Converging on cancer at the nanoscale | MIT News – The MIT Tech

This summer, the Koch Institute for Integrative Cancer Research at MIT marks the first anniversary of the launch of the Marble Center for Cancer Nanomedicine, established through a generous gift from Kathy and Curt Marble 63.

Bringing together leading Koch Institute faculty members and their teams, the Marble Center for Cancer Nanomedicine focuses on grand challenges in cancer detection, treatment, and monitoring that can benefit from the emerging biology and physics of the nanoscale.

These challenges include detecting cancer earlier than existing methods allow, harnessing the immune system to fight cancer even as it evolves, using therapeutic insights from cancer biology to design therapies for previously undruggable targets, combining existing drugs for synergistic action, and creating tools for more accurate diagnosis and better surgical intervention.

Koch Institute member Sangeeta N. Bhatia, the John J. and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science, serves as the inaugural director for the center.

A major goal for research at the Marble Center is to leverage the collaborative culture at the Koch Institute to use nanotechnology to improve cancer diagnosis and care in patients around the world, Bhatia says.

Transforming nanomedicine

The Marble Center joins MITs broader efforts at the forefront of discovery and innovation to solve the urgent global challenge that is cancer. The concept of convergence the blending of the life and physical sciences with engineering is a hallmark of MIT, the founding principle of the Koch Institute, and at the heart of the Marble Centers mission.

The center galvanizes the MIT cancer research community in efforts to use nanomedicine as a translational platform for cancer care, says Tyler Jacks, director of the Koch Institute and a David H. Koch Professor of Biology. Its transformative by applying these emerging technologies to push the boundaries of cancer detection, treatment, and monitoring and translational by promoting their development and application in the clinic.

The centers faculty six prominent MIT professors and Koch Institute members are committed to fighting cancer with nanomedicine through research, education, and collaboration. They are:

Sangeeta Bhatia (director), the John J. and Dorothy Wilson Professor of Health Sciences and Technology and Electrical Engineering and Computer Science;

Daniel G. Anderson, the Samuel A. Goldblith Professor of Applied Biology in the Department of Chemical Engineering and the Institute for Medical Engineering and Science;

Angela M. Belcher, the James Mason Crafts Professor in the departments of Biological Engineering and Materials Science and Engineering;

Paula T. Hammond, the David H. Koch Professor of Engineering and head of the Department of Chemical Engineering;

Darrell J. Irvine, professor in the departments of Biological Engineering and Materials Science and Engineering; and

Robert S. Langer, the David H. Koch Institute Professor.

Extending their collaboration within the walls of the Institute, Marble Center members benefit greatly from the support of the Peterson (1957) Nanotechnology Materials Core Facility in the Koch Institutes Robert A. Swanson (1969) Biotechnology Center. The Peterson Facilitys array of technological resources and expertise is unmatched in the United States, and gives members of the center, and of the Koch Institute, a distinct advantage in the development and application of nanoscale materials and technologies.

Looking ahead

The Marble Center has wasted no time getting up to speed in its first year, and has provided support for innovative research projects including theranostic nanoparticles that can both detect and treat cancers, real-time imaging of interactions between cancer and immune cells to better understand response to cancer immunotherapies, and delivery technologies for several powerful RNA-based therapeutics able to engage specific cancer targets with precision.

As part of its efforts to help foster a multifaceted science and engineering research force, the center has provided fellowship support for trainees as well as valuable opportunities for mentorship, scientific exchange, and professional development.

Promotingbroader engagement, the Marble Center serves as a bridge to a wide network of nanomedicine resources, connecting its members to MIT.nano, other nanotechnology researchers, and clinical collaborators across Boston and beyond. The center has also convened a scientific advisory board, whose members hail from leading academic and clinical centers around the country, and will help shape the centers future programs and continued expansion.

As the Marble Center begins another year of collaborations and innovation, there is a new milestone in sight for 2018.Nanomedicine has been selected as the central theme for the Koch Institutes 17th Annual Cancer Research Symposium. Scheduled for June 15, 2018, the event will bring together national leaders in the field, providing an ideal forum for Marble Center members to share the discoveries and advancements made during its sophomore year.

Having next years KI Annual Symposium dedicated to nanomedicine will be a wonderful way to further expose the cancer research community to the power of doing science at the nanoscale, Bhatia says. The interdisciplinary approach has the power to accelerate new ideas at this exciting interface of nanotechnology and medicine.

To learn more about the people and projects of the Koch Institute Marble Center for Cancer Nanomedicine, visit nanomedicine.mit.edu.

Read more here:
Converging on cancer at the nanoscale | MIT News - The MIT Tech

Healthcare Nanotechnology (Nanomedicine) Market Expected to Generate Huge Profits by 2015 2021: Persistence … – MilTech

Nanotechnology is one of the most promising technologies in 21st century. Nanotechnology is a term used when technological developments occur at 0.1 to 100 nm scale. Nano medicine is a branch of nanotechnology which involves medicine development at molecular scale for diagnosis, prevention, treatment of diseases and even regeneration of tissues and organs. Thus it helps to preserve and improve human health. Nanomedicine offers an impressive solution for various life threatening diseases such as cancer, Parkinson, Alzheimer, diabetes, orthopedic problems, diseases related to blood, lungs, neurological, and cardiovascular system.

Development of a new nenomedicine takes several years which are based on various technologies such as dendrimers, micelles, nanocrystals, fullerenes, virosome nanoparticles, nanopores, liposomes, nanorods, nanoemulsions, quantum dots, and nanorobots.

In the field of diagnosis, nanotechnology based methods are more precise, reliable and require minimum amount of biological sample which avoid considerable reduction in consumption of reagents and disposables. Apart from diagnosis, nanotechnology is more widely used in drug delivery purpose due to nanoscale particles with larger surface to volume ratio than micro and macro size particle responsible for higher drug loading. Nano size products allow to enter into body cavities for diagnosis or treatment with minimum invasiveness and increased bioavailability. This will not only improve the efficacy of treatment and diagnosis, but also reduces the side effects of drugs in case of targeted therapy.

Global nanomedicine market is majorly segmented on the basis of applications in medicines, targeted disease and geography. Applications segment includes drug delivery (carrier), drugs, biomaterials, active implant, in-vitro diagnostic, and in-vivo imaging. Global nanomedicine divided on the basis of targeted diseases or disorders in following segment: neurology, cardiovascular, oncology, anti-inflammatory, anti-infective and others. Geographically, nanomedicine market is classified into North America, Europe, Asia Pacific, Latin America, and MEA. Considering nanomedicine market by application, drug delivery contribute higher followed by in-vitro diagnostics. Global nanomedicine market was dominated by oncology segment in 2012 due to ability of nanomedicine to cross body barriers and targeted to tumors specifically however cardiovascular nanomedicine market is fastest growing segment. Geographically, North America dominated the market in 2013 and is expected to maintain its position in the near future. Asia Pacific market is anticipated to grow at faster rate due to rapid increase in geriatric population and rising awareness regarding health care. Europe is expected to grow at faster rate than North America due to extensive product pipeline portfolio and constantly improving regulatory framework.

A Sample of this Report is Available Upon Request @http://www.persistencemarketresearch.com/samples/6370

Major drivers for nanomedicine market include improved regulatory framework, increasing technological know-how and research funding, rising government support and continuous increase in the prevalence of chronic diseases such as obesity, diabetes, cancer, kidney disorder, and orthopedic diseases. Some other driving factors include rising number of geriatric population, awareness of nanomedicine application and presence of high unmet medical needs. Growing demand of nanomedicines from the end users is expected to drive the market in the forecast period. However, market entry of new companies is expected to bridge the gap between supply and demand of nanomedicines. Above mentioned drivers currently outweigh the risk associated with nanomedicines such as toxicity and high cost. At present, cancer is one of the major targeted areas in which nanomedicines have made contribution. Doxil, Depocyt, Abraxane, Oncospar, and Neulasta are some of the examples of pharmaceuticals formulated using nanotechnology.

Request to View Tables of Content @http://www.persistencemarketresearch.com/toc/6370

Key players in the global nanomedicine market include: Abbott Laboratories, CombiMatrix Corporation, GE Healthcare, Sigma-Tau Pharmaceuticals, Inc., Johnson & Johnson, Mallinckrodt plc, Merck & Company, Inc., Nanosphere, Inc., Pfizer, Inc., Celgene Corporation, Teva Pharmaceutical Industries Ltd., and UCB (Union chimique belge) S.A.

To Know About Latest Report Click Here:http://www.persistencemarketresearch.com/market-research/healthcare-nanotechnology-nanomedicine-market.asp

Read this article:
Healthcare Nanotechnology (Nanomedicine) Market Expected to Generate Huge Profits by 2015 2021: Persistence ... - MilTech

Nanoparticle delivery tech targets rare lung disease – In-PharmaTechnologist.com

Researchers at London, UK-based Imperial College are developing a technology to transport drugs directly to the lungs of pulmonary arterial hypertension (PAH) patients.

The technology consists of ethanol-heated iron and trans-trans muconic acid nanoparticles that can be small molecule drug actives.

These particles can be delivered directly to the site of the disease according to lead researcher Jane Mitchell, who told us the targeted approach bypasses the toxicity issues that have held back development of less targeted, systemic nanomedicines.

One of the biggest limitations in nanomedicine is toxicity, some of the best nanomedicine structures do not make it past the initial stages of development, as they kill cells, said Mitchell.

However in a study published in Pulmonary Circulation , researchers explain that these metallic structures - called metal organic frameworks (MOF) are not harmful to cells.

We made these prototype MOFs, and have shown they were not toxic to a whole range of human lung cells, Mitchell told us.

The hope is that using this approach will ultimately allow for high concentrations of drugs we already have, to be delivered to only the vessels in the lung, and reduce side effects, she said.

Pulmonary arterial hypertension (PAH)

PAH is a rare lung disease caused by changes to the smaller branches of the pulmonary arteries. The artery walls thicken, and eventually cause organ failure.

While no cure exists, treatments that open up blood vessels in the artery wall are available. According to Mitchell, these treatments can produce negative side effects.

The drugs available [for PAH]are all small molecule drugs which are seriously limited by systemic side effects. Therefore delivering these drugs to the site of disease in our metal organic frame-work (MOF) carrier would represent a paradigm step forward in technology to treat this disease, she said.

Further, researchers believe the MOF technology has therapeutic benefits of its own.

We know that the carriers can havetherapeutic benefits intheir own right such as reducing inflammation and, in the case of ourformation, the potential for imaging, said Mitchell.

For patients with PAH, it could mean we are able to turn it from a fatal condition, to a chronic manageable one, she said.

According to Mitchell, the technology is not expensive at the experimental level, and would be scaled up at commercial level.

We now need to perform proof of concept studies using carriers containing drugs in cell and animal based models. With funding, this will be complete within 2 years, she Mitchell.

Upon completion of clinical trials, the University hopes to license out the technology.

View post:
Nanoparticle delivery tech targets rare lung disease - In-PharmaTechnologist.com

Semiconductor-laced bunny eyedrops appear to nuke infections – The Register

Don't worry, little guy. They're really, really small!

In early lab experiments on rabbits, eyedrops laced with nanoparticles appear to combat bacterial keratitis, a serious infection of the cornea which can, in severe cases, cause blindness.

Researchers hope that these nanoparticles could someday offer a non-toxic alternative to antibiotics, which have the undesirable side effect of creating resistant bacteria.

A common treatment option is steroids, but they can cause scarring. Boffins have found that some nanomaterials, such as copper oxide and silicon, appear to damage bacterial cells. Lately, some groups have realised that carbon quantum dots really tiny semiconductors seem to offer similar benefits with low toxicity, the ability to disperse in water easily, and a relatively simple fabrication process.

"We think it should be safe," Han-Jia Lin, a biochemist at National Taiwan Ocean University in Keelung, told The Register. He and his team had previously studied quantum dots for wound healing in rats.

In the new study, Lin and his team created carbon quantum dots approximately six nanometers in diameter by heating spermidine at around 200oC for about three hours and placing the resultant dots in liquid. The ratio was about 0.4 per cent quantum dot to liquid.

The team infected rabbits with bacterial keratitis. Some received 4 per cent SMX antibiotics, some the quantum-filled eye drops, and others no treatment for control. The researchers found that the quantum dot eyedrop solution showed therapeutic effects right away, even after the first day. The dots were small enough to sneak into the cornea and destroy the bacterial cells.

This had something to do with the quantum dots' compatibility with the cells as well as how they destabilised the cell membranes. The researchers don't know exactly why they work.

By two weeks, the rabbits' eyes were mostly better the quantum dot eyedrop worked about as well as antibiotics. Lin says the treated rabbits showed no side effects from treatment.

A paper describing the research appeared this week in ACS Nano.

It's a "conceptually and technically quite elegant study with remarkable results" but "still with a couple of open questions and obvious risks before this could lead to any product that could help patients," Claus-Michael Lehr, a nanomedicine researcher at Saarland University in Saarbrcken, Germany, told The Reg.

First, he said the reasons why the nanomedicine has such strong bactericidal effects is "not easily explained". Second, the effect of opening tight junction tissue barriers (a potential risk in itself) needs to be shown to be reversible. Third, what chemical products are formed by the quantum dots are they toxic or carcinogenic?

Finally, he said it was wasn't clear how quantum dots that penetrate tissue would behave in the long term. "These structures are probably not biodegradable," he said, "and if they were, what metabolites are being formed?"

Lin says the next steps are to test the long-term effects of the quantum dots, but the the team is trying to be careful in their research to try to limit how they accumulate in bodies. Here, for example, they tested them on the eye.

Because the carbon quantum dots work on such a sensitive part of the body such as the eye without apparently harming cells, "This has potential," Lin said.

Read this article:
Semiconductor-laced bunny eyedrops appear to nuke infections - The Register

CLINAM – The Foundation

CLINAM 9 / 2016 Conference and Exhibition

European & Global Summit for Cutting-Edge Medicine

June 26 29, 2016

Clinical Nanomedicine and Targeted Medicine -

Enabling Technologies for Personalized Medicine

Scientific Committee: Chairman Prof. Dr. med. Patrick Hunziker, University Hospital Basel (CH). MEMBERS Prof. Dr. Yechezkel Barenholz, Hebrew University, Hadassah Medical School, Jerusalem (IL). Dr. med. h.c. Beat Ler, MA, European Foundation for Clinical Nanomedicine, Basel (CH) Prof. Dr. Gert Storm, Institute for Pharmaceutical Sciences, Utrecht University, (NL) Prof. Dr. Marisa Papaluca Amati, European Medicines Agency, London (UK). Prof. Dr. med. Christoph Alexiou, University Hospital Erlangen (D) Prof. Dr. Gerd Binnig, Nobel Laureate, Munich (DE) Prof. Dr. Viola Vogel, Laboratory for Biologically Oriented Materials, ETH, Zrich (CH). Prof. Dr. Jan Mollenhauer, Lundbeckfonden Center of Excellence NanoCAN, University of Southern Denmark, Odense (DK). Prof. Dr. med. Omid Farokhzad, Associate Professor and Director of Laboratory of Nanomedicine and Biomaterials, Harvard Medical School and Brigham and Women's Hospital; Founder of BIND Therapeutics, Biosciences and Blend Therapeutics, Cambridge, Boston (USA) Prof. Dr. Dong Soo Lee, M.D. Ph. Chairman Department of Nuclear Medicine Seoul National University Seoul, Korea (invited) Prof. Dr.Lajos Balogh, Editorin in Chief, Nanomedicine, Nanotechnologyin, Biology and Medicine, Elsevier  and Member  of theExecutive Board, American Society for Nanomedicine in, Boston(USA) and other members.

Conference Venue: Congress Center, Messeplatz 21, 4058 Basel, Switzerland, Phone + 41 58 206 28 28, This email address is being protected from spambots. You need JavaScript enabled to view it. Organizers office: CLINAM-Foundation, Alemannengasse 12, P.B. 4016 Basel Phone +41 61 695 93 95, This email address is being protected from spambots. You need JavaScript enabled to view it.

In the previous eight years, the CLINAM Summit grew to the largest in its field with 12 presenting Noble Laureates and more than 500 participants from academia, industry, regulatory authorities and policy from over 40 different countries in Europe and worldwide. With this success and broad support by well beyond 20 renowned collaborating initiatives, the CLINAM-Summit is today one of the most important marketplaces for scientific exchange and discussions of regulatory, political and ethical aspects in this field of cutting edge medicine.

In particular, the CLINAM Summit emerged as exquisite forum for translation from bench to bedside, for European and international networking, and for industrial collaboration between companies, with academia, and point-of-contact with customers. The summit is presently the only place to meet the regulatory authorities from all continents to debate the needs of all stakeholders in the field with the legislators.

CLINAM 9/2016continues with its successful tradition to cover the manifold interdisciplinary fields of Clinical and Targeted Nanomedicine in major and neglected diseases. As special focus area, CLINAM 09/2016 adds translation and enabling technologies, including, for example, cutting-edge molecular profiling, nano-scale analytics, single cell analysis, stem cell technologies, tissue engineering, in and ex vivo systems as well as in vitro substitute systems for efficacy and toxicity testing.

CLINAM 09/2016covers the entire interdisciplinary spectrum of Nanomedicine and Targeted Medicine from new materials with potential medical applications and enabling technologies over diagnostic and therapeutic translation to clinical applications in infectious, inflammatory and neurodegenerative diseases, as well as diabetes, cancer and regenerative medicine to societal implications, strategical issues, and regulatory affairs. The conference is sub-divided into four different tracks running in parallel and provides ample possibilities for exhibitors as indicated by steadily increasing requests:

Track 1: Clinical and Targeted Nanomedicine Basic Research Disease Mechanisms and Personalized Medicine Regenerative Medicine Novel Therapeutic and Diagnostic Approaches Active and Passive Targeting Targeted Delivery (antibodies, affibodies, aptamers, nano drug delivery devices) Accurin Technology Nano-Toxicology Track 2: Clinical and Targeted Nanomedicine: Translation Unsolved Medical Problems Personalized Medicine and Theranostic Approaches Regenerative Medicine Advanced Breaking and Ongoing Clinical Trials Applied Nanomedical Diagnostics and Therapeutics Track 3: Enabling Technologies Nanomaterial Analytics and Testing Molecular Profiling for Research and Efficacy/Toxicology Testing (Genomics, Proteomics, Glycomics, Lipidomics, Metabolomics) Functional Testing Assays and Platforms Single Cell Analyses Cell Tracking Stem Cell Biology and Engineering Technologies Microfluidics Tissue Engineering Tissues-on-a-Chip Bioprinting In vivo Testing Novel Imaging Approaches Medical Devices Track 4: Regulatory, Societal Affairs and Networking Regulatory Issues in Nanomedicine Strategy and Policy The Patients` Perspective Ethical Issues in Nanomedicine University Village Cutting-Edge EU-Project Presentations Networking for International Consortium Formation

For CLINAM 9 / 16 Last Summit the number of exhibitors increased without investment of acquisition.As from the 9th Summit the CLINAM-Foundation has stepped in to a Partnership with The Congress Center Basel which will invest in a proactive acquisition and management for large foyer exhibition. Based on last years exhibition it is expected to have about 50 Exhibitors at thenext Summit. Exhibitors can profit of the possibility to meet their target visitors on one single spot in Basel at CLINAM 9 / 2016. With this new concept for the exhibition, the international CLINAM-summit becomes also the place for the pulse of the market and early sales in the field of cutting-edge medicine.

The exhibitors are invited to participate in the below in the nomenclature described fields. The list is topic to extensions so that by proposals from exhibitors it will constantly be updated. Strong focus of the exhibition relates to the topics of the conference in which Nanomedicine and Targeted Medicine - presently the most important building blocks in novel Medicine - are debated. The organizers look forward to the interest of the exhibitors to at a moderate investment take the opportunity to meet the community of Nanomedicine, Targeted Medicine and those investing into cutting edge Medicine tools and applications.

The CLINAM- Summit has every year 150 presentations. Many young mist skilled young researchers, young starting entrepreneurs, Engineers and scientists apply for posters and oral presentations. CLINAM offers a first Deadline for those, submitting their work before February 15, 2016 a discount of 20% on the registration fees for Submitters (610.00 ; for students 430.00 ) . The second Deadline after that is April 25, 2016

The Exhibitors at CLINAM 8/2015

The European Foundation for Clinical Nanomedicine is a non-profit institution aiming at advancing medicine to the benefit of individuals and society through the application of nanoscience. Aiming at prevention, diagnosis, and therapy through nanomedicine as well as at exploration of its implications, the Foundation reaches its goals through support of clinically focussed research and of interaction and information flow between clinicians, researchers, the public, and other stakeholders. The recognition of the large future impact of nanoscience on medicine and the observed rapid advance of medical applications of nanoscience have been the main reasons for the creation of the Foundation.

Nanotechnology is generally considered as the key technology of the 21st century. It is an interdisciplinary scientific field focusing on methods, materials, and tools on the nanometer scale, i.e. one millionth of a millimeter. The application of this science to medicine seeks to benefit patients by providing prevention, early diagnosis, and effective treatment for prevalent, for disabling, and for currently incurable medical conditions.

Go here to read the rest:
CLINAM - The Foundation

Nanobiotechnology – Wikipedia, the free encyclopedia

Nanobiotechnology, bionanotechnology, and nanobiology are terms that refer to the intersection of nanotechnology and biology.[1] Given that the subject is one that has only emerged very recently, bionanotechnology and nanobiotechnology serve as blanket terms for various related technologies.

This discipline helps to indicate the merger of biological research with various fields of nanotechnology. Concepts that are enhanced through nanobiology include: nanodevices (such as biological machines), nanoparticles, and nanoscale phenomena that occurs within the discipline of nanotechnology. This technical approach to biology allows scientists to imagine and create systems that can be used for biological research. Biologically inspired nanotechnology uses biological systems as the inspirations for technologies not yet created.[2] However, as with nanotechnology and biotechnology, bionanotechnology does have many potential ethical issues associated with it.

The most important objectives that are frequently found in nanobiology involve applying nanotools to relevant medical/biological problems and refining these applications. Developing new tools, such as peptoid nanosheets, for medical and biological purposes is another primary objective in nanotechnology. New nanotools are often made by refining the applications of the nanotools that are already being used. The imaging of native biomolecules, biological membranes, and tissues is also a major topic for the nanobiology researchers. Other topics concerning nanobiology include the use of cantilever array sensors and the application of nanophotonics for manipulating molecular processes in living cells.[3]

Recently, the use of microorganisms to synthesize functional nanoparticles has been of great interest. Microorganisms can change the oxidation state of metals. These microbial processes have opened up new opportunities for us to explore novel applications, for example, the biosynthesis of metal nanomaterials. In contrast to chemical and physical methods, microbial processes for synthesizing nanomaterials can be achieved in aqueous phase under gentle and environmentally benign conditions. This approach has become an attractive focus in current green bionanotechnology research towards sustainable development.[4]

The terms are often used interchangeably. When a distinction is intended, though, it is based on whether the focus is on applying biological ideas or on studying biology with nanotechnology. Bionanotechnology generally refers to the study of how the goals of nanotechnology can be guided by studying how biological "machines" work and adapting these biological motifs into improving existing nanotechnologies or creating new ones.[5][6] Nanobiotechnology, on the other hand, refers to the ways that nanotechnology is used to create devices to study biological systems.[7]

In other words, nanobiotechnology is essentially miniaturized biotechnology, whereas bionanotechnology is a specific application of nanotechnology. For example, DNA nanotechnology or cellular engineering would be classified as bionanotechnology because they involve working with biomolecules on the nanoscale. Conversely, many new medical technologies involving nanoparticles as delivery systems or as sensors would be examples of nanobiotechnology since they involve using nanotechnology to advance the goals of biology.

The definitions enumerated above will be utilized whenever a distinction between nanobio and bionano is made in this article. However, given the overlapping usage of the terms in modern parlance, individual technologies may need to be evaluated to determine which term is more fitting. As such, they are best discussed in parallel.

Most of the scientific concepts in bionanotechnology are derived from other fields. Biochemical principles that are used to understand the material properties of biological systems are central in bionanotechnology because those same principles are to be used to create new technologies. Material properties and applications studied in bionanoscience include mechanical properties(e.g. deformation, adhesion, failure), electrical/electronic (e.g. electromechanical stimulation, capacitors, energy storage/batteries), optical (e.g. absorption, luminescence, photochemistry), thermal (e.g. thermomutability, thermal management), biological (e.g. how cells interact with nanomaterials, molecular flaws/defects, biosensing, biological mechanisms s.a. mechanosensing), nanoscience of disease (e.g. genetic disease, cancer, organ/tissue failure), as well as computing (e.g. DNA computing). The impact of bionanoscience, achieved through structural and mechanistic analyses of biological processes at nanoscale, is their translation into synthetic and technological applications through nanotechnology.

Nano-biotechnology takes most of its fundamentals from nanotechnology. Most of the devices designed for nano-biotechnological use are directly based on other existing nanotechnologies. Nano-biotechnology is often used to describe the overlapping multidisciplinary activities associated with biosensors, particularly where photonics, chemistry, biology, biophysics, nano-medicine, and engineering converge. Measurement in biology using wave guide techniques, such as dual polarization interferometry, are another example.

Applications of bionanotechnology are extremely widespread. Insofar as the distinction holds, nanobiotechnology is much more commonplace in that it simply provides more tools for the study of biology. Bionanotechnology, on the other hand, promises to recreate biological mechanisms and pathways in a form that is useful in other ways.

Nanomedicine is a field of medical science whose applications are increasing more and more thanks to nanorobots and biological machines, which constitute a very useful tool to develop this area of knowledge. In the past years, researchers have done many improvements in the different devices and systems required to develop nanorobots. This supposes a new way of treating and dealing with diseases such as cancer; thanks to nanorobots, side effects of chemotherapy have been controlled, reduced and even eliminated, so some years from now, cancer patients will be offered an alternative to treat this disease instead of chemotherapy, which causes secondary effects such as hair lose, fatigue or nausea killing not only cancerous cells but also the healthy ones. At a clinical level, cancer treatment with nanomedicine will consist on the supply of nanorobots to the patient through an injection that will seek for cancerous cells leaving untouched the healthy ones. Patients that will be treated through nanomedicine will not notice the presence of this nanomachines inside them; the only thing that is going to be noticeable is the progressive improvement of their health.[8]

Nanobiotechnology (sometimes referred to as nanobiology) is best described as helping modern medicine progress from treating symptoms to generating cures and regenerating biological tissues. Three American patients have received whole cultured bladders with the help of doctors who use nanobiology techniques in their practice. Also, it has been demonstrated in animal studies that a uterus can be grown outside the body and then placed in the body in order to produce a baby. Stem cell treatments have been used to fix diseases that are found in the human heart and are in clinical trials in the United States. There is also funding for research into allowing people to have new limbs without having to resort to prosthesis. Artificial proteins might also become available to manufacture without the need for harsh chemicals and expensive machines. It has even been surmised that by the year 2055, computers may be made out of biochemicals and organic salts.[9]

Another example of current nanobiotechnological research involves nanospheres coated with fluorescent polymers. Researchers are seeking to design polymers whose fluorescence is quenched when they encounter specific molecules. Different polymers would detect different metabolites. The polymer-coated spheres could become part of new biological assays, and the technology might someday lead to particles which could be introduced into the human body to track down metabolites associated with tumors and other health problems. Another example, from a different perspective, would be evaluation and therapy at the nanoscopic level, i.e. the treatment of Nanobacteria (25-200nm sized) as is done by NanoBiotech Pharma.

While nanobiology is in its infancy, there are a lot of promising methods that will rely on nanobiology in the future. Biological systems are inherently nano in scale; nanoscience must merge with biology in order to deliver biomacromolecules and molecular machines that are similar to nature. Controlling and mimicking the devices and processes that are constructed from molecules is a tremendous challenge to face the converging disciplines of nanotechnology.[10] All living things, including humans, can be considered to be nanofoundries. Natural evolution has optimized the "natural" form of nanobiology over millions of years. In the 21st century, humans have developed the technology to artificially tap into nanobiology. This process is best described as "organic merging with synthetic." Colonies of live neurons can live together on a biochip device; according to research from Dr. Gunther Gross at the University of North Texas. Self-assembling nanotubes have the ability to be used as a structural system. They would be composed together with rhodopsins; which would facilitate the optical computing process and help with the storage of biological materials. DNA (as the software for all living things) can be used as a structural proteomic system - a logical component for molecular computing. Ned Seeman - a researcher at New York University - along with other researchers are currently researching concepts that are similar to each other.[11]

DNA nanotechnology is one important example of bionanotechnology.[12] The utilization of the inherent properties of nucleic acids like DNA to create useful materials is a promising area of modern research. Another important area of research involves taking advantage of membrane properties to generate synthetic membranes. Proteins that self-assemble to generate functional materials could be used as a novel approach for the large-scale production of programmable nanomaterials. One example is the development of amyloids found in bacterial biofilms as engineered nanomaterials that can be programmed genetically to have different properties.[13]Protein folding studies provide a third important avenue of research, but one that has been largely inhibited by our inability to predict protein folding with a sufficiently high degree of accuracy. Given the myriad uses that biological systems have for proteins, though, research into understanding protein folding is of high importance and could prove fruitful for bionanotechnology in the future.

Lipid nanotechnology is another major area of research in bionanotechnology, where physico-chemical properties of lipids such as their antifouling and self-assembly is exploited to build nanodevices with applications in medicine and engineering.[14]

This field relies on a variety of research methods, including experimental tools (e.g. imaging, characterization via AFM/optical tweezers etc.), x-ray diffraction based tools, synthesis via self-assembly, characterization of self-assembly (using e.g. dual polarization interferometry, recombinant DNA methods, etc.), theory (e.g. statistical mechanics, nanomechanics, etc.), as well as computational approaches (bottom-up multi-scale simulation, supercomputing).

Read this article:
Nanobiotechnology - Wikipedia, the free encyclopedia

CCNE | Northeastern University

Welcome!

The NIH-funded Northeastern University Center for Translational Cancer Nanomedicine (CTCN) was established in September 2010 as part of Phase 2 of the National Cancer Institute's Alliance for Nanotechnology in Cancer program with collaborators at Beth Israel Deaconess Hospital; Harvard Medical School; Tufts University, Auburn University and Nemucore Medical Innovations, Inc. The CTCN will utilize the support and facilities of the NU-based Center for High-rate Nanomanufacturing.

Northeastern University CTCN is one of only nine Centers of Cancer Nanotechnology Excellence (CCNE) across the country that has been awarded a five-year $13.5 million grant from the NCI Alliance in an open nationwide competition.

Building upon Northeasterns strong base of interdisciplinary nanotechnology research, the center will create new drugs that target cancer cells, advance technology on how nanocarriers deliver these drugs, and utilize imaging tools that track how they travel through the body. To enable the translation of these nanomedicines from bench to bedside, test batches of the nanopreparations will be developed for preclinical use to meet FDA standards for further clinical testing. The team will also develop semi-industrial and industrial processes to scale up their production.

Cross-disciplinary collaboration will enable integration of the fundamental biological knowledge base with physical science and engineering approaches for intimate involvement in scale-up and manufacture to rapidly translate bench research into animal testing and GMP production and to narrow the gap between discovery and development of anticancer therapeutics. The CTCN will concentrate on multifunctional, targeted devices that will bypass current biological barriers to delivery of multiple therapeutic agents at high local concentrations, with appropriate timing, directly to cancer cells.

Read more from the original source:
CCNE | Northeastern University

Bradley Nelson : Medical MicroRobotics and NanoMedicine : Teruko Yata Memorial Lecture in Robotics – Video


Bradley Nelson : Medical MicroRobotics and NanoMedicine : Teruko Yata Memorial Lecture in Robotics
Brad Nelson ETH Zrich April 16, 2015 While the futuristic vision of micro and nanorobotics is of intelligent machines that navigate throughout our bodies searching for and destroying disease,...

By: cmurobotics

Original post:
Bradley Nelson : Medical MicroRobotics and NanoMedicine : Teruko Yata Memorial Lecture in Robotics - Video

World Nanomedicine Universe Discussed by Kuick Research in New Market Study Recently Published at MarketPublishers.com

London, UK (PRWEB) April 09, 2015

Pharmacos are developing more effective drug delivery vehicles with the aid of nanotechnology. Lack of specificity induces undue drug wastage, reduced potency and undesirable side effects during treatment. This is a serious problem, especially when a patient is suffering from cancer, where the use of chemotherapy is part of therapeutic regimen. Easy modification, customisability and product cost are set to be the major factors determining the commercial success apart from their pharmacological benefits. Heavy investments in R&D are poised to assist in identifying effective nanoparticle-based drug delivery vehicles.

Manifold nanotechnology-based devices, medicines, chips and sensors are undergoing various stages of clinical trials. To date, there are 144 nanomedicines in clinical development. The majority of the nanomedicines are in pre-clinical development phase, followed by research phase. Only a limited number of products are in the market for few indications; currently, 13 nanomedicines are commercially available in the market. Their clinical pipeline is getting stronger year by year and novel incentives are being taken by pharmacos, but the rate of commercialisation of such products is slow and the market size is still limited. To surmount these barriers, the pace of R&D alongside market introduction needs to be increased in the offing. This would help generate a big chunk of revenues, however, it will take several years for nanomedicines to receive recognition as mainstream medicines. Judging by the pace at which they are growing, nanomedicines and associated medical technologies have bright future.

New research report Global Nanomedicine Market & Pipeline Insight 2015 developed by Kuick Research is now available at MarketPublishers.com.

Report Details:

Title: Global Nanomedicine Market & Pipeline Insight 2015 Published: April, 2015 Pages: 330 Price: US$ 2,400.00 https://marketpublishers.com/report/medical_devices/other_medical_devices/global-nanomedicine-market-pipeline-insight-2015.html

The report offers a detailed guide to the worldwide nanomedicine (nanotherapeutic) marketplace. It provides deep insights into the nanomedicine mechanism, an analysis of the present-day market scenario and an overview of the nanomedicine product pipeline globally. The research report limelights the market dynamics covering major market driving factors and challenges, as well as peeps into the future development path of the sector. The study reviews the nanomedicine product clinical pipeline by indication, phase and company; discusses marketed nanomedicines by company and disease indication; sheds light on the suspended and discontinued nanomedicine clinical pipeline. The research publication delves in the competitive landscape along with profiling the major players.

Report Highlights:

More new reports by the publisher can be found at Kuick Research page.

Excerpt from:
World Nanomedicine Universe Discussed by Kuick Research in New Market Study Recently Published at MarketPublishers.com

Nanomedicine Aims New Treatments at Cancer and Dangerous Wounds

Working on a very small scale lets scientists give drugs abilities denied to larger molecules

Harry Campbell

A molecule of DNA, holding its blueprint for life, is about 2.5 billionths of a meter in diameter. Scientists now have the ability to push and pull and build molecules of that size, as well as to create devices that sense them with unprecedented precision. These skills, gained through painstaking work during the past decade, are leading to new medicines and ways of diagnosing disease. In this special report, Scientific American examines what nanomedicine is bringing us now, what is coming soon and what the future will likely hold.

Right now chemotherapy is a major focus, and drugs that can slip into tumors because of their fine-grained construction are showing success where other medications fail patients [see Cancer Drugs Hit Their Mark, on page 44]. Diagnostic tests are also taking advantage of the small sizes, using probes of unusually shaped DNA that can detect cancer with remarkable accuracy. Next, in the near future, patients should be able to use smart bandages made with nano-sized molecules that enhance the healing of severe woundsor that signal doctors when healing is not happening [see A Smarter Bandage, on page 47]. Further out in time, researchers hope to attach tiny molecular motors to drugs, driving them through the bloodstream to their targets [see Launch the Nanobots! on page 50]. These are feats of nanoengineering, invisible to the eye, yet they could have an outsize effect on health.

SCIENTIFIC AMERICAN ONLINE Listen to a panel talk about nanomedicine advances at ScientificAmerican.com/apr2015/nanomed-advance

This article was originally published with the title "Small Wonders."

Already have an account? Sign In

Digital Issue $5.99

Scientific American Single Issue

Special Editions Volume 23, Issue 3s

Follow this link:
Nanomedicine Aims New Treatments at Cancer and Dangerous Wounds

Targeting Dangerous Inflammation Inside Artery Plaque

New York, NY (PRWEB) April 03, 2015

A research team showed that a nanotherapeutic medicine can halt the growth of artery plaque cells resulting in the fast reduction of the inflammation that may cause a heart attack, according to a study led by researchers from Icahn School of Medicine at Mount Sinai and published April 3 in Science Advances.

In just one week our novel cell proliferation-specific approach successfully suppressed atherosclerotic plaque growth and inflammation in mice engineered to mimic human vascular disease, says lead study author Jun Tang, MS, a PhD student at Icahn School of Medicine at Mount Sinai. Atherosclerosis is a major cause of death around the globe, and our nanomedicine strategy promises to offer a new way to reduce the number of heart attacks and strokes.

Building upon a recent discovery by their Massachusetts General Hospital research collaborators that macrophage proliferation dictates atherosclerosis-related vessel wall inflammation, the Mount Sinai research team applied a nanomedicine strategy with a molecule of good cholesterol, or high-density lipoprotein (HDL), a naturally occurring shuttle that travels from the liver to arteries. The research team took advantage of HDLs natural travel routes, loading it with the widely-used cholesterol-lowering medication called simvastatin (Zocor), which it shuttles into arterial walls.

The simvastatin-loaded nanoparticles, named S-HDL, work by targeting inflamed immune cells called macrophages within high-risk arterial plaques. These macrophages become laden with cholesterol and start proliferating in plaques, thereby increasing inflammation. This lipid-driven inflammatory process drives atherosclerotic plaque buildup and rupture leading to a heart attack or stroke.

Since patients hospitalized after heart attack or stroke have a high recurrence rate of up to 20 percent within three years, the researchers also tested the possible benefits of adding an eight-week regimen of oral statins after the one-week S-HDL nanotherapy. Mice study results showed superior long-term therapeutic benefits of a combined total nine-week S-HDL and oral statins regimen, by first rapidly reducing plaque inflammation and then continuously keeping it suppressed.

We envision our S-HDL nanomedicine therapy could be translated quickly to human clinical trials as a short-term infusion therapy for heart attack and stroke patients to rapidly suppress plaque inflammation, which can be sustained using current standard of care oral statin medication, says Zahi Fayad, PhD, Professor of Radiology and Director of the Translational and Molecular Imaging Institute at Icahn School of Medicine at Mount Sinai.

Nanotherapeutically inhibiting local macrophage proliferation is possible and we can effectively apply it to treat inflammation inside arteries. Collectively, our results demonstrate that the two-step regimen not only reduces macrophage accumulation but also reduces the expression of key genes linked to inflammation in this cell type, says senior study author Willem Mulder, PhD, Associate Professor of Radiology in the Translational and Molecular Imaging Institute at the Icahn School of Medicine at Mount Sinai.

Researchers look forward to translating their promising mice study findings to larger animal models and human clinical trials in the near future.

This study was funded by the NHLBI, NIH Program of Excellence in Nanotechnology (PEN) Award (HHSN368201000045C, to Z.A.F); NIH grants R01 HL118440 (W.J.M.M.), R01 HL125703 (W.J.M.M.), R01 CA155432 (W.J.M.M.), R01 EB009638 (Z.A.F.); Harold S. Geneen Charitable Trust Award (Z.A.F.); and American Heart Association Founders Affiliate Predoctoral Award (13PRE14350020-Founders, to J.T.)

More here:
Targeting Dangerous Inflammation Inside Artery Plaque

Alcor: FAQ – Technical – Cryonics: Alcor Life Extension …

Index - 1.General - 2.Technical - 3.Ethical - 4.Spiritual 5.Financial - 6.Membership - 7.Misinformed See also Scientists' Cryonics FAQ

Q: What are nanotechnology and nanomedicine?

A: Molecular nanotechnology is an emerging technology for manufacturing and manipulating matter at the molecular level. The concept was first suggested by Richard Feynman in 1959. The theoretical foundations of molecular nanotechnology were developed by K. Eric Drexler, Ralph Merkle, and others in the 1980s and 1990s. More recently the future medical applications of nanotechnology have been explored in detail by Robert Freitas in his books, Nanomedicine Vol. I (Basic Capabilities) and Nanomedicine Vol. IIA (Biocompatibility). These scientists have concluded that the mid to late 21st century will bring an explosion of amazing capabilities for analyzing and repairing injured cells and tissues, similar to the information processing revolution that is now occurring. These capabilities will include means for repairing and regenerating tissue after almost any injury provided that certain basic information remains intact. A non-technical overview of nanotechnology, including an excellent chapter on cryonics ("biostasis"), is available in Eric Drexler's book, Engines of Creation.

|top|

Q: Won't memories be lost if brain electrical activity stops?

A: Short-term memory depends on electrical activity. However long-term memory is based on durable molecular and structural changes within the brain. Quoting from the Textbook of Medical Physiology by Arthur C. Guyton (W.B. Saunders Company, Philadelphia, 1986):

We know that secondary memory does not depend on continued activity of the nervous system, because the brain can be TOTALLY INACTIVATED (emphasis added) by cooling, by general anesthesia, by hypoxia, by ischemia, or by any method, and yet secondary memories that have been previously stored are still retained when the brain becomes active once again.

This is known from direct clinical experience with surgical deep hypothermia, for which complete shutdown of brain electrical activity (electrocortical silence) is not only permissible, but desirable for good neurological outcome.

Follow this link:
Alcor: FAQ - Technical - Cryonics: Alcor Life Extension ...

Researchers Use Nanoparticles to Selectively Target Tumor Cells in Two Cancer Models

Contact Information

Available for logged-in reporters only

Newswise Nanoparticles hold great promise for cancer diagnostics and therapies, but only to the extent that they can be selectively guided to tumors and cancer cells. Leading a multidisciplinary group from Dartmouth College, Karl E. Griswold, PhD published, "Antibody-mediated targeting of iron oxide nanoparticles to the Folate receptor alpha increases tumor cell association in vitro and in vivo," in the International Journal of Nanomedicine, which follows closely the publication of "Tumor Cell Targeting by Iron Oxide Nanoparticles is Dominated by Different Factors in Vitro versus in Vivo," published in PLOS ONE.

"The ultimate utility of anti-cancer nanoparticle technologies will depend in large part on their capacity to selectively home to cancer cells," explained Griswold. "Achieving optimal targeting of nanoparticles in clinically relevant scenarios remains a key challenge for researchers in this space."

The in vivo environment is enormously complex, and there exists an extensive array of variables that determine distribution and cellular targeting of nanoparticles in the body. Homing of nanoparticles to tumors is dependent upon parameters such as nanoparticle size and composition, molecular targeting, surface chemistry, route of administration, cancer cell type, and tumor location.

Using carefully designed and rigorously validated functional nanomaterials, the Dartmouth team pursued a systematic study of those variables in xenograft models of both breast and ovarian human cancers. The in vivo studies showed that antibody targeted iron oxide nanoparticles accumulated in tumor tissues following systemic administration, whereas non-targeted nanoparticles failed to show any detectable tumor association. Importantly, molecular targeting not only localized nanoparticles to tumor masses, but it also resulted in nanoparticle internalization by the cancer cells at a microscopic level.

"This ability to accumulate iron oxide nanoparticles within cancerous cells following systemic administration has important implications for diagnostic and therapeutic applications of this particular type of magnetic nanomaterial," said Griswold.

The multidisciplinary Dartmouth studies utilized a broad variety of Dartmouth's Shared Resources for scientific investigation including the Dartmouth Transgenic and Genetic Construct Shared Resource; the Dartmouth Electron Microscope Facility; the Dartmouth Center for Cancer Nanotechnology Excellence, Toxicology, Biodistribution, and Pathology Core; the Dartmouth Trace Element Core; and the Dartmouth-Hitchcock Norris Cotton Cancer Center Pathology Translational Research Core. All of the Dartmouth Cores and Shared Resources are open to outside investigators by arrangement.

"In studying cancer at Dartmouth, we are committed to team science," said Griswold. "Solutions to problems like these require transdisciplinary collaborations operating at the complex interfaces between molecular biotechnology, nanotechnology, biology, and medicine."

Looking forward, the researchers are in the final stages of follow-up work synthesizing and characterizing more sophisticated iron oxide nanoparticles that are more capable of targeting the inherent heterogeneity of cell surface markers in tumor microenvironments.

See more here:
Researchers Use Nanoparticles to Selectively Target Tumor Cells in Two Cancer Models