview

1.1 Product Overview and Scope of Nanomedicine Sales

1.2 Nanomedicine Sales Segment by Types

1.3 Nanomedicine Sales Segment by Applications

1.4 Nanomedicine Sales Market by Regions

1.5 Global Market Size (Value and Volume) of Nanomedicine Sales (2011-2021)

2 Global Nanomedicine Sales Market Competition by Manufacturers

2.1 Global Nanomedicine Sales Production and Share by Manufacturers (2015 and 2016)

2.2 Global Nanomedicine Sales Revenue and Share by Manufacturers (2015 and 2016)

2.3 Global Nanomedicine Sales Average Price by Manufacturers (2015 and 2016)

2.4 Manufacturers Nanomedicine Sales Manufacturing Base Distribution and Product Types

2.5 Competitive Situation and Trends

3 Global Nanomedicine Sales Analysis by Regions

4 Global Nanomedicine Sales Analysis by Types

5 Global Nanomedicine Sales Market Analysis by Applications

6 Global Nanomedicine Sales Manufacturers Analysis

7 Nanomedicine Sales Technology and Development Trend

8 Research Findings and Conclusion

Complete report at: https://www.researchnreports.com/pharma-healthcare/Global-Nanomedicine-Market-Research-Report-2016-26205

About Research n Reports:

Research N Reports is a new age market research firm where we focus on providing information that can be effectively applied. Today being a consumer driven market, companies require information to deal with the complex and dynamic world of choices. Where relying on a sound board firm for your decisions becomes crucial. Research N Reports specializes in industry analysis, market forecasts and as a result getting quality reports covering all verticals, whether be it gaining perspective on current market conditions or being ahead in the cut throat Global competition. Since we excel at business research to help businesses grow, we also offer consulting as an extended arm to our services which only helps us gain more insight into current trends and problems. Consequently we keep evolving as an all-rounder provider of viable information under one roof.

Contact us:

Mr. Sunny Denis

Contact No. +1-888-631-6977

sales@researchnreports.com

(ResearchnReports)

Read more:
Premium Insight of Global Nanomedicine Market 2016-2021 - MilTech

Protein corona: a new approach for nanomedicine design – Dove Medical Press

Back to Browse Journals International Journal of Nanomedicine Volume 12

Van Hong Nguyen, Beom-Jin Lee

Department of Pharmacy, Bioavailability Control Laboratory, College of Pharmacy, Ajou University, Suwon, Republic of Korea

Abstract: After administration of nanoparticle (NP) into biological fluids, an NPprotein complex is formed, which represents the true identity of NP in our body. Hence, proteinNP interaction should be carefully investigated to predict and control the fate of NPs or drug-loaded NPs, including systemic circulation, biodistribution, and bioavailability. In this review, we mainly focus on the formation of protein corona and its potential applications in pharmaceutical sciences such as prediction modeling based on NP-adsorbed proteins, usage of active proteins for modifying NP to achieve toxicity reduction, circulation time enhancement, and targeting effect. Validated correlative models for NP biological responses mainly based on protein corona fingerprints of NPs are more highly accurate than the models solely set up from NP properties. Based on these models, effectiveness as well as the toxicity of NPs can be predicted without invivo tests, while novel cell receptors could be identified from prominent proteins which play important key roles in the models. The ungoverned protein adsorption onto NPs may have generally negative effects such as rapid clearance from the bloodstream, hindrance of targeting capacity, and induction of toxicity. In contrast, controlling protein adsorption by modifying NPs with diverse functional proteins or tailoring appropriate NPs which favor selective endogenous peptides and proteins will bring promising therapeutic benefits in drug delivery and targeted cancer treatment.

Keywords: protein-nanoparticle interaction, protein corona, exchange of adsorbed protein, toxicity reduction, predictive modeling, targeting drug delivery

This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Originally posted here:
Protein corona: a new approach for nanomedicine design - Dove Medical Press

New Technique Cuts HIV Treatment in Half – Controlled Environments Magazine

Successful results of a University of Liverpool-led trial that utilized nanotechnology to improve drug therapies for HIV patients has been presented at the Conference on Retroviruses and Opportunistic Infections (CROI) in Seattle, a leading annual conference of HIV research, clinical practice, and progress.

The healthy volunteer trial, conducted by the collaborative nanomedicine research program led by Pharmacologist Professor Andrew Owen and Materials Chemist Professor Steve Rannard, and in collaboration with the St Stephens AIDS Trust at the Chelsea & Westminster Hospital in London, examined the use of nanotechnology to improve the delivery of drugs to HIV patients. The results were from two trials which are the first to use orally dosed nanomedicine to enable HIV therapy optimization.

Nanotechnology is the manipulation of matter on an atomic, molecular, and supramolecular scale. Nanomedicine is the application of nanotechnology to the prevention and treatment of disease in the human body. By developing smaller pills that are better for patients and less expensive to manufacture, this evolving discipline has the potential to dramatically change medical science and is already having an impact in a number of clinically used therapies and diagnostics worldwide.

Currently, the treatment of HIV requires daily oral dosing of HIV drugs, and chronic oral dosing has significant complications that arise from the high pill burden experienced by many patients across populations with varying conditions leading to non-adherence to therapies.

Recent evaluation of HIV patient groups has shown a willingness to switch to nanomedicine alternatives if benefits can be shown. Research efforts by the Liverpool team have focused on the development of new oral therapies, using Solid Drug Nanoparticle (SDN) technology which can improve drug absorption into the body, reducing both the dose and the cost per dose and enabling existing healthcare budgets to treat more patients.

The trial results confirmed the potential for a 50 percent dose reduction while maintaining therapeutic exposure, using a novel approach to formulation of two drugs: efavirenz (EFV) and, lopinavir (LPV). EFV is the current WHO-recommended preferred regimen, with 70 percent of adult patients on first-line taking an EFV-based HIV treatment regimen in low- and middle-income countries.

The trial is connected to the Universitys ongoing work as part of the multinational consortium OPTIMIZE, a global partnership working to accelerate access to simpler, safer and more affordable HIV treatment. Funded by the U.S. Agency for International Development, OPTIMIZE is led by the Wits Reproductive Health & HIV Institute in Johannesburg, South Africa, and includes the interdisciplinary Liverpool team, Columbia University, Mylan Laboratories, and the Medicines Patent Pool (MPP). OPTIMIZE is supported by key partners including UNITAID and the South African Medical Research Council (SAMRC).

Benny Kottiri, USAIDs Office of HIV/AIDS Research Division Chief, says, The potential applications for HIV treatment are incredibly promising. By aligning efforts, these integrated investments offer the potential to reduce the doses required to control the HIV virus even further, resulting in real benefits globally. This would enable the costs of therapy to be reduced which is particularly beneficial for resource-limited countries where the burden of disease is highest.

Source: University of Liverpool

More:
New Technique Cuts HIV Treatment in Half - Controlled Environments Magazine

New Nano Approach Could Cut Dose of Leading HIV Treatment in … – Infection Control Today

Successful results of a University of Liverpool-led trial that utilized nanotechnology to improve drug therapies for HIV patients has been presented at the Conference on Retroviruses and Opportunistic Infections (CROI) in Seattle, a leading annual conference of HIV research, clinical practice and progress.

The healthy volunteer trial, conducted by the collaborative nanomedicine research program led by pharmacologist Andrew Owen and materials chemist Steve Rannard, and in collaboration with the St Stephen's AIDS Trust at the Chelsea & Westminster Hospital in London, examined the use of nanotechnology to improve the delivery of drugs to HIV patients. The results were from two trials which are the first to use orally dosed nanomedicine to enable HIV therapy optimization.

Nanotechnology is the manipulation of matter on an atomic, molecular, and supramolecular scale. Nanomedicine is the application of nanotechnology to the prevention and treatment of disease in the human body. By developing smaller pills that are better for patients and less expensive to manufacture, this evolving discipline has the potential to dramatically change medical science and is already having an impact in a number of clinically used therapies and diagnostics worldwide.

Currently, the treatment of HIV requires daily oral dosing of HIV drugs, and chronic oral dosing has significant complications that arise from the high pill burden experienced by many patients across populations with varying conditions leading to non-adherence to therapies.

Recent evaluation of HIV patient groups have shown a willingness to switch to nanomedicine alternatives if benefits can be shown. Research efforts by the Liverpool team have focused on the development of new oral therapies, using Solid Drug Nanoparticle (SDN) technology which can improve drug absorption into the body, reducing both the dose and the cost per dose and enabling existing healthcare budgets to treat more patients.

The trial results confirmed the potential for a 50 percent dose reduction while maintaining therapeutic exposure, using a novel approach to formulation of two drugs: efavirenz (EFV) and, lopinavir (LPV). EFV is the current WHO-recommended preferred regimen, with 70% of adult patients on first-line taking an EFV-based HIV treatment regimen in low- and middle-income countries.

The trial is connected to the University's ongoing work as part of the multinational consortium OPTIMIZE, a global partnership working to accelerate access to simpler, safer and more affordable HIV treatment. Funded by the U.S. Agency for International Development, OPTIMIZE is led by the Wits Reproductive Health & HIV Institute in Johannesburg, South Africa, and includes the interdisciplinary Liverpool team, Columbia University, Mylan Laboratories and the Medicines Patent Pool (MPP). OPTIMIZE is supported by key partners including UNITAID and the South African Medical Research Council (SAMRC)

Benny Kottiri, USAID's Office of HIV/AIDS Research Division Chief, said: "The potential applications for HIV treatment are incredibly promising. By aligning efforts, these integrated investments offer the potential to reduce the doses required to control the HIV virus even further, resulting in real benefits globally. This would enable the costs of therapy to be reduced which is particularly beneficial for resource-limited countries where the burden of disease is highest."

Source: University of Liverpool

The rest is here:
New Nano Approach Could Cut Dose of Leading HIV Treatment in ... - Infection Control Today

The First European Nanomedicine Mentoring Program Launches a New Edition – Apply to boost your project … – Cordis News

The Nanomedicine Translation Advisory Board (NanomedTAB) offers a free-of-charge mentoring program to promising nanomedicine teams and projects at any stage of development to assess, advise and accelerate their translation and get to commercial application faster and more reliably. To reach this objective, the TAB counts on 11 experts from the industry, specifically recruited for their diverse, extensive and complementary experience in the translation of innovative technologies for healthcare.

The fourth TABs round is now open to companies, public and private research entities, and other organisations leading nanomedicine innovative projects in Europe. Deadline for applications is 27th February 2017.

Selected projects in this round will be invited to attend the TAB-In Session, designed as 2-hour face-to-face meetings with the experts. These meetings will be organised on 4th April 2017 in London in the framework of the European Nanomedicine Meeting 2017 (http://www.britishsocietynanomedicine.org/enm-2017-conference1.html).

Applications to the TAB should be submitted through the following link: http://www.nanomedtab.eu/?apply.

See original here:
The First European Nanomedicine Mentoring Program Launches a New Edition - Apply to boost your project ... - Cordis News

New nano approach could cut dose of leading HIV treatment in half – Phys.Org

February 21, 2017 Credit: University of Liverpool

Successful results of a University of Liverpool-led trial that utilised nanotechnology to improve drug therapies for HIV patients has been presented at the Conference on Retroviruses and Opportunistic Infections (CROI) in Seattle, a leading annual conference of HIV research, clinical practice and progress.

The healthy volunteer trial, conducted by the collaborative nanomedicine research programme led by Pharmacologist Professor Andrew Owen and Materials Chemist Professor Steve Rannard, and in collaboration with the St Stephen's AIDS Trust at the Chelsea & Westminster Hospital in London, examined the use of nanotechnology to improve the delivery of drugs to HIV patients. The results were from two trials which are the first to use orally dosed nanomedicine to enable HIV therapy optimisation.

Manipulation of matter

Nanotechnology is the manipulation of matter on an atomic, molecular, and supramolecular scale. Nanomedicine is the application of nanotechnology to the prevention and treatment of disease in the human body. By developing smaller pills that are better for patients and less expensive to manufacture, this evolving discipline has the potential to dramatically change medical science and is already having an impact in a number of clinically used therapies and diagnostics worldwide.

Currently, the treatment of HIV requires daily oral dosing of HIV drugs, and chronic oral dosing has significant complications that arise from the high pill burden experienced by many patients across populations with varying conditions leading to non-adherence to therapies.

Developing new therapies

Recent evaluation of HIV patient groups have shown a willingness to switch to nanomedicine alternatives if benefits can be shown. Research efforts by the Liverpool team have focused on the development of new oral therapies, using Solid Drug Nanoparticle (SDN) technology which can improve drug absorption into the body, reducing both the dose and the cost per dose and enabling existing healthcare budgets to treat more patients.

The trial results confirmed the potential for a 50 percent dose reduction while maintaining therapeutic exposure, using a novel approach to formulation of two drugs: efavirenz (EFV) and, lopinavir (LPV). EFV is the current WHO-recommended preferred regimen, with 70% of adult patients on first-line taking an EFV-based HIV treatment regimen in low- and middle-income countries.

The trial is connected to the University's ongoing work as part of the multinational consortium OPTIMIZE, a global partnership working to accelerate access to simpler, safer and more affordable HIV treatment. Funded by the U.S. Agency for International Development, OPTIMIZE is led by the Wits Reproductive Health & HIV Institute in Johannesburg, South Africa, and includes the interdisciplinary Liverpool team, Columbia University, Mylan Laboratories and the Medicines Patent Pool (MPP). OPTIMIZE is supported by key partners including UNITAID and the South African Medical Research Council (SAMRC).

Potential applications

Benny Kottiri, USAID's Office of HIV/AIDS Research Division Chief, said: "The potential applications for HIV treatment are incredibly promising. By aligning efforts, these integrated investments offer the potential to reduce the doses required to control the HIV virus even further, resulting in real benefits globally. This would enable the costs of therapy to be reduced which is particularly beneficial for resource-limited countries where the burden of disease is highest."

Explore further: New nanomedicine approach aims to improve HIV drug therapies

More information: The presentation is available online: http://www.croiwebcasts.org/console/player/33376?mediaType=slideVideo&

As devices become smaller and more powerful, they require faster, smaller, more stable batteries. University of Illinois chemists have developed a superionic solid that could be the basis of next-generation lithium-ion batteries.

Cells within our bodies divide and change over time, with thousands of chemical reactions occurring within each cell daily. This makes it difficult for scientists to understand what's happening inside. Now, tiny nanostraws ...

DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.

Drugs disguised as viruses are providing new weapons in the battle against cancer, promising greater accuracy and fewer side effects than chemotherapy.

The precise control of electron transport in microelectronics makes complex logic circuits possible that are in daily use in smartphones and laptops. Heat transport is of similar fundamental importance and its control is ...

A new technique using liquid metals to create integrated circuits that are just atoms thick could lead to the next big advance for electronics.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Link:
New nano approach could cut dose of leading HIV treatment in half - Phys.Org

Nanomedicine – Wikipedia

Nanomedicine is the medical application of nanotechnology.[1] Nanomedicine ranges from the medical applications of nanomaterials and biological devices, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology such as biological machines. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials (materials whose structure is on the scale of nanometers, i.e. billionths of a meter).

Functionalities can be added to nanomaterials by interfacing them with biological molecules or structures. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical therapy applications, and drug delivery vehicles.

Nanomedicine seeks to deliver a valuable set of research tools and clinically useful devices in the near future.[2][3] The National Nanotechnology Initiative expects new commercial applications in the pharmaceutical industry that may include advanced drug delivery systems, new therapies, and in vivo imaging.[4] Nanomedicine research is receiving funding from the US National Institutes of Health, including the funding in 2005 of a five-year plan to set up four nanomedicine centers.

Nanomedicine sales reached $16 billion in 2015, with a minimum of $3.8 billion in nanotechnology R&D being invested every year. Global funding for emerging nanotechnology increased by 45% per year in recent years, with product sales exceeding $1 trillion in 2013.[5] As the nanomedicine industry continues to grow, it is expected to have a significant impact on the economy.

Nanotechnology has provided the possibility of delivering drugs to specific cells using nanoparticles.

The overall drug consumption and side-effects may be lowered significantly by depositing the active agent in the morbid region only and in no higher dose than needed. Targeted drug delivery is intended to reduce the side effects of drugs with concomitant decreases in consumption and treatment expenses. Drug delivery focuses on maximizing bioavailability both at specific places in the body and over a period of time. This can potentially be achieved by molecular targeting by nanoengineered devices.[6][7] More than $65 billion are wasted each year due to poor bioavailability.[citation needed] A benefit of using nanoscale for medical technologies is that smaller devices are less invasive and can possibly be implanted inside the body, plus biochemical reaction times are much shorter. These devices are faster and more sensitive than typical drug delivery.[8] The efficacy of drug delivery through nanomedicine is largely based upon: a) efficient encapsulation of the drugs, b) successful delivery of drug to the targeted region of the body, and c) successful release of the drug.[citation needed]

Drug delivery systems, lipid- [9] or polymer-based nanoparticles,[10] can be designed to improve the pharmacokinetics and biodistribution of the drug.[11][12][13] However, the pharmacokinetics and pharmacodynamics of nanomedicine is highly variable among different patients.[14] When designed to avoid the body's defence mechanisms,[15] nanoparticles have beneficial properties that can be used to improve drug delivery. Complex drug delivery mechanisms are being developed, including the ability to get drugs through cell membranes and into cell cytoplasm. Triggered response is one way for drug molecules to be used more efficiently. Drugs are placed in the body and only activate on encountering a particular signal. For example, a drug with poor solubility will be replaced by a drug delivery system where both hydrophilic and hydrophobic environments exist, improving the solubility.[16] Drug delivery systems may also be able to prevent tissue damage through regulated drug release; reduce drug clearance rates; or lower the volume of distribution and reduce the effect on non-target tissue. However, the biodistribution of these nanoparticles is still imperfect due to the complex host's reactions to nano- and microsized materials[15] and the difficulty in targeting specific organs in the body. Nevertheless, a lot of work is still ongoing to optimize and better understand the potential and limitations of nanoparticulate systems. While advancement of research proves that targeting and distribution can be augmented by nanoparticles, the dangers of nanotoxicity become an important next step in further understanding of their medical uses.[17]

Nanoparticles can be used in combination therapy for decreasing antibiotic resistance or for their antimicrobial properties.[18][19][20] Nanoparticles might also used to circumvent multidrug resistance (MDR) mechanisms.[21]

Two forms of nanomedicine that have already been tested in mice and are awaiting human trials that will be using gold nanoshells to help diagnose and treat cancer,[22] and using liposomes as vaccine adjuvants and as vehicles for drug transport.[23][24] Similarly, drug detoxification is also another application for nanomedicine which has shown promising results in rats.[25] Advances in Lipid nanotechnology was also instrumental in engineering medical nanodevices and novel drug delivery systems as well as in developing sensing applications.[26] Another example can be found in dendrimers and nanoporous materials. Another example is to use block co-polymers, which form micelles for drug encapsulation.[10]

Polymeric nano-particles are a competing technology to lipidic (based mainly on Phospholipids) nano-particles. There is an additional risk of toxicity associated with polymers not widely studied or understood. The major advantages of polymers is stability, lower cost and predictable characterisation. However, in the patient's body this very stability (slow degradation) is a negative factor. Phospholipids on the other hand are membrane lipids (already present in the body and surrounding each cell), have a GRAS (Generally Recognised As Safe) status from FDA and are derived from natural sources without any complex chemistry involved. They are not metabolised but rather absorbed by the body and the degradation products are themselves nutrients (fats or micronutrients).[citation needed]

Protein and peptides exert multiple biological actions in the human body and they have been identified as showing great promise for treatment of various diseases and disorders. These macromolecules are called biopharmaceuticals. Targeted and/or controlled delivery of these biopharmaceuticals using nanomaterials like nanoparticles and Dendrimers is an emerging field called nanobiopharmaceutics, and these products are called nanobiopharmaceuticals.[citation needed]

Another highly efficient system for microRNA delivery for example are nanoparticles formed by the self-assembly of two different microRNAs deregulated in cancer.[27]

Another vision is based on small electromechanical systems; nanoelectromechanical systems are being investigated for the active release of drugs. Some potentially important applications include cancer treatment with iron nanoparticles or gold shells.Nanotechnology is also opening up new opportunities in implantable delivery systems, which are often preferable to the use of injectable drugs, because the latter frequently display first-order kinetics (the blood concentration goes up rapidly, but drops exponentially over time). This rapid rise may cause difficulties with toxicity, and drug efficacy can diminish as the drug concentration falls below the targeted range.[citation needed]

Some nanotechnology-based drugs that are commercially available or in human clinical trials include:

Existing and potential drug nanocarriers have been reviewed.[38][39][40][41]

Nanoparticles have high surface area to volume ratio. This allows for many functional groups to be attached to a nanoparticle, which can seek out and bind to certain tumor cells. Additionally, the small size of nanoparticles (10 to 100 nanometers), allows them to preferentially accumulate at tumor sites (because tumors lack an effective lymphatic drainage system).[42] Limitations to conventional cancer chemotherapy include drug resistance, lack of selectivity, and lack of solubility. Nanoparticles have the potential to overcome these problems.[43]

In photodynamic therapy, a particle is placed within the body and is illuminated with light from the outside. The light gets absorbed by the particle and if the particle is metal, energy from the light will heat the particle and surrounding tissue. Light may also be used to produce high energy oxygen molecules which will chemically react with and destroy most organic molecules that are next to them (like tumors). This therapy is appealing for many reasons. It does not leave a "toxic trail" of reactive molecules throughout the body (chemotherapy) because it is directed where only the light is shined and the particles exist. Photodynamic therapy has potential for a noninvasive procedure for dealing with diseases, growth and tumors. Kanzius RF therapy is one example of such therapy (nanoparticle hyperthermia) .[citation needed] Also, gold nanoparticles have the potential to join numerous therapeutic functions into a single platform, by targeting specific tumor cells, tissues and organs.[44][45]

In vivo imaging is another area where tools and devices are being developed. Using nanoparticle contrast agents, images such as ultrasound and MRI have a favorable distribution and improved contrast. This might be accomplished by self assembled biocompatible nanodevices that will detect, evaluate, treat and report to the clinical doctor automatically.[citation needed]

The small size of nanoparticles endows them with properties that can be very useful in oncology, particularly in imaging. Quantum dots (nanoparticles with quantum confinement properties, such as size-tunable light emission), when used in conjunction with MRI (magnetic resonance imaging), can produce exceptional images of tumor sites. Nanoparticles of cadmium selenide (quantum dots) glow when exposed to ultraviolet light. When injected, they seep into cancer tumors. The surgeon can see the glowing tumor, and use it as a guide for more accurate tumor removal.These nanoparticles are much brighter than organic dyes and only need one light source for excitation. This means that the use of fluorescent quantum dots could produce a higher contrast image and at a lower cost than today's organic dyes used as contrast media. The downside, however, is that quantum dots are usually made of quite toxic elements.[citation needed]

Tracking movement can help determine how well drugs are being distributed or how substances are metabolized. It is difficult to track a small group of cells throughout the body, so scientists used to dye the cells. These dyes needed to be excited by light of a certain wavelength in order for them to light up. While different color dyes absorb different frequencies of light, there was a need for as many light sources as cells. A way around this problem is with luminescent tags. These tags are quantum dots attached to proteins that penetrate cell membranes. The dots can be random in size, can be made of bio-inert material, and they demonstrate the nanoscale property that color is size-dependent. As a result, sizes are selected so that the frequency of light used to make a group of quantum dots fluoresce is an even multiple of the frequency required to make another group incandesce. Then both groups can be lit with a single light source. They have also found a way to insert nanoparticles[46] into the affected parts of the body so that those parts of the body will glow showing the tumor growth or shrinkage or also organ trouble.[47]

Nanotechnology-on-a-chip is one more dimension of lab-on-a-chip technology. Magnetic nanoparticles, bound to a suitable antibody, are used to label specific molecules, structures or microorganisms. Gold nanoparticles tagged with short segments of DNA can be used for detection of genetic sequence in a sample. Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots into polymeric microbeads. Nanopore technology for analysis of nucleic acids converts strings of nucleotides directly into electronic signatures.[citation needed]

Sensor test chips containing thousands of nanowires, able to detect proteins and other biomarkers left behind by cancer cells, could enable the detection and diagnosis of cancer in the early stages from a few drops of a patient's blood.[48]Nanotechnology is helping to advance the use of arthroscopes, which are pencil-sized devices that are used in surgeries with lights and cameras so surgeons can do the surgeries with smaller incisions. The smaller the incisions the faster the healing time which is better for the patients. It is also helping to find a way to make an arthroscope smaller than a strand of hair.[49]

Research on nanoelectronics-based cancer diagnostics could lead to tests that can be done in pharmacies. The results promise to be highly accurate and the product promises to be inexpensive. They could take a very small amount of blood and detect cancer anywhere in the body in about five minutes, with a sensitivity that is a thousand times better than in a conventional laboratory test. These devices that are built with nanowires to detect cancer proteins; each nanowire detector is primed to be sensitive to a different cancer marker. The biggest advantage of the nanowire detectors is that they could test for anywhere from ten to one hundred similar medical conditions without adding cost to the testing device.[50] Nanotechnology has also helped to personalize oncology for the detection, diagnosis, and treatment of cancer. It is now able to be tailored to each individuals tumor for better performance. They have found ways that they will be able to target a specific part of the body that is being affected by cancer.[51]

Magnetic micro particles are proven research instruments for the separation of cells and proteins from complex media. The technology is available under the name Magnetic-activated cell sorting or Dynabeads among others. More recently it was shown in animal models that magnetic nanoparticles can be used for the removal of various noxious compounds including toxins, pathogens, and proteins from whole blood in an extracorporeal circuit similar to dialysis.[52][53] In contrast to dialysis, which works on the principle of the size related diffusion of solutes and ultrafiltration of fluid across a semi-permeable membrane, the purification with nanoparticles allows specific targeting of substances. Additionally larger compounds which are commonly not dialyzable can be removed.[citation needed]

The purification process is based on functionalized iron oxide or carbon coated metal nanoparticles with ferromagnetic or superparamagnetic properties.[54] Binding agents such as proteins,[53]antibodies,[52]antibiotics,[55] or synthetic ligands[56] are covalently linked to the particle surface. These binding agents are able to interact with target species forming an agglomerate. Applying an external magnetic field gradient allows exerting a force on the nanoparticles. Hence the particles can be separated from the bulk fluid, thereby cleaning it from the contaminants.[57][58]

The small size (< 100nm) and large surface area of functionalized nanomagnets leads to advantageous properties compared to hemoperfusion, which is a clinically used technique for the purification of blood and is based on surface adsorption. These advantages are high loading and accessibility of the binding agents, high selectivity towards the target compound, fast diffusion, small hydrodynamic resistance, and low dosage.[59]

This approach offers new therapeutic possibilities for the treatment of systemic infections such as sepsis by directly removing the pathogen. It can also be used to selectively remove cytokines or endotoxins[55] or for the dialysis of compounds which are not accessible by traditional dialysis methods. However the technology is still in a preclinical phase and first clinical trials are not expected before 2017.[60]

Nanotechnology may be used as part of tissue engineering to help reproduce or repair or reshape damaged tissue using suitable nanomaterial-based scaffolds and growth factors. Tissue engineering if successful may replace conventional treatments like organ transplants or artificial implants. Nanoparticles such as graphene, carbon nanotubes, molybdenum disulfide and tungsten disulfide are being used as reinforcing agents to fabricate mechanically strong biodegradable polymeric nanocomposites for bone tissue engineering applications. The addition of these nanoparticles in the polymer matrix at low concentrations (~0.2 weight%) leads to significant improvements in the compressive and flexural mechanical properties of polymeric nanocomposites.[61][62] Potentially, these nanocomposites may be used as a novel, mechanically strong, light weight composite as bone implants.[citation needed]

For example, a flesh welder was demonstrated to fuse two pieces of chicken meat into a single piece using a suspension of gold-coated nanoshells activated by an infrared laser. This could be used to weld arteries during surgery.[63] Another example is nanonephrology, the use of nanomedicine on the kidney.

Neuro-electronic interfacing is a visionary goal dealing with the construction of nanodevices that will permit computers to be joined and linked to the nervous system. This idea requires the building of a molecular structure that will permit control and detection of nerve impulses by an external computer. A refuelable strategy implies energy is refilled continuously or periodically with external sonic, chemical, tethered, magnetic, or biological electrical sources, while a nonrefuelable strategy implies that all power is drawn from internal energy storage which would stop when all energy is drained. A nanoscale enzymatic biofuel cell for self-powered nanodevices have been developed that uses glucose from biofluids including human blood and watermelons.[64] One limitation to this innovation is the fact that electrical interference or leakage or overheating from power consumption is possible. The wiring of the structure is extremely difficult because they must be positioned precisely in the nervous system. The structures that will provide the interface must also be compatible with the body's immune system.[65]

Molecular nanotechnology is a speculative subfield of nanotechnology regarding the possibility of engineering molecular assemblers, machines which could re-order matter at a molecular or atomic scale. Nanomedicine would make use of these nanorobots, introduced into the body, to repair or detect damages and infections. Molecular nanotechnology is highly theoretical, seeking to anticipate what inventions nanotechnology might yield and to propose an agenda for future inquiry. The proposed elements of molecular nanotechnology, such as molecular assemblers and nanorobots are far beyond current capabilities.[1][65][66][67] Future advances in nanomedicine could give rise to life extension through the repair of many processes thought to be responsible for aging. K. Eric Drexler, one of the founders of nanotechnology, postulated cell repair machines, including ones operating within cells and utilizing as yet hypothetical molecular machines, in his 1986 book Engines of Creation, with the first technical discussion of medical nanorobots by Robert Freitas appearing in 1999.[1]Raymond Kurzweil, a futurist and transhumanist, stated in his book The Singularity Is Near that he believes that advanced medical nanorobotics could completely remedy the effects of aging by 2030.[68] According to Richard Feynman, it was his former graduate student and collaborator Albert Hibbs who originally suggested to him (circa 1959) the idea of a medical use for Feynman's theoretical micromachines (see nanotechnology). Hibbs suggested that certain repair machines might one day be reduced in size to the point that it would, in theory, be possible to (as Feynman put it) "swallow the doctor". The idea was incorporated into Feynman's 1959 essay There's Plenty of Room at the Bottom.[69]

More:
Nanomedicine - Wikipedia

Japan Nanomedicine Industry Market Research Report 2017 – cHollywood News Portal (press release)

Ask a sample report, please email to:

lemon@qyresearchglobal.com or lemon@qyresearch.com

Report Summary

The Japan Nanomedicine Industry Market Research Report 2017 is a professional and in-depth study on the current state of the Nanomedicine industry.

The report provides a basic overview of the industry including definitions, classifications, applications and industry chain structure. The Nanomedicine market analysis is provided for the Japan markets including development trends, competitive landscape analysis, and key regions development status.

Development policies and plans are discussed as well as manufacturing processes and Bill of Materials cost structures are also analyzed. This report also states import/export consumption, supply and demand Figures, cost, price, revenue and gross margins.

The report focuses on Japan major leading industry players providing information such as company profiles, product picture and specification, capacity, production, price, cost, revenue and contact information. Upstream raw materials and equipment and downstream demand analysis is also carried out. The Nanomedicine industry development trends and marketing channels are analyzed. Finally the feasibility of new investment projects are assessed and overall research conclusions offered.

This report studies Nanomedicine focuses on top manufacturers in Japan market, with capacity, production, price, revenue and market share for each manufacturer, covering:

Affilogic

LTFN

Bergmannstrost

Grupo Praxis

Biotechrabbit

Bracco

Materials ResearchCentre

Carlina technologies

ChemConnection

CIC biomaGUNE

CIBER-BBN

Contipro

Cristal Therapeutics

DTI

Endomagnetics

Fraunhofer ICT-IMM

Ask a sample or any question, please email to:

lemon@qyresearchglobal.com or lemon@qyresearch.com

Key Topics Covered:

Chapter One Industry Overview

Chapter Two Manufacturing Cost Structure Analysis of Nanomedicine

Chapter Three Technical Data and Manufacturing Plants Analysis

Chapter Four Sales Analysis of Nanomedicine by Regions, Product Type, and Applications

Chapter Five Sales Revenue Analysis of Nanomedicine by Regions,Product Type, and Applications

Chapter Six Analysis of Nanomedicine Production, Supply, Sales and Demand Market Status 2010-2016

Chapter Seven Analysis of Nanomedicine Industry Key Manufacturers

Chapter Eight Price and Gross Margin Analysis

Chapter Nine Marketing Trader or Distributor Analysis of Nanomedicine

Chapter Ten Analysis of Nanomedicine Production, Supply, Sales and Demand Development Forecast 2017-2021

Chapter Eleven Industry Chain Suppliers of Nanomedicine with Contact Information

Chapter Twelve New Project Investment Feasibility Analysis of Nanomedicine

Chapter Thirteen Conclusion of the Japan Nanomedicine Industry Report 2017

Related Reports:

Global Nanomedicine Industry Market Research Report 2017

China Nanomedicine Industry Market Research Report 2017

Europe Nanomedicine Industry Market Research Report 2017

United States Nanomedicine Industry Market Research Report 2017

India Nanomedicine Industry Market Research Report 2017

Note:We also offer

Germany/Korea/Australia/Brazil/Russia/India/Indonesia/ Malaysia/Saudi Arabia/Middle East/Europe/Asia/Asia-Pacific/Southeast Asia/North America/ Latin America/South America/AMER/EMEA/Africa etc Countries/Regions and Sales/Industry Versions Respectively

Thank you for your reading and interest in our report.

If you need the report or have any question, please feel free to contact me~O(_)O~

Lemon Koo|Sr. Manager Global Sales

QYResearchCO.,LIMITED

Professional Market Research Report Publisher

Email:lemon@qyresearchglobal.com

Web:http://qyresearchglobal.com

QYResearch focus on Market Survey and Research

See original here:
Japan Nanomedicine Industry Market Research Report 2017 - cHollywood News Portal (press release)

Nanobiotechnology Applications, Markets and Companies, 2017-2021 & 2026 – GlobeNewswire (press release)

Dublin, Sept. 07, 2017 (GLOBE NEWSWIRE) -- The "Nanobiotechnology Applications, Markets and Companies" report from Jain PharmaBiotech has been added to Research and Markets' offering.

The report starts with an introduction to various techniques and materials that are relevant to nanobiotechnology. It includes some of the physical forms of energy such as nanolasers. Some of the technologies are scaling down such as microfluidics to nanofluidic biochips and others are constructions from bottom up. Application in life sciences research, particularly at the cell level sets the stage for role of nanobiotechnology in healthcare in subsequent chapters.

An increasing use of nanobiotechnology by the pharmaceutical and biotechnology industries is anticipated. Nanotechnology will be applied at all stages of drug development - from formulations for optimal delivery to diagnostic applications in clinical trials. Many of the assays based on nanobiotechnology will enable high-throughput screening. Some of nanostructures such as fullerenes are themselves drug candidates as they allow precise grafting of active chemical groups in three-dimensional orientations. The most important pharmaceutical applications are in drug delivery. Apart from offering a solution to solubility problems, nanobiotechnology provides and intracellular delivery possibilities. Skin penetration is improved in transdermal drug delivery. A particularly effective application is as nonviral gene therapy vectors. Nanotechnology has the potential to provide controlled release devices with autonomous operation guided by the needs.

Nanomedicine is now within the realm of reality starting with nanodiagnostics and drug delivery facilitated by nanobiotechnology. Miniature devices such as nanorobots could carry out integrated diagnosis and therapy by refined and minimally invasive procedures, nanosurgery, as an alternative to crude surgery. Applications of nanobiotechnology are described according to various therapeutic systems. Nanotechnology will markedly improve the implants and tissue engineering approaches as well. Of the over 1,000 clinical trials of nanomedicines, approximately 100 are selected and tabulated in major therapeutic areas. Other applications such as for management of biological warfare injuries and poisoning are included. Contribution of nanobiotechnology to nutrition and public health such as supply of purified water are also included.

Future nanobiotechnology markets are calculated on the basis of the background markets in the areas of application and the share of this market by new technologies and state of development at any given year in the future. This is based on a comprehensive and thorough review of the current status of nanobiotechnology, research work in progress and anticipated progress. There is definite indication of large growth of the market but it will be uneven and cannot be plotted as a steady growth curve. Marketing estimates are given according to areas of application, technologies and geographical distribution starting with 2016. The largest expansion is expected between the years 2021 and 2026.

Profiles of 252 companies, out of over 500 involved in this area, are included in the last chapter along with their 183 collaborations.The report is supplemented with 51 Tables, 31 figures and 800 references to the literature.

Key Topics Covered:

Part I: Applications & Markets

1. Introduction

2. Nanotechnologies

3. Nanotechnologies for Basic Research Relevant to Medicine

4. Nanomolecular Diagnostics

5. Nanopharmaceuticals

6. Role of Nanotechnology in Biological Therapies

7. Nanodevices & Techniques for Clinical Applications

8. Nanooncology

9. Nanoneurology

10. Nanocardiology

11. Nanopulmonology

12. Nanoorthopedics

13. Nanoophthalmology

14. Nanomicrobiology

15. Miscellaneous Healthcare Applications of Nanobiotechnology

16. Nanobiotechnology and Personalized Medicine

17. Nanotoxicology

18. Ethical and Regulatory Aspects of Nanomedicine

19. Research and Future of Nanomedicine

20. Nanobiotechnology Markets

21. References

Part II: Companies

22. Nanobiotech Companies

For more information about this report visit https://www.researchandmarkets.com/research/xnnnck/nanobiotechnology

See the original post here:
Nanobiotechnology Applications, Markets and Companies, 2017-2021 & 2026 - GlobeNewswire (press release)

Global Nanomedicine Industry 2017 Market Growth, Trends and Demands Research Report – MENAFN.COM

(MENAFN Editorial) iCrowdNewswire - Sep 4, 2017

The Global Nanomedicine Market 2017 Industry Research Report' report provides a basic overview of the industry including its definition, applications and manufacturing technology. Then, the report explores the Global major industry players in detail.

The Global Nanomedicine Market Research Report 2017 renders deep perception of the key regional market status of the Nanomedicine Industry on a global level that primarily aims the core regions which comprises of continents like Europe, North America, and Asia and the key countries such as United States, Germany, #China and Japan.

Complete report on Nanomedicine market report spread across 116 pages, profiling 12 companies and supported with tables and figuresavailable @

The report on 'Global Nanomedicine Market is a professional report which provides thorough knowledge along with complete information pertaining to the Nanomedicine industry propos classifications, definitions, applications, industry chain summary, industry policies in addition to plans, product specifications, manufacturing processes, cost structures, etc.

The potential of this industry segment has been rigorously investigated in conjunction with primary market challenges. The present market condition and future prospects of the segment has also been examined. Moreover, key strategies in the market that includes product developments, partnerships, mergers and acquisitions, etc., are discussed. Besides, upstream raw materials and equipment and downstream demand analysis is also conducted.

Report Includes:-

The report cloaks the market analysis and projection of 'Nanomedicine Market on a regional as well as global level. The report constitutes qualitative and quantitative valuation by industry analysts, first-hand data, assistance from industry experts along with their most recent verbatim and each industry manufacturers via the market value chain. The research experts have additionally assessed the in general sales and revenue generation of this particular market. In addition, this report also delivers widespread analysis of root market trends, several governing elements and macro-economic indicators, coupled with market improvements as per every segment.

For any Inquire before buying @

Global Nanomedicine market competition by top manufacturers/players, with Nanomedicine sales volume, Price (USD/MT), revenue (Million USD) and market share for each manufacturer/player; the top players including: GE Healthcare, Johnson & Johnson, Mallinckrodt plc, Merck & Co. Inc., Nanosphere Inc., Pfizer Inc., SigmaTau Pharmaceuticals Inc., Smith & Nephew PLC, Stryker Corp, Teva Pharmaceutical Industries Ltd., UCB (Union chimique belge) S.A

The report is generically segmented into six parts and every part aims on the overview of the Nanomedicine industry, present condition of the market, feasibleness of the investment along with several strategies and policies. Apart from the definition and classification, the report also discusses the analysis of import and export and describes a comparison of the market that is focused on the trends and development. Along with entire framework in addition to in-depth details, one can prepare and stay ahead of the competitors across the targeted locations. The fact that this market report renders details about the major market players along with their product development and current trends proves to be very beneficial for fresh entrants to comprehend and recognize the industry in an improved manner. The report also enlightens the productions, sales, supply, market condition, demand, growth, and forecast of the Nanomedicine industry in the global markets.

Buy a copy of this report @

Every region's market has been studied thoroughly in this report which deals with the precise information pertaining to the Marketing Channels and novel project investments so that the new entrants as well as the established market players conduct intricate research of trends and analysis in these regional markets. Acknowledging the status of the environment and products' up gradation, the market report foretells each and every detail.So as to fabricate this report, complete key details, strategies and variables are examined so that entire useful information is amalgamated together for the understanding and studying the key facts pertaining the global Nanomedicine Industry. The production value and market share in conjunction with the SWOT analysis everything is integrated in this report.

Table of Contents

1 Nanomedicine Market Overview 2 Global Nanomedicine Market Competition by Manufacturers 3 Global Nanomedicine Capacity, Production, Revenue (Value) by Region (2011-2016) 4 Global Nanomedicine Supply (Production), Consumption, Export, Import by Regions (2011-2016) 5 Global Nanomedicine Production, Revenue (Value), Price Trend by Type 6 Global Nanomedicine Market Analysis by Application 7 Global Nanomedicine Manufacturers Profiles/Analysis

8 Nanomedicine Manufacturing Cost Analysis 9 Industrial Chain, Sourcing Strategy and Downstream Buyers 10 Marketing Strategy Analysis, Distributors/Traders 11 Market Effect Factors Analysis 12 Global Nanomedicine Market Forecast (2016-2021) 13 Research Findings and Conclusion

About Us

Deep Research Reportsis digital database of syndicated market reports for global and #China industries. These reports offer competitive intelligence data for companies in varied market segments and for decision makers at multiple levels in these organizations. We provide 24/7 online and offline support to our customers.

Connect us

Hrishikesh Patwardhan

Corporate Headquarters

2nd floor, metropole,

Next to inox theatre,

Bund garden road,Pune-411001.

1 888 391 5441

MENAFN0509201700703403ID1095819074

Read more here:
Global Nanomedicine Industry 2017 Market Growth, Trends and Demands Research Report - MENAFN.COM

Nanomedicine Research Journal

Nanomedicine Research Journal (Abbreviation: Nanomed Res J)

is an international, open access, peer-reviewed, electronic and print quarterly publication released by the Iranian Society of Nanomedicine (ISNM). Nanomedicine Research Journal publishes original research articles, review papers, mini review papers, case reports and short communications covering a wide range of field-specific and interdisciplinary theoretical and experimental results related to applications of nanoscience and nanotechnology in medicine including, but not limited to, diagnosis, treatment, monitoring, prediction and prevention of diseases, tissue engineering, nano bio-sensors, functionalized carriers and targeted drug delivery systems.

* Publication process of manuscripts submitted to Nanomed Res J is free of charge.

To see Acceptance timeline Please follow the link below:

Acceptance Timeline Diagram

About the publisher

Founded in 2011 by the leading ofSchool of Advanced Technologies in medicine (SATiM),Tehran University of Medical Sciences (TUMS) and Iran Nanotechnology Initiative Council, the Iranian Society of Nanomedicine (ISNM) attempts to promote and develop medical nanotechnology in Iran. For more information about the publisher, please visit us at http://isnm.ir/en/.

Read the original:
Nanomedicine Research Journal

Molecular nanosubmarines can target and kill specific cancer cells – New Atlas

In 2015, scientists from Rice University revealed they had created light-driven nanosubmarines. These tiny molecular machines were activated by ultraviolet light and based on earlier work from Nobel laureate Bernard Feringa, whose ground-breaking research won the prize for chemistry in 2016. These single-molecule machines have now been shown to be able to target, and drill into, specific cancer cells, paving the way for a variety of highly targeted future nanomedicine treatments.

These molecular machines consist of 244 atoms with a tail-like propeller that creates propulsion when exposed to UV light. After proving the concept worked back in 2015, the team moved on to exploring whether the molecular motor could penetrate an individual cell.

"We thought it might be possible to attach these nanomachines to the cell membrane and then turn them on to see what happened," explains chemist James Tour.

First the team needed to attach the molecular motor to a component that allowed it to target a specific cell. In these early experiments a peptide was utilized that drove the molecule to attach itself to the membrane of human prostate cancer cells. The molecules were shown to effectively locate and attach to the targeted cells, but not drill into them until specifically triggered by UV light. Once triggered, the motors spun up to two to three million rotations per second to break through the cell membrane and kill the cell within one to three minutes.

The obvious challenge that needs to be overcome is to develop an activation trigger other than ultraviolet light, which currently limits the molecular motors to being controllable when concentrated at the surface of tissue. Other triggers are currently being investigated, with near infra-red (IR) light looking like the best option to control these motors when delivered deep into a body.

"In this process, the motor will absorb two photons simultaneously and get enough energy to start the rotor," says Gufeng Wang, a chemist on the Rice University team. "Since near IR light has deep penetration depth, we are no longer limited to the surface of the tissue."

There is much work that still needs to be done before these molecular motors become a real, clinical treatment, but there are a variety of exciting outcomes this technology promises. As well as targeting and destroying cancer cells, the molecular motors could be utilized to deliver drugs directly into diseased cells.

As well as working on additional activation mechanisms, the team is embarking on a series of small animal tests to examine the effectiveness of the molecules on living organisms.

"The researchers are already proceeding with experiments in microorganisms and small fish to explore the efficacy in-vivo," says Tour. "The hope is to move this swiftly to rodents to test the efficacy of nanomachines for a wide range of medicinal therapies."

The research was published in the journal Nature and the video below provides a closer look at the team's breakthrough.

Source: Rice University

Original post:
Molecular nanosubmarines can target and kill specific cancer cells - New Atlas

Nanomedicine Market Growth Opportunities for Distributers 2017 – Equity Insider (press release)

Global Nanomedicine Market Research Report 2017 to 2022 provides a unique tool for evaluating the market, highlighting opportunities, and supporting strategic and tactical decision-making. This report recognizes that in this rapidly-evolving and competitive environment, up-to-date marketing information is essential to monitor performance and make critical decisions for growth and profitability. It provides information on trends and developments, and focuses on markets and materials, capacities and technologies, and on the changing structure of the Nanomedicine Market.

Companies Mentioned are GE Healthcare, Johnson & Johnson, Mallinckrodt plc, Merck & Co. Inc., Nanosphere Inc., Pfizer Inc., Sigma-Tau Pharmaceuticals Inc., Smith & Nephew PLC, Stryker Corp, Teva Pharmaceutical Industries Ltd., UCB (Union chimique belge) S.A.

Primary sources are mainly industry experts from core and related industries, and suppliers, manufacturers, distributors, service providers, and organizations related to all segments of the industrys supply chain. The bottom-up approach was used to estimate the global market size of Nanomedicine based on end-use industry and region, in terms of value. With the data triangulation procedure and validation of data through primary interviews, the exact values of the overall parent market, and individual market sizes were determined and confirmed in this study.

Sample/Inquire at: https://www.marketinsightsreports.com/reports/08308548/global-nanomedicine-market-research-report-2017/inquiry

This report segments the global Nanomedicine market on the basis of types Regenerative Medicine, In-vitro & In-vivo Diagnostics, Vaccines, Drug Delivery. On the basis of application Clinical Cardiology, Urology, Genetics, Orthopedics, Ophthalmology.

Essential points covered in Global Nanomedicine Market 2017 Research are:-

This independent 116 page report guarantees you will remain better informed than your competition. With over 170 tables and figures examining the Nanomedicine market, the report gives you a visual, one-stop breakdown of the leading products, submarkets and market leaders market revenue forecasts as well as analysis to 2022.

The global Nanomedicine market consists of different international, regional, and local vendors. The market competition is foreseen to grow higher with the rise in technological innovation and M&A activities in the future. Moreover, many local and regional vendors are offering specific application products for varied end-users. The new vendor entrants in the market are finding it hard to compete with the international vendors based on quality, reliability, and innovations in technology.

Browse Full Report at: https://www.marketinsightsreports.com/reports/08308548/global-nanomedicine-market-research-report-2017

Geographically, this report is segmented into several key Regions, with production, consumption, revenue (million USD), and market share and growth rate of Storage Area Network Switch in these regions, from 2012 to 2022 (forecast), covering

by Regions

The report provides a basic overview of the Nanomedicine industry including definitions, classifications, applications and industry chain structure. And development policies and plans are discussed as well as manufacturing processes and cost structures.

Then, the report focuses on global major leading industry players with information such as company profiles, product picture and specifications, sales, market share and contact information. Whats more, the Nanomedicine industry development trends and marketing channels are analyzed.

The research includes historic data from 2012 to 2016 and forecasts until 2022 which makes the reports an invaluable resource for industry executives, marketing, sales and product managers, consultants, analysts, and other people looking for key industry data in readily accessible documents with clearly presented tables and graphs. The report will make detailed analysis mainly on above questions and in-depth research on the development environment, market size, development trend, operation situation and future development trend of Nanomedicine on the basis of stating current situation of the industry in 2017 so as to make comprehensive organization and judgment on the competition situation and development trend of Nanomedicine Market and assist manufacturers and investment organization to better grasp the development course of Nanomedicine Market.

The study was conducted using an objective combination of primary and secondary information including inputs from key participants in the industry. The report contains a comprehensive market and vendor landscape in addition to a SWOT analysis of the key vendors.

There are 15 Chapters to deeply display the global Nanomedicine market.

Chapter 1, to describe Nanomedicine Introduction, product scope, market overview, market opportunities, market risk, market driving force;

Chapter 2, to analyze the top manufacturers of Nanomedicine, with sales, revenue, and price of Nanomedicine, in 2016and 2017;

Chapter 3, to display the competitive situation among the top manufacturers, with sales, revenue and market share in 2016and 2017;

Chapter 4, to show the global market by regions, with sales, revenue and market share of Nanomedicine, for each region, from 2012to 2017;

Chapter 5, 6, 7,8and 9, to analyze the key regions, with sales, revenue and market share by key countries in these regions;

Chapter 10and 11, to show the market by type and application, with sales market share and growth rate by type, application, from 2012 to 2017;

Chapter 12, Nanomedicine market forecast, by regions, type and application, with sales and revenue, from 2017to 2022;

Chapter 13, 14 and 15, to describe Nanomedicine sales channel, distributors, traders, dealers, Research Findings and Conclusion, appendix and data source.

View post:
Nanomedicine Market Growth Opportunities for Distributers 2017 - Equity Insider (press release)

Eun Ji Chung Receives 2017 AIChE 35 Under 35 Award – USC Viterbi School of Engineering (press release) (blog)

The goal-setting Assistant Professor rounds out a successful 2017 with an early career honor from the American Institute of Chemical Engineers

Eun Ji Chung is a Gabilan Assistant Professor in the Department of Biomedical Engineering and recipient of a 2017 AIChE 35 Under 35 Award. Photo credit/Michelle Henry

To describe Eun Ji Chung as goal-oriented might be the understatement of the year.

Chung, a Gabilan Assistant Professor in the USC ViterbiDepartment of Biomedical Engineering, has racked up an impressive number of achievements in 2017 alone. In addition to receiving a 2017 USC Stem Cell Eli and Edythe Broad Innovation Award, she was selected for the 2017 Emerging Investigator Issue of the journal Biomaterials Science and a 2017 Biomedical Engineering Society (BMES) Career Development Award.

This summer, Chung found out that she was being honored with a 2017 American Institute of Chemical Engineers (AIChE) 35 Under 35 Award for her exceptional work in bioengineering.

Bright-Eyed Youth

People like Chung tend to be driven at a young age, perhaps ever since birth.

As an undergraduate at Scripps College, she pursued a degree in molecular biology and conducted biology research in unicellular organisms. While there, her interests became more patient-focused.

While I had a strong foundation in biology, I wanted to pursue a field that could help human health and patients, Chung said. This led me to pursue biomedical engineering as a graduate student (at Northwestern University) and choose a lab that focused on biomaterials research.

During her post-doctoral training at the University of Chicago, Chung achieved a goal she ranks as her proudest professional achievement: an NIH K99/R00 Pathway to Independence Award for her proposal to develop a nanoparticle that could be delivered intravenously and detect atherosclerosis, a potentially fatal build-up of plaque in the arteries. The nanodevice could also deliver therapeutics and signal whether the treatment was successful.

The first time she applied for the award, her application was streamlined and rejected, but she was determined to succeed.

Despite the statistics and critics confirming the high likelihood of being streamlined again in the resubmission, I persisted, addressed all of the reviewer comments diligently, and received a top score the second time around, Chung said.

The Bioengineer

In her lab, Chung and her research group investigate molecular design, nanomedicine and tissue engineering to generate biomaterial strategies for clinical applications. She is emphatic about working with her students (both undergraduate and graduate) and postdoctoral trainees toward their own individual aspirations.

While it takes continuous dialogue, planning and learning together, every small milestone that we achieve towards the larger goals makes me feel proud and gives me a sense of pride in my work and role, Chung said.

In the future, Chungs research goals include providing cost-efficient nanodiagnostics and therapeutics for patients that are not well-understood or overlooked. She believes that to achieve this goal requires an interdisciplinary team of scientists, clinicians and trainees. This belief makes Chung an excellent fit as one of the faculty members joining the new USC Michelson Center for Convergent Bioscience when it opens this November.

In order to train the next generation of the STEM workforce, I hope to inspire students and convey biomedical engineering and biomaterials research as both tangible and compelling, Chung said.

The Juggling Act

Chung describes her pursuit of both an ambitious academic career and family life as a juggling act that requires frequent fine-tuning.

She has even developed her own system of goal attainment that all starts with putting a pencil to paper.

Every December, I write out my career and family goals for the upcoming year, as well as any additional personal goals that I might have, and categorize them into a timeline of seasons, Chung said. In addition, I have longer, five-year goals. This way, I can approach ambition in a holistic manner.

The rest is here:
Eun Ji Chung Receives 2017 AIChE 35 Under 35 Award - USC Viterbi School of Engineering (press release) (blog)

Impact of Existing and Emerging Europe Nanomedicine Market – MilTech

The global Nanomedicine Market size was estimated at USD XX billion in 2017. Technological advancements coupled with relevant applications in early disease diagnosis, preventive intervention, and prophylaxis of chronic as well as acute disorders is expected to bolster growth in this market.

Download Sample Pages @http://www.kminsights.com/request-sample-33081

Nanotechnology involves the miniaturization of larger structures and chemicals at nanometric scale which has significantly revolutionized drug administration, thus influencing adoption of the technology through to 2022.

Expected developments in nanorobotics owing to the rise in funding from the government organizations is expected to induce potential to the market. Nanorobotics engineering projects that are attempting to target the cancer cells without affecting the surrounding tissues is anticipated to drive progress through to 2022.

Ability of the nanotechnology to serve in diagnostics as well as the therapeutic sector at the same time as a consequence of its characteristic principle to is anticipated to augment research in this sector. Furthermore, utilization of DNA origami for healthcare applications is attributive for the projected growth.

The global nanomedicine market is segmented based on modality, application, indication, and region. Based on application, it is classified into drug delivery, diagnostic imaging, vaccines, regenerative medicine, implants, and others.

On the basis of indication, it is categorized into oncological diseases, neurological diseases, urological diseases, infectious diseases, ophthalmological diseases, orthopedic disorders, immunological diseases, cardiovascular diseases, and others. Based on modality, it is bifurcated into treatments and diagnostics.

The global market is driven by emerging technologies for drug delivery, increase in adoption of nanomedicine across varied applications, rise in government support & funding, growth in need for therapies with fewer side effects, and cost-effectiveness of therapies. However, long approval process and risks associated with nanomedicine (environmental impacts) restrain the market growth.

Download Sample Pages @http://www.kminsights.com/request-sample-33081

Contact:

Mr.Mannansales@kminsights.com+1 (888) 278-7681

About Us:Key Market Insights is a stand-alone organization with a solid history of advancing and exchanging market research reports and logical surveys delivered by our numerous transnational accomplices, which incorporate both huge multinationals and littler, more expert concerns.

Visit link:
Impact of Existing and Emerging Europe Nanomedicine Market - MilTech

Expert Radiologist and Clinician Scientist, Michelle S. Bradbury, MD, PhD, is to be Recognized as a 2017 Top Doctor … – PR NewsChannel (press…

Michelle Bradbury MD, PhD, who is a Professor of Radiology, Director of Intraoperative Imaging, and Co-Director of an National Cancer Institute awarded Nanomedicine Center (MSK-Cornell Center for Translation of Cancer Nanomedicines), has been named a 2017 Top Doctor in New York City, New York. Top Doctor Awards is dedicated to selecting and honoring those healthcare practitioners who have demonstrated clinical excellence while delivering the highest standards of patient care.

Dr. Michelle S. Bradbury is a highly experienced physician who has been in practice for over two decades. Her career in medicine started in 1997, when she graduated from the George Washington University School of Medicine and Health Sciences in Washington, D.C. An internship, residency and then fellowship followed, all completed at Wake Forest University in Winston-Salem, North Carolina. Dr. Bradbury also holds a Doctor of Philosophy Degree from the Massachusetts Institute of Technology.

Dr. Bradbury is certified by the American Board of Radiology in both Diagnostic Radiology and Neuroradiology. She is particularly renowned, however, as a leading expert in nanomedicine and in neuroradiology, using CT and MRI imaging of the brain, neck and spine to diagnose conditions of the nervous system. Alongside her work in this field she has been at the forefront of nanomedicine research and clinical trials.

Dr. Bradbury keeps up to date with the latest advances in her field through her active membership of professional organizations including the American College of Radiology, the World Molecular Imaging Congress, and the American Society of Nanomedicine. Her expertise and dedication makes Dr. Michelle S. Bradbury a very deserving winner of a 2017 Top Doctor Award.

About Top Doctor Awards

Top Doctor Awards specializes in recognizing and commemorating the achievements of todays most influential and respected doctors in medicine. Our selection process considers education, research contributions, patient reviews, and other quality measures to identify top doctors

View post:
Expert Radiologist and Clinician Scientist, Michelle S. Bradbury, MD, PhD, is to be Recognized as a 2017 Top Doctor ... - PR NewsChannel (press...