Another Demonstration of Extended Longevity in Mice through Transplantation of Stem Cells

A couple of years ago, Chinese researchers demonstrated modestly extended longevity in mice through transplantation of mesenchymal stem cells. This sort of thing is a very brute-force approach to enhanced regeneration: it's more or less the least and first possible action that can be taken after developing the technology to extract, purify, and culture stem cells outside the body. Researchers are still in the midst of gathering a full understanding of what exactly goes on under the hood in the variety of circumstances and methodologies whereby tissue is flooded with additional stem cells. But as is demonstrated by the trials and stem cell clinics around the world, there is ample evidence that benefits are possible given the right approach.

Here is a more recent open access paper by a different research group that also shows extended longevity in mice with transplantation of stem cells; in this case cells from young donor mice given to old recipient mice:

Increasing evidence suggests that the loss of functional stem cells may be important in the aging process. Our experiments were originally aimed at testing the idea that, in the specific case of age-related osteoporosis, declining function of osteogenic precursor cells might be at least partially responsible.

To test this, aging female mice were transplanted with mesenchymal stem cells from aged or young male donors. We find that transplantation of young mesenchymal stem cells significantly slows the loss of bone density and, surprisingly, prolongs the life span of old mice. These observations lend further support to the idea that age-related diminution of stem cell number or function may play a critical role in age-related loss of bone density in aging animals and may be one determinant of overall longevity.

...

The mean life span of control mice was 765 days However, the mean life span for mice that received young BMSCs transplants was 890 days ... Overall, these results suggest that transplantation of BMSCs derived from young animals extends life span. However, it is not clear whether the prolonged lifespan may be associated with improved tissue regeneration.

The connection between attempting therapy for osteoporosis and resulting increases in longevity have shown up in other contexts - such as that bisphosphonate study that was reported a year ago or so - enough to make it a possible point of interest, and something to keep an eye out for in future research results. There's certainly no shortage of research groups working on osteoporosis or other bone issues with the use of mesenchymal stem cells. For example:

Source:
http://www.longevitymeme.org/newsletter/latest_rss_feed.cfm

More Cautiously Evaluating the Consequences of Excess Fat Tissue

Wealth, in the most general sense, is a blade of many edges. Let us consider food, for example, which has moved over the centuries of growing wealth from being expensive and unreliably supplied to its present state of being cheap and exceedingly reliable in supply in all the stable regions of the world. That has been a passage of stages: from the bootstrapping of early longevity gains and better land use in the 1700s, all the way through to the stunning advances in productivity that resulted from applications of the first wave of modern biotechnology in the 60s and 70s. Unfortunately we humans are not well adapted for an environment of abundant and cheap food: by following our instincts and ingrained preferences we wind up fat and sedentary, a state that causes significant harm to health and longevity.

This is one of those temporary issues, a matter of a handful of decades. Medical biotechnology will catch up to the new demands of the population, and at some point humans will learn to alter themselves such that there are no longer any detrimental consequences to overeating, or being fat, or being sedentary. That isn't so far away: perhaps fifty years at the outside. In the meanwhile there is willpower or there is a shorter, less healthy life. Your choice.

The data on what exactly excess body fat will do to you - on average, statistically speaking - has been growing over the past years. Fat is metabolically active, an eager and pushy partner in the feedback loops and controlling systems of your metabolism. A lot of what it does is bad in the long term: spurring chronic inflammation, for example. Even comparatively early in life, putting on the pounds and keeping them on for years at a time has a sizable impact on your risk of later suffering all of the most common age-related conditions. Failing to exercise appears to be just as bad in a whole different set of ways.

In any case, here is recently published research from a long-term study that adds yet more data on the costs of fat tissue - and thus the costs of the lifestyle choices needed to gain and maintain that fat tissue:

While some past studies have shown that persons carrying a few extra pounds in their 70s live longer than their thinner counterparts, a new study that measured subjects' weight at multiple points over a longer period of time reveals the opposite. Research from Adventist Health Studies recently published in the Journal of the American Geriatrics Society showed that men over 75 with a body mass index (BMI) greater than 22.3 had a 3.7-year shorter life expectancy, and women over 75 with a BMI greater than 27.4 had a 2.1-year shorter life expectancy. Generally, a BMI between 18.5 and 24.9 is considered normal weight, and a BMI of 25 to 29.9 is considered overweight. A BMI of 30 or more is considered obese.

Previous work in this area by others found a protective association for a high body weight among the elderly. Pramil N. Singh, DrPH, lead author of the paper and an associate professor in the School of Public Health at Loma Linda University, says the data from many past studies is problematic because only a single baseline measure of weight was taken, which does not account for weight changes or how weight changes affect life expectancy. Additionally, most past studies had mortality surveillance of fewer than 19 years, which analyses have shown to be an inadequate amount of time to study risks associated with weight.

"We had a unique opportunity to do 29 years of follow-up with a cohort that was also followed for mortality outcomes," Dr. Singh said. "Across this long period of time, we had multiple measures of body weight, which provided a more accurate assessment."

Human Uncoupling Proteins and Longevity

Uncoupling proteins are involved in the processes by which metabolism determines natural longevity through their effects on mitochondrial activity, and are of interest to calorie restriction researchers: "The brown fat specific UnCoupling Protein 1 (UCP1) is involved in thermogenesis, a process by which energy is dissipated as heat in response to cold stress and excess of caloric intake. Thermogenesis has potential implications for body mass control and cellular fat metabolism. In fact, in humans, the variability of the UCP1 gene is associated with obesity, fat gain and metabolism. Since regulation of metabolism is one of the key-pathways in lifespan extension, we tested the possible effects of UCP1 variability on survival. Two polymorphisms (A-3826G and C-3740A), falling in the upstream promoter region of UCP1, were analyzed in a sample of 910 subjects from southern Italy (475 women and 435 men; age range 40-109). By analyzing haplotype specific survival functions we found that the A-C haplotype favors survival in the elderly. Consistently, transfection experiments showed that the luciferase activity of the construct containing the A-C haplotype was significantly higher than that containing the G-A haplotype. Interestingly, the different UCP1 haplotypes responded differently to hormonal stimuli. The results we present suggest a correlation between the activity of UCP1 and human survival, indicating once again the intricacy of mechanisms involved in energy production, storage and consumption as the key to understanding human aging and longevity."

Link: http://www.ncbi.nlm.nih.gov/pubmed/21827845

The Correlation Between Species Lifespan and Mitochondrial Membrane Composition

Damage to mitochondrial membranes is an important feature of the complex process by which mitochondrial DNA damage contributes to aging. It is known that differences in membrane composition may be an important factor in species of unusual longevity, such as naked mole rats. Here is another open access study on this topic: "The cellular energy produced by mitochondria is a fundamental currency of life. However, the extent to which mitochondrial (mt) performance (power and endurance) is adapted to habitats and life-strategies of vertebrates is not well-understood. A global analysis of mt genomes revealed that hydrophobicity (HYD) of mt membrane proteins (MMPs) is much lower in terrestrial vertebrates than in fishes and shows a strong negative correlation with serine/threonine composition (STC). Here, we present evidence that this systematic feature of MMPs was crucial for the evolution of large terrestrial vertebrates with high aerobic capacity. An Arrhenius-type equation gave positive correlations between STC and maximum lifespan (MLS) in terrestrial vertebrates ... In particular, marked STC-increases in primates (especially hominoids) among placentals were associated with very high MLS-values. We connected these STC-increases in MMPs with greater stability of respiratory complexes." This sort of study should be viewed as supporting evidence for the importance of work on repairing mitochondrial damage - confirmation of the importance of mitochondria to aging and longevity.

Link: http://gbe.oxfordjournals.org/content/early/2011/08/10/gbe.evr079.abstract

Nuclear DNA Damage, Aging, and Stem Cells

Nuclear DNA damage accumulates with age, but is it a cause of aging? This open access paper illustrates why there is a question - as for many studies, the results do not point unambiguously in one direction or another. "Accumulation of DNA damage leading to adult stem cell exhaustion has been proposed to be a principal mechanism of aging. Here we tested this hypothesis in healthy individuals of different ages by examining unrepaired DNA double-strand breaks (DSBs) in hematopoietic stem/progenitor cells matured in their physiological microenvironment. ... The highest inter-individual variations for non-telomeric DNA damage were observed in middle-aged donors, [where] the individual DSB repair capacity appears to determine the extent of DNA damage accrual. However, analyzing different stem/progenitor subpopulations obtained from healthy elderly (>70 years), we observed an only modest increase in DNA damage accrual, [but] sustained DNA repair efficiencies, suggesting that healthy lifestyle may slow down the natural aging process. ... Based on these findings we conclude that age-related non-telomeric DNA damage accrual accompanies physiological stem cell aging in humans. Moreover, aging may alter the functional capacity of human stem cells to repair DSBs, thereby deteriorating an important genome protection mechanism leading to exceeding DNA damage accumulation. However, the great inter-individual variations in middle-aged individuals suggest that additional cell-intrinsic mechanisms and/or extrinsic factors contribute to the age-associated DNA damage accumulation." Meaning that nuclear DNA damage may or may not be a primary cause of aging, and may or may not be important in comparison to other factors.

Link: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049780/

Investigating the INDY Gene

The I'm Not Dead Yet (INDY) gene is one of the earlier longevity genes discovered by researchers in course of investigating the effects of calorie restriction. Here is a recent update: "It is known that excess calorie consumption leads to obesity, insulin resistance and increased mortality, whereas calorie restriction reduces accumulation of body fat and improves cellular energy balance and insulin action - reversing obesity and type 2 diabetes, delaying the aging process, and prolonging life in primates and many other species. It has also been shown in the past that reduced expression of the so-called 'INDY' gene in D. Melanogaster flies and C. elegans worms promotes longevity in a manner similar to calorie restriction. But until now, the cellular mechanism by which this happens was unknown. [Researchers] generated a mouse with the so-called 'INDY' gene deleted. Loss of the gene altered chemical levels in the cellular signaling network in a way that improved mitochondrial action in the liver, metabolism of fatty acids, and cellular energy transport. Overall, these traits protected the mice from diet-related accumulation of body fat and insulin resistance that evolve, as we age, into type 2 diabetes. Discovering how deletion of the INDY gene would impact mitochondrial metabolism in the liver was key, because that is the main organ where the INDY gene does its work."

Link: http://opac.yale.edu/news/article.aspx?id=8772

Using Lasers to Spur Stem Cells Into Action

A novel way to manipulate stem cells: "Though the heart is known to contain some stem cells, they have a very limited ability to repair damage caused by a heart attack [and] researchers have had to look elsewhere. One of the first efforts to use stem cells to reduce heart scarring involved harvesting them from the bone marrow and inserting them back into the heart muscle, close to the heart's blood supply, but this had limited success. Prof. Oron, who has long used low level lasers to stimulate stem cells to encourage cell survival and the formation of blood vessels after a heart attack, was inspired to test how laser treatments could also work to heal the heart. He and his fellow researchers tried different methods, including treating the heart directly with low level lasers during surgery, and 'shining' harvested stem cells before injecting them back into the body. But he was determined to find a simpler method. After a low-level laser was 'shined' into a person's bone marrow - an area rich in stem cells - the stem cells took to the blood stream, moving through the body and responding to the heart's signals of distress and harm ... Once in the heart, the stem cells used their healing qualities to reduce scarring and stimulate the growth of new arteries, leading to a healthier blood flow. To determine the success of this method, Prof. Oron performed the therapy on an animal model. Following the flow of bone marrow stem cells through the use of a fluorescent marker, the researchers saw an increase in stem cell population within the heart, specifically in the injured regions of the heart. The test group that received the shining treatment showed a vastly higher concentration of cells in the injured organ than those who had not been treated with the lasers."

Link: http://www.eurekalert.org/pub_releases/2011-08/afot-ta081011.php

Understanding Lycopene’s Benefits to Your Heart

A new study from South Korea revealed lycopene’s potential in promoting heart health by protecting the body against damage in the DNA and in enhancing the body’s antioxidant defenses.

A recent study conducted by researchers from South Korea revealed that daily supplementation of about 15 milligrams of lycopene for a period of eight weeks helps lower systolic blood pressure and reduces inflammatory processes related to cardiovascular events while simultaneously increasing the activity of a potent antioxidant that helps to reduce DNA damage that occurs in white blood cells.  The results of the study are found in the Atherosclerosis journal.

Yonsei University, South Korea’s Jong Ho Lee, the study’s lead researcher, along with his colleagues, enrolled 126 healthy men to participate in the study.  The average age was set at 34 and average BMI was at 24 kg/m2.  The participants were then randomly assigned in one of the three groups:  one group received 6 milligrams of lycopene supplements each day for eight weeks, another group was given 15 milligrams of lycopene supplements daily for the same period, while the other group received placebo treatment.

Results showed that SOD (super oxide dismutase) activity rose by 2.37 units/ml in the group that received 15 milligrams lycopene supplements while those who received 6 milligrams lycopene supplements only experienced a 1.73 units/ml increase. The group who receive placebo supplements exhibited decreased SOD activity.  SOD is a potent antioxidant that helps combat oxidative damage brought about by free radical activity.

The Other Health Benefits of Lycopene

Studies have shown the benefits of lycopene consumption especially when it comes to promoting a healthy prostate, heart skin, bones and blood pressure levels.  Because of this, lycopene is now being used in various products such as supplement, beverages and even beauty products. As a matter of fact, according to Mintel’s database of global new products, there were about 500 lycopene-based products that were launched between the year 2003 and 2009.

Aside from the health benefits mentioned above, here are more amazing benefits that lycopene can do for you:

  1. Lycopene is best known for reducing the risk of some types of cancer such as those of the prostate, breast, cervix, and the lungs. Its antioxidant property helps in neutralizing the activity of free radicals which has been tagged as the cause of most diseases that plague the human body.
  2. It can also lessen sun damage to the skin by about 35%.Even just a single cup of tomatoes on a daily basis can already counteract the ill-effects of the free radicals that are given off by the UVB and UVA rays of the sun. If you want to get higher amounts of beneficial lycopene from it, it is advised that you cook the tomatoes first since heat can liberate a greater amount of lycopene from the hard cell membranes of the plant.
  3. It can improve and make your skin look better and it also helps in purifying your blood. This in turn can help in lessening the number of pimples on your face.
  4. Studies have also suggested that regular lycopene consumption can be of great benefit to people with high cholesterol levels, or those with atherosclerosis.
  5. Ongoing studies are also being conducted as to lycopene’s role in the prevention of conditions such as cancers of the urinary tract, stomach, skin, pharynx, pancreas, ovaries, larynx and esophagus.  Others include rheumatoid arthritis, respiratory infection, periodontal diseases, Parkinson’s disease, pancreatitis, melanoma, mesothelioma, diabetes mellitus, cataracts and AIDS.  However, further studies are needed in order to truly establish lycopene’s role in reducing a person’s risk of these conditions.

Sources of Lycopene

Cooking can release lycopene from a lot of plants. But the most popular food sources that you can get a great amount of lycopene from would be ketchup, tomato sauce, tomato paste and the canned tomatoes – more so if it is from the organic kind. Here are some of the other major sources of lycopene aside from the tomatoes:

  • A cup of carrot juice
  • Four asparagus spears, cooked
  • A cup of baked beans
  • Tablespoon of salsa
  • A cup of raw watermelon
  • A cup of marinara sauce
  • A cup of vegetable beef soup

Natural Ways to Ensure a Healthy Heart

Aside from lycopene intake, there are a lot of other ways to ensure a healthy heart.  Your diet, physical activity and lifestyle could influence not just your heart’s health, but your overall health as well.  So I just cannot anymore emphasize the importance of living healthy.  Here are some natural ways which you can easily do to show that you love your heart, and your life:

  • Get sufficient sleep. When you lack sleep, you are most likely to develop high blood pressure.  This is according to the hypertension report published in the Journal of the American Heart Association. Sleep normally allows your heart to take things easy and let your blood pressure drop significantly after a stressful day has passed. Furthermore, sleep gives your body the rest that it needs and allows your body to recover and heal from damage caused by physical, emotional and environmental factors.
  • Eat more vegetables and fruits. Fruits and vegetables play a huge role in supplying your body and heart with considerable amount of vitamins, minerals and important nutrients that can protect your cells from possible damage caused by free radicals which are touted to be one of the major causes of heart failure.
  • Go easy on your coffee intake. Yes, coffee has been said to contain antioxidants but it is also very important that you limit caffeine intake since too much would reverse its effects. Its effects won’t enable you to sleep which, again, is very important to the body.
  • Lessen your salt intake. By doing this, you can cut down the risk of heart disease by 40% according to the studies made by the Department of Health. You must always opt for foods that are low processed and make it to only consume about five to six grams of a salt each day – and make sure it’s organic salt.
  • Get enough folic acid. According to a study published in the Journal of the American Medical Association, sufficient amounts of folic acid within the body helps to maintain healthy blood pressure levels. This, in turn, can also lead to a better heart condition for you to enjoy for the rest of your life.

Sources
nutraingredients.com
hubpages.com
dietbites.com
guardian.co.uk

Discuss this post in Frank Mangano’s forum!

CRTC1 in the Calorie Restriction Response

The investigation of the mechanisms of calorie restriction continues apace. Here, researchers "report for the first time that deactivation of a protein called CRTC1 in roundworms increases their lifespan, most likely mediating the effects of calorie restriction. Previously, researchers knew hunger promoted longevity by activating an enzyme called AMPK, which senses that food is scarce and pushes cells into a low energy state. ... We knew AMPK was a major energy sensor but didn't know what it was talking to. Our goal was to understand the genetic circuitry that registered that response. ... It was clear that one pathway that coordinated metabolism with growth in response to nutrients was AMPK signaling. Studies had also suggested that AMPK might regulate lifespan in worms. What was not known was what factors downstream of AMPK mediated those effects. ... they searched the genome of Caenorhabditis elegans for likely AMPK targets, and identified one suspect encoding a protein called CRTC1, which was expressed at the same time and place as AMPK. To determine if CRTC1 played any role in lifespan, the team fed worms an inhibitory RNA engineered to deplete them of CRTC1 protein. When they measured the worms' lifespan-normally about 3 weeks-they found that worms fed the anti-CRTC1 RNA lived a whopping 40% longer, suggesting that AMPK retards aging by antagonizing CRTC1 activity. ... AMPK deactivated CRTC1 by adding phosphates to a specific region of the CRTC1 protein, an effect equivalent to eliminating CRTC1 altogether. Likewise, when the worms were fed an inhibitory RNA depleting them of an enzyme that lops off the CRTC1 phosphates, they lived longer, showing that AMPK and the lopper - known to scientists as calcineurin - determine lifespan by controlling the extent to which CRTC1 is phosphorylated."

Link: http://www.newswise.com/articles/hungering-for-longevity-salk-scientists-identify-the-confluence-of-aging-signals

Synthetic Biology and the Extracellular Matrix

From the University of Bristol: "Synthetic biology is about improving our ability to engineer biology, and to engineer biology you have to understand the underlying chemistry. ... We look at natural molecules and ask, 'How does nature do this?' And then we take those key features and build them into synthetic molecules to mimic the natural ones. ... Specifically, Woolfson is trying to capture features of the materials that hold cells together and which provide the environment to turn collections of cells into tissues such as skin, liver and networks of nerves. This 'glue' is called the extracellular matrix (ECM). However, the ECM is made up of large, complicated molecules with lots of different chemistries, so Woolfson began to investigate whether it would be possible to build something similar to ECM, but out of much simpler and more chemically accessible materials. That was 10 years ago. Today he has developed nano-sized proteins that have been designed to 'self assemble' into long, spaghetti-like strings, which then become entangled to form a gel. ... The result is a hydrogel (a gel in which the liquid constituent is water) made up of these tiny, spaghetti-like strings of proteins which acts as a scaffold to support cell growth in much the same way as the ECM does."

View the Article Under Discussion: http://bristol.ac.uk/news/2010/6928.html

Read More Longevity Meme Commentary: http://www.longevitymeme.org/news/

The Challenge of Longevity

From QFinance: "Big business and governments are already grappling with the uncomfortable side effects of increasing longevity. According to actuaries, the present generation has gained the equivalent of 12 minutes an hour or a 20% increase in average lifespan by comparison with the previous generation. The impact of this is felt first and foremost in the pensions arena, with businesses having to run harder just to stand still as far as their pension scheme deficits are concerned. But it is felt too by governments across Europe as they struggle to pay out meaningful state pension benefits against the headwind imposed by the fact that the ratio of those in work to those on pension is getting more and more out of balance. The impact of increased longevity is felt too in the health systems, where the diseases and ailments of old age take an increasing toll on a country's medical resources. These problems might seem fairly intractable, or at least extremely difficult and challenging in their own right, but it could be just the tip of the iceberg, according to the renowned longevity specialist Dr Aubrey de Grey, Chief Scientist at the charity SENS, which specializes in promoting research that aims to 'defeat ageing.' Dr de Grey is famous for asserting that the first person to enjoy a four-digit lifespan is probably already in his or her middle years. Before I give a rapid summary of his reasoning - those interested in learning more can watch a video of one of his presentations at the SENS website - it is worth saying that if de Grey is right, then instead of exacerbating the pensions problem, as I suggested earlier, it will probably make the problem vanish like a puff of smoke. Provided society stays reasonably open, people will have more than enough time to acquire independent means. The magic of compound arithmetic will be very much in their favor. Start small, watch it grow, where's the hurry?"

View the Article Under Discussion: http://www.qfinance.com/blogs/anthony-harrington/2010/05/05/the-challenge-of-longevity

Read More Longevity Meme Commentary: http://www.longevitymeme.org/news/

CR Mimetics and the Definition of Insanity

From the SENS Foundation: "To date, all successful interventions into the biological aging process in experimental animals have entailed modulation of basic metabolic pathways, generally through genetic or dietary manipulation. Of these, the earliest, most well-studied, and arguably the most robust, is Calorie restriction (CR): the reduction in dietary energy intake, without compromise of essential nutrients. With few exceptions, CR retards the biological rate of aging in nearly every species and strain of organisms in which it has been tested, ranging from rotifers, through small multicellular invertebrates, and most extensively to laboratory rodents; and although inconclusive, recent evidence also supports its effectiveness in dogs and nonhuman primates. Moreover, while necessarily preliminary, a growing body of human research has reported that rigorous CR, when practiced by previously normal-weight adults, results in physiological, functional, and perhaps even structural changes consistent with its translation to the human case. ... But despite the initial attractiveness of the notion; its strong theoretical basis; the high level of scientific interest that it has garnered; the launching of biotech startups originating in CR mimetic research; and the popularization and commercial exploitation of the concept by the dietary supplement industry - despite all of these drivers, the ensuing decade and a half or more of CR mimetic research have thus far been fruitless. Initially-promising compounds have failed to extend lifespan, while surprising findings have preempted the further investigation of what might otherwise have been novel targets for CR mimetics."

View the Article Under Discussion: http://www.sens.org/node/777

Read More Longevity Meme Commentary: http://www.longevitymeme.org/news/

Ageing – Wikipedia, the free encyclopedia

Ageing, also spelled aging, is the process of becoming older. In the narrow sense, the term refers to biological ageing, especially of human beings and many animals (whereas for example bacteria, perennial plants and some simple animals are potentially immortal). In the broader sense, ageing can refer to single cells within an organism which have ceased dividing (cellular senescence) or to the population of a species (population ageing).

In humans, ageing represents the accumulation of changes in a human being over time,[1] encompassing physical, psychological, and social change. Reaction time, for example, may slow with age, while knowledge of world events and wisdom may expand. Ageing is among the greatest known risk factors for most human diseases:[2] of the roughly 150,000 people who die each day across the globe, about two thirds die from age-related causes.

The causes of ageing are unknown; current theories are assigned to the damage concept, whereby the accumulation of damage (such as DNA breaks or oxidised bases) may cause biological systems to fail, or to the programmed ageing concept, whereby internal processes (such as DNA telomere shortening) may cause ageing.

The discovery, in 1934, that calorie restriction can extend lifespan by 50% in rats has motivated research into delaying and preventing ageing.

Human beings and members of other species, especially animals, necessarily experience ageing and mortality. In contrast, many species can be considered immortal: for example, bacteria fission to produce daughter cells, strawberry plants grow runners to produce clones of themselves, and animals in the genus Hydra have a regenerative ability with which they avoid dying of old age.

Even within humans and other mortal species, there are arguably cells with the potential for immortality: cancer cells which have lost the ability to die when maintained in cell culture such as the HeLa cell line, and specific stem cells such as germ cells (producing ova and spermatozoa).[3] In artificial cloning, adult cells can be rejuvenated back to embryonic status and then used to grow a new tissue or animal without ageing.[4] Normal human cells however die after about 50 cell divisions in laboratory culture (the Hayflick Limit, discovered by Leonard Hayflick in 1961).

After a period of near perfect renewal (in humans, between 20 and 35 years of age), ageing is characterised by the declining ability to respond to stress, increasing homeostatic imbalance and the increased risk of disease. This currently irreversible series of changes inevitably ends in death.

A number of characteristic ageing symptoms are experienced by a majority or by a significant proportion of humans during their lifetimes.

Dementia becomes more common with age.[15] About 3% of people between the ages of 6574 have dementia, 19% between 75 and 84 and nearly half of those over 85 years of age.[16] The spectrum includes mild cognitive impairment and the neurodegenerative diseases of Alzheimer's disease, cerebrovascular disease, Parkinson's disease and Lou Gehrig's disease. Furthermore, many types of memory decline with ageing, but not semantic memory or general knowledge such as vocabulary definitions, which typically increases or remains steady until late adulthood[17] (see Ageing brain). Intelligence may decline with age, though the rate may vary depending on the type and may in fact remain steady throughout most of the lifespan, dropping suddenly only as people near the end of their lives. Individual variations in rate of cognitive decline may therefore be explained in terms of people having different lengths of life.[18] There are changes to the brain: after 20 years of age there is a 10% reduction each decade in the total length of the brain's myelinated axons.[19]

Age can result in visual impairment, whereby non-verbal communication is reduced,[20] which can lead to isolation and possible depression. Macular degeneration causes vision loss and increases with age, affecting nearly 12% of those above the age of 80.[21] This degeneration is caused by systemic changes in the circulation of waste products and by growth of abnormal vessels around the retina.[22]

A distinction can be made between "proximal ageing" (age-based effects that come about because of factors in the recent past) and "distal ageing" (age-based differences that can be traced back to a cause early in person's life, such as childhood poliomyelitis).[18]

Ageing is among the greatest known risk factors for most human diseases.[2] Of the roughly 150,000 people who die each day across the globe, about two thirds100,000 per daydie from age-related causes. In industrialised nations, the proportion is higher, reaching 90%.[23][24][25]

At present, the biological basis of ageing is unknown, even in relatively simple and short-lived organisms. Less still is known about mammalian ageing, in part due to the much longer lives in even small mammals such as the mouse (around 3 years). A primary model organism for studying ageing is the nematode C. elegans, thanks to its short lifespan of 23 weeks, the ability to easily perform genetic manipulations or suppress gene activity with RNA interference, and other factors.[26] Most known mutations and RNA interference targets that extend lifespan were first discovered in C. elegans.[27]

Factors that are proposed to influence biological ageing[28] fall into two main categories, programmed and damage-related. Programmed factors follow a biological timetable, perhaps a continuation of the one that regulates childhood growth and development. This regulation would depend on changes in gene expression that affect the systems responsible for maintenance, repair and defence responses. Damage-related factors include internal and environmental assaults to living organisms that induce cumulative damage at various levels.[29]

There are three main metabolic pathways which can influence the rate of ageing:

It is likely that most of these pathways affect ageing separately, because targeting them simultaneously leads to additive increases in lifespan.[31]

The rate of ageing varies substantially across different species, and this, to a large extent, is genetically based. For example, numerous perennial plants ranging from strawberries and potatoes to willow trees typically produce clones of themselves by vegetative reproduction and are thus potentially immortal, while annual plants such as wheat and watermelons die each year and reproduce by sexual reproduction. In 2008 it was discovered that inactivation of only two genes in the annual plant Arabidopsis thaliana leads to its conversion into a potentially immortal perennial plant.[32]

Clonal immortality apart, there are certain species whose individual lifespans stand out among Earth's life-forms, including the bristlecone pine at 5062 years[33] (however Hayflick states that the bristlecone pine has no cells older than 30 years), invertebrates like the hard clam (known as quahog in New England) at 508 years,[34] the Greenland shark at 400 years,[35] fish like the sturgeon and the rockfish, and the sea anemone[36] and lobster.[37][38] Such organisms are sometimes said to exhibit negligible senescence.[39] The genetic aspect has also been demonstrated in studies of human centenarians.

In laboratory settings, researchers have demonstrated that selected alterations in specific genes can extend lifespan quite substantially in yeast and roundworms, less so in fruit flies and less again in mice. Some of the targeted genes have homologues across species and in some cases have been associated with human longevity.[40]

Caloric restriction and exercise are two ways to activate autophagy and inhibit mTOR which can help resolve common age-related health problems.[citation needed]

Caloric restriction substantially affects lifespan in many animals, including the ability to delay or prevent many age-related diseases.[80] Typically, this involves caloric intake of 6070% of what an ad libitum animal would consume, while still maintaining proper nutrient intake.[80] In rodents, this has been shown to increase lifespan by up to 50%;[81] similar effects occur for yeast and Drosophila.[80] No lifespan data exist for humans on a calorie-restricted diet,[54] but several reports support protection from age-related diseases.[82][83] Two major ongoing studies on rhesus monkeys initially revealed disparate results; while one study, by the University of Wisconsin, showed that caloric restriction does extend lifespan,[84] the second study, by the National Institute on Ageing (NIA), found no effects of caloric restriction on longevity.[85] Both studies nevertheless showed improvement in a number of health parameters. Notwithstanding the similarly low calorie intake, the diet composition differed between the two studies (notably a high sucrose content in the Wisconsin study), and the monkeys have different origins (India, China), initially suggesting that genetics and dietary composition, not merely a decrease in calories, are factors in longevity.[54] However, in a comparative analysis in 2014, the Wisconsin researchers found that the allegedly non-starved NIA control monkeys in fact are moderately underweight when compared with other monkey populations, and argued this was due to the NIA's apportioned feeding protocol in contrast to Wisconsin's truly unrestricted ad libitum feeding protocol. [86] They conclude that moderate calorie restriction rather than extreme calorie restriction is sufficient to produce the observed health and longevity benefits in the studied rhesus monkeys.[87]

In his book How and Why We Age, Hayflick says that caloric restriction may not be effective in humans, citing data from the Baltimore Longitudinal Study of Aging which shows that being thin does not favour longevity.[need quotation to verify][88] Similarly, it is sometimes claimed that moderate obesity in later life may improve survival, but newer research has identified confounding factors such as weight loss due to terminal disease. Once these factors are accounted for, the optimal body weight above age 65 corresponds to a leaner body mass index of 23 to 27.[89]

Alternatively, the benefits of dietary restriction can also be found by changing the macro nutrient profile to reduce protein intake without any changes to calorie level, resulting in similar increases in longevity.[90][91] Dietary protein restriction not only inhibits mTOR activity but also IGF-1, two mechanisms implicated in ageing.[52] Specifically, reducing leucine intake is sufficient to inhibit mTOR activity, achievable through reducing animal food consumption.[92][93]

The Mediterranean diet is credited with lowering the risk of heart disease and early death.[94][95] The major contributors to mortality risk reduction appear to be a higher consumption of vegetables, fish, fruits, nuts and monounsaturated fatty acids, i.e., olive oil.[96]

The amount of sleep has an impact on mortality. People who live the longest report sleeping for six to seven hours each night.[97][98] Lack of sleep (<5 hours) more than doubles the risk of death from cardiovascular disease, but too much sleep (>9 hours) is associated with a doubling of the risk of death, though not primarily from cardiovascular disease.[99] Sleeping more than 7 to 8 hours per day has been consistently associated with increased mortality, though the cause is probably other factors such as depression and socioeconomic status, which would correlate statistically.[100] Sleep monitoring of hunter-gatherer tribes from Africa and from South America has shown similar sleep patterns across continents: their average sleeping duration is 6.4 hours (with a summer/winter difference of 1 hour), afternoon naps (siestas) are uncommon, and insomnia is very rare (tenfold less than in industrial societies).[101]

Physical exercise may increase life expectancy.[102] People who participate in moderate to high levels of physical exercise have a lower mortality rate compared to individuals who are not physically active.[103] Moderate levels of exercise have been correlated with preventing aging and improving quality of life by reducing inflammatory potential.[104] The majority of the benefits from exercise are achieved with around 3500 metabolic equivalent (MET) minutes per week.[105] For example, climbing stairs 10 minutes, vacuuming 15 minutes, gardening 20 minutes, running 20 minutes, and walking or bicycling for 25 minutes on a daily basis would together achieve about 3000 MET minutes a week.[105]

Avoidance of chronic stress (as opposed to acute stress) is associated with a slower loss of telomeres in most but not all studies,[106][107] and with decreased cortisol levels. A chronically high cortisol level compromises the immune system, causes cardiac damage/arterosclerosis and is associated with facial ageing, and the latter in turn is a marker for increased morbidity and mortality.[108][109] Stress can be countered by social connection, spirituality, and (for men more clearly than for women) married life, all of which are associated with longevity.[110][111][112]

The following drugs and interventions have been shown to retard or reverse the biological effects of ageing in animal models, but none has yet been proven to do so in humans.

Evidence in both animals and humans suggests that resveratrol may be a caloric restriction mimetic.[113]

As of 2015 metformin was under study for its potential effect on slowing ageing in the worm C.elegans and the cricket.[114] Its effect on otherwise healthy humans is unknown.[114]

Rapamycin was first shown to extend lifespan in eukaryotes in 2006 by Powers et al. who showed a dose-responsive effect of rapamycin on lifespan extension in yeast cells.[115] In a 2009 study, the lifespans of mice fed rapamycin were increased between 28 and 38% from the beginning of treatment, or 9 to 14% in total increased maximum lifespan. Of particular note, the treatment began in mice aged 20 months, the equivalent of 60 human years.[116] Rapamycin has subsequently been shown to extend mouse lifespan in several separate experiments,[117][118] and is now being tested for this purpose in nonhuman primates (the marmoset monkey).[119]

Cancer geneticist Ronald A. DePinho and his colleagues published research in mice where telomerase activity was first genetically removed. Then, after the mice had prematurely aged, they restored telomerase activity by reactivating the telomerase gene. As a result, the mice were rejuvenated: Shrivelled testes grew back to normal and the animals regained their fertility. Other organs, such as the spleen, liver, intestines and brain, recuperated from their degenerated state. "[The finding] offers the possibility that normal human ageing could be slowed by reawakening the enzyme in cells where it has stopped working" says Ronald DePinho. However, activating telomerase in humans could potentially encourage the growth of tumours.[120]

Most known genetic interventions in C. elegans increase lifespan by 1.5 to 2.5-fold. As of 2009[update], the record for lifespan extension in C. elegans is a single-gene mutation which increases adult survival by tenfold.[27] The strong conservation of some of the mechanisms of ageing discovered in model organisms imply that they may be useful in the enhancement of human survival. However, the benefits may not be proportional; longevity gains are typically greater in C. elegans than fruit flies, and greater in fruit flies than in mammals. One explanation for this is that mammals, being much longer-lived, already have many traits which promote lifespan.[27]

Some research effort is directed to slow ageing and extend healthy lifespan.[121][122][123]

The US National Institute on Aging currently funds an intervention testing programme, whereby investigators nominate compounds (based on specific molecular ageing theories) to have evaluated with respect to their effects on lifespan and age-related biomarkers in outbred mice.[124] Previous age-related testing in mammals has proved largely irreproducible, because of small numbers of animals and lax mouse husbandry conditions.[citation needed] The intervention testing programme aims to address this by conducting parallel experiments at three internationally recognised mouse ageing-centres, the Barshop Institute at UTHSCSA, the University of Michigan at Ann Arbor and the Jackson Laboratory.

Several companies and organisations, such as Google Calico, Human Longevity, Craig Venter, Gero,[125]SENS Research Foundation, and Science for Life Extension in Russia,[126] declared stopping or delaying ageing as their goal.

Prizes for extending lifespan and slowing ageing in mammals exist. The Methuselah Foundation offers the Mprize. Recently, the $1 Million Palo Alto Longevity Prize was launched. It is a research incentive prize to encourage teams from all over the world to compete in an all-out effort to "hack the code" that regulates our health and lifespan. It was founded by Joon Yun.[127][128][129][130][131]

Different cultures express age in different ways. The age of an adult human is commonly measured in whole years since the day of birth. Arbitrary divisions set to mark periods of life may include: juvenile (via infancy, childhood, preadolescence, adolescence), early adulthood, middle adulthood, and late adulthood. More casual terms may include "teenagers," "tweens," "twentysomething", "thirtysomething", etc. as well as "vicenarian", "tricenarian", "quadragenarian", etc.

Most legal systems define a specific age for when an individual is allowed or obliged to do particular activities. These age specifications include voting age, drinking age, age of consent, age of majority, age of criminal responsibility, marriageable age, age of candidacy, and mandatory retirement age. Admission to a movie for instance, may depend on age according to a motion picture rating system. A bus fare might be discounted for the young or old. Each nation, government and non-governmental organisation has different ways of classifying age. In other words, chronological ageing may be distinguished from "social ageing" (cultural age-expectations of how people should act as they grow older) and "biological ageing" (an organism's physical state as it ages).[132]

In a UNFPA report about ageing in the 21st century, it highlighted the need to "Develop a new rights-based culture of ageing and a change of mindset and societal attitudes towards ageing and older persons, from welfare recipients to active, contributing members of society."[133] UNFPA said that this "requires, among others, working towards the development of international human rights instruments and their translation into national laws and regulations and affirmative measures that challenge age discrimination and recognise older people as autonomous subjects."[133] Older persons make contributions to society including caregiving and volunteering. For example, "A study of Bolivian migrants who [had] moved to Spain found that 69% left their children at home, usually with grandparents. In rural China, grandparents care for 38% of children aged under five whose parents have gone to work in cities."[133]

Population ageing is the increase in the number and proportion of older people in society. Population ageing has three possible causes: migration, longer life expectancy (decreased death rate) and decreased birth rate. Ageing has a significant impact on society. Young people tend to have fewer legal privileges (if they are below the age of majority), they are more likely to push for political and social change, to develop and adopt new technologies, and to need education. Older people have different requirements from society and government, and frequently have differing values as well, such as for property and pension rights.[134]

In the 21st century, one of the most significant population trends is ageing.[135] Currently, over 11% of the world's current population are people aged 60 and older and the United Nations Population Fund (UNFPA) estimates that by 2050 that number will rise to approximately 22%.[133] Ageing has occurred due to development which has enabled better nutrition, sanitation, health care, education and economic well-being. Consequently, fertility rates have continued to decline and life expectancy have risen. Life expectancy at birth is over 80 now in 33 countries. Ageing is a "global phenomenon," that is occurring fastest in developing countries, including those with large youth populations, and poses social and economic challenges to the work which can be overcome with "the right set of policies to equip individuals, families and societies to address these challenges and to reap its benefits."[136]

As life expectancy rises and birth rates decline in developed countries, the median age rises accordingly. According to the United Nations, this process is taking place in nearly every country in the world.[137] A rising median age can have significant social and economic implications, as the workforce gets progressively older and the number of old workers and retirees grows relative to the number of young workers. Older people generally incur more health-related costs than do younger people in the workplace and can also cost more in worker's compensation and pension liabilities.[138] In most developed countries an older workforce is somewhat inevitable. In the United States for instance, the Bureau of Labor Statistics estimates that one in four American workers will be 55 or older by 2020.[138]

Among the most urgent concerns of older persons worldwide is income security. This poses challenges for governments with ageing populations to ensure investments in pension systems continues in order to provide economic independence and reduce poverty in old age. These challenges vary for developing and developed countries. UNFPA stated that, "Sustainability of these systems is of particular concern, particularly in developed countries, while social protection and old-age pension coverage remain a challenge for developing countries, where a large proportion of the labour force is found in the informal sector."[133]

The global economic crisis has increased financial pressure to ensure economic security and access to health care in old age. In order to elevate this pressure "social protection floors must be implemented in order to guarantee income security and access to essential health and social services for all older persons and provide a safety net that contributes to the postponement of disability and prevention of impoverishment in old age."[133]

It has been argued that population ageing has undermined economic development.[139] Evidence suggests that pensions, while making a difference to the well-being of older persons, also benefit entire families especially in times of crisis when there may be a shortage or loss of employment within households. A study by the Australian Government in 2003 estimated that "women between the ages of 65 and 74 years contribute A$16 billion per year in unpaid caregiving and voluntary work. Similarly, men in the same age group contributed A$10 billion per year."[133]

Due to increasing share of the elderly in the population, health care expenditures will continue to grow relative to the economy in coming decades. This has been considered as a negative phenomenon and effective strategies like labour productivity enhancement should be considered to deal with negative consequences of ageing.[140]

In the field of sociology and mental health, ageing is seen in five different views: ageing as maturity, ageing as decline, ageing as a life-cycle event, ageing as generation, and ageing as survival.[141] Positive correlates with ageing often include economics, employment, marriage, children, education, and sense of control, as well as many others. The social science of ageing includes disengagement theory, activity theory, selectivity theory, and continuity theory. Retirement, a common transition faced by the elderly, may have both positive and negative consequences.[142] As cyborgs currently are on the rise some theorists argue there is a need to develop new definitions of ageing and for instance a bio-techno-social definition of ageing has been suggested.[143]

With age inevitable biological changes occur that increase the risk of illness and disability. UNFPA states that,[136]

"A life-cycle approach to health care one that starts early, continues through the reproductive years and lasts into old age is essential for the physical and emotional well-being of older persons, and, indeed, all people. Public policies and programmes should additionally address the needs of older impoverished people who cannot afford health care."

Many societies in Western Europe and Japan have ageing populations. While the effects on society are complex, there is a concern about the impact on health care demand. The large number of suggestions in the literature for specific interventions to cope with the expected increase in demand for long-term care in ageing societies can be organised under four headings: improve system performance; redesign service delivery; support informal caregivers; and shift demographic parameters.[144]

However, the annual growth in national health spending is not mainly due to increasing demand from ageing populations, but rather has been driven by rising incomes, costly new medical technology, a shortage of health care workers and informational asymmetries between providers and patients.[145] A number of health problems become more prevalent as people get older. These include mental health problems as well as physical health problems, especially dementia.

It has been estimated that population ageing only explains 0.2 percentage points of the annual growth rate in medical spending of 4.3% since 1970. In addition, certain reforms to the Medicare system in the United States decreased elderly spending on home health care by 12.5% per year between 1996 and 2000.[146]

Positive self-perception of health has been correlated with higher well-being and reduced mortality in the elderly.[147][148] Various reasons have been proposed for this association; people who are objectively healthy may naturally rate their health better than that of their ill counterparts, though this link has been observed even in studies which have controlled for socioeconomic status, psychological functioning and health status.[149] This finding is generally stronger for men than women,[148] though this relationship is not universal across all studies and may only be true in some circumstances.[149]

As people age, subjective health remains relatively stable, even though objective health worsens.[150] In fact, perceived health improves with age when objective health is controlled in the equation.[151] This phenomenon is known as the "paradox of ageing." This may be a result of social comparison;[152] for instance, the older people get, the more they may consider themselves in better health than their same-aged peers.[153] Elderly people often associate their functional and physical decline with the normal ageing process.[154][155]

The concept of successful ageing can be traced back to the 1950s and was popularised in the 1980s. Traditional definitions of successful ageing have emphasised absence of physical and cognitive disabilities.[156] In their 1987 article, Rowe and Kahn characterised successful ageing as involving three components: a) freedom from disease and disability, b) high cognitive and physical functioning, and c) social and productive engagement.[157]

The ancient Greek dramatist Euripides (5th century BC) describes the multiply-headed mythological monster Hydra as having a regenerative capacity which makes it immortal, which is the historical background to the name of the biological genus Hydra. The Book of Job (c. 6th century BC) describes human lifespan as inherently limited and makes a comparison with the innate immortality that a felled tree may have when undergoing vegetative regeneration.[158]

Originally posted here:
Ageing - Wikipedia, the free encyclopedia

The Million Year Life Span, Revisited

An old Fight Aging! post is dusted off, rewritten, and published at h+ Magazine: "I'm not going to try to convince you that the foreseeable future is a wondrous place: either you accept the implications of the present rate of technological progress towards everything allowed by the laws of physics, in which case you've probably thought this all through at some point, or you don't. Life, space travel, artificial intelligence, the building blocks of matter: we'll have made large inroads into bending these all to our will within another half century. Many of us will live to see it even without the benefits of medical technologies yet to come: growing up without the internet in a 1960s or 1970s urban area will be the new 1900s farmboy youth come 2040. Just like the oldest old today, we will be immigrants from a strange and primitive near-past erased by progress, time travelers in our own lifetimes. A century is an exceptional life for a human, but far greater spans of years will be made possible by the technologies of the 21st century. I'll plant a flag way out there on the field and claim a million years ... Despite being out there, the million year life span is not an unsupported pipe dream. Living for a million years is a goal that can be envisaged in some detail today: the steps from here to there laid out, the necessary research and development plans outlined, and the whole considered within the framework of what is permissible under the laws of physics, and what the research community believes can be achieved within the next 20, 50, or 100 years."

Link: http://hplusmagazine.com/2011/08/19/the-million-year-life-span/

Source:
http://www.longevitymeme.org/newsletter/latest_rss_feed.cfm

A Profile of the Halcyon Molecular Founders

This is a UK press article on Halcyon Molecular, one of the new companies that has emerged from the pro-engineered-longevity community in recent years. You might also look back in the Fight Aging! archives for more on the views of the founders: "Even by Silicon Valley standards, the grand design drawn up by William and Michael Andregg is hugely ambitious. Halcyon Molecular, the company that the brothers founded in 2008, is developing a way to sequence the human genome - and thus unlock the deepest secrets of DNA - faster and cheaper than ever before. ... William is 29, Michael just a year older, and both are college drop-outs - but given Silicon Valley's impressive track record for nurturing and funding obsessive, unconventional young innovators, their age is hardly unusual. The surprise is the long-term mission of Halcyon Molecular: to solve "the biggest challenge humans can individually face - disease and mortality", as the mission-statement poster in their office reception says. Put another way, they're supercharging the effort to map life's biological code in almost unimaginable digital detail and, by doing so, ultimately, to attempt to conquer death itself." The difference between the here and now and 20 years ago is that you declare your plans to defeat aging and age-related death and both be taken seriously and raise large sums of money for research and development, both inside and outside the scientific community. There has been a sea change in attitudes towards engineered longevity as a goal, and that is one of the reasons that significant progress will be made in the years ahead: things happen when people start earnestly working to make them happen.

Link: http://www.independent.co.uk/life-style/gadgets-and-tech/news/2335404.html

Source:
http://www.longevitymeme.org/newsletter/latest_rss_feed.cfm

Checking Up on Sirtris

So what is Sirtris up to these days? The startup was founded to investigate a line of calorie restriction mimetic compounds based on sirtuin biochemistry, and acquired for a very large sum by GlaxoSmithKline. The hope was that something to modestly slow aging would emerge - though even if so, development would be sidelined into making a therapy for diabetes or something similar, as the FDA outright forbids the commercial development of therapies to treat aging. A sad state of affairs in the land once known and the land of the free, to be sure, but it is what is.

Unfortunately for Sirtris, though not for their early investors, little of practical use has so far emerged from their work. It looks very much like the best case end result will indeed be something like a drug candidate to alleviate some of the consequences of obesity, diabetes or metabolic syndrome, all conditions that the vast majority of sufferers could have avoided through leading a healthier lifestyle, and could still reverse by leading a healthier lifestyle. Given the state of the world today, a medicine like that may yet make a great deal of money for GlaxoSmithKline, but it's not going to do anything of significance for human life spans. So, on the whole, the money poured into Sirtris looks like a failure wearing the clothes of success - and the more so because a bunch of people are going to see that researchers and investors made out like bandits from the deal and follow the same path, rather than trying to do something more ambitious and more useful.

Sirtris has been in the news again of late, with the completion of the latest study on the drug candidate SRT1720. This one doesn't appear to do what was originally thought - manipulate sirtuins in beneficial ways - but it does appear to be protective in obese mice. I see more optimism in the press coverage than is merited by the results, I think; a cynic might write that off to the size of the budget and the sophistication of the public relations crew at GlaxoSmithKline.

Longer Lives for Obese Mice, With Hope for Humans of All Sizes

Sustaining the flickering hope that human aging might somehow be decelerated, researchers have found they can substantially extend the average life span of obese mice with a specially designed drug. The drug, SRT-1720, protects the mice from the usual diseases of obesity by reducing the amount of fat in the liver and increasing sensitivity to insulin.

A Drug to Live Longer? Yes! (But Only If You're a Fat Mouse)

In the new study, SRT-1720 appeared to give obese mice the physiology of much leaner animals, which spared them from some of the negative health effects of excess weight. But the scientists note that while these mice lived longer than untreated obese mice, they didn't live nearly as long as untreated, normal-weight animals. Further, when the researchers looked at the maximum life span of the SRT-1720-treated fat mice, it wasn't much different from that of untreated obese mice. That means that the drug may just help animals enjoy more of whatever life they have, rather than actually extending it by any significant amount.

Source:
http://www.longevitymeme.org/newsletter/latest_rss_feed.cfm

An Update on the SENS Foundation Academic Initiative

The SENS Foundation Academic Initiative is a long-term project aimed at helping to build the research community of tomorrow - one interested in the repair and reversal of aging, rather than a next generation that is only interested in slowing down aging a little via manipulation of metabolism, a simple repeat of today's research community. Here is an update from the Foundation: "The SENS Foundation Academic Initiative's new structure is actively in the process of being implemented, and involves a number of significant changes. Among these are the separation of the Initiative into branches, an updated membership system that allows students to become involved more easily and in more ways, the creation of volunteer committees, and the addition of outreach projects to the Initiative's activities. ... There will be three branches: Research, Outreach, and Education. The Research branch will be focused on the actual accomplishment of scientific research. This research will always be done with an eye to publication, but its most important function will be to provide our students with learning experiences, to help them develop into career scientists. The Outreach branch will be focused on spreading the word about the Academic Initiative and about the SENS Foundation, while the Education branch will be focused on educating students about science and SENS. ... While the Academic Initiative has long helped students to complete research projects, it has not done much in the past to encourage students to be advocates of the Initiative and the SENS Foundation. This will change with the implementation of outreach projects. These will generally be simple, off-the-shelf projects that students can finish in an afternoon, such as printing fliers from a pre-made template and distributing them at their university."

Link: http://sens.org/node/2345

Source:
http://www.longevitymeme.org/newsletter/latest_rss_feed.cfm

On Mitochondrial Function in Ames Dwarf Mice

An open access paper on the biology of one of the longest-lived engineered mouse species: "The age-associated decline in tissue function has been attributed to ROS-mediated oxidative damage due to mitochondrial dysfunction. The long-lived Ames dwarf mouse exhibits resistance to oxidative stress, a physiological characteristic of longevity. It is not known, however, whether there are differences in the electron transport chain (ETC) functions in Ames tissues that are associated with their longevity. In these studies we analyzed enzyme activities of ETC complexes, CI-CV and the coupled CI-CII and CII-CIII activities of mitochondria from several tissues of young, middle aged and old Ames dwarf mice and their corresponding wild type controls to identify potential mitochondrial prolongevity functions. Our studies indicate that post-mitotic heart and skeletal muscle from Ames and wild-type mice show similar changes in ETC complex activities with aging, with the exception of complex IV. Furthermore, the kidney, a slowly proliferating tissue, shows dramatic differences in ETC functions unique to the Ames mice. Our data show that there are tissue specific mitochondrial functions that are characteristic of certain tissues of the long-lived Ames mouse. We propose that this may be a factor in the determination of extended lifespan of dwarf mice."

Link: http://impactaging.com/papers/v3/n8/full/100357.html

Source:
http://www.longevitymeme.org/newsletter/latest_rss_feed.cfm

The Next Five Years Will Be a Transformative Period in Tissue Engineering

Looking at the near time, it seems that the next five years will see the tissue engineering community move from a few trials and some impressive demonstrations to real, commercialized work available in a scattering of clinics. Few of those clinics will be in the US, of course, as the FDA will add a cost of years and vast sums through the entirely unnecessary process of going from "can do" to "can do and allowed to do" - but the capabilities will exist. Take this, for example:

Stem cell researchers in Hong Kong and the United States are trying to grow spare parts for the human heart that may be ready for tests on people within five years ... When you get a heart attack, there is a small time window for a cure when the damage is still small. You can cure with a patch, a small tissue, so you won't progress to late stage heart failure ... The team will use approved human embryonic stem cell lines to build these human heart muscle strips, as well as [biological pacemaker tissues] for people with arrhythmia, or irregular heart beat.

The team plans first to transplant these muscle strips and pacemakers into pigs, and, if successful, to move to human clinical trials where they will transplant parts of the heart that are grown using the patients' own stem cells in about five years.

You might compare the research effort discussed in the article quoted above to other recent work on patching a damaged heart using stem cells. The two are illustrative of quite different directions in regenerative medicine: one path is to put cells into the body and let them build new tissue and repair damage in situ, whilst the other is to build new tissue structures (or even entire organs) outside the body and then surgically implant them. Personally, I favor the former approach, provided it can be made to achieve the same degree of effectiveness in the future - despite advancing technology, surgery remains surgery, and not something that any sane person would want to undergo unless absolutely necessary.

Source:
http://www.longevitymeme.org/newsletter/latest_rss_feed.cfm