Benefits of Genetic Engineering – Biology Wise

Genetic engineering process manipulates the DNA sequence to create a new one. The write-up focuses on the various benefits of genetic engineering.

The genes present in the body of all living organisms helps determine the organisms habits. Genetic engineering is defined as a set of technologies that are used to change the genetic makeup of cells and move the genes from one species to another to produce new organisms. The techniques used are highly sophisticated manipulations of genetic material and other biologically important chemicals.

What are the Benefits of Genetic Engineering Genetic engineering in its present form has been around for approximately 25 years. It has also been a very widely debated topic from its beginning in 1970s. There are many social consequences that are associated with genetic engineering, that makes the overall risk or benefit assessment very complicated. The benefits of genetic engineering in each field is mentioned below.

Human Cloning: Almost everyday, a scientist makes a new breakthrough in the field of human engineering. Mammals have been successfully cloned and the human genome project has been completed. This is pushing the scientists all over the world to research many different facets of human genetic engineering. These researches have allowed a better understanding of DNA and its role in medicine, pharmacology, reproductive technology and various other fields. The scientists at Roslin Institute in Scotland, cloned an exact copy of a sheep, named Dolly. Newly created animals by the process of genetic engineering are known as xenographs.

Medical Treatment: In humans, the most promising benefit of genetic engineering is gene therapy which is the medical treatment of a disease wherein the defective genes are repaired and replaced or therapeutic genes are introduced to fight the disease. Over the past decade, many autoimmune and heart diseases have been treated using gene therapy. Certain diseases like the Huntingtons disease, ALS and cystic fibrosis is caused by defective genes. There is hope that a cure for such diseases can be found by either inserting the corrected gene or modifying the defective gene. Eventually, the hope is to completely eliminate genetic diseases and also treat non-genetic diseases with appropriate gene therapy. The latest research in the field makes it possible to repair or grow new muscle cells when they are not working or are damaged.

Pharmaceuticals: Thanks to genetic engineering, the pharmaceutical products available today are far superior to their predecessors. These new products are created by cloning certain genes. Some of the prominent examples are the bio-engineered insulin which was earlier obtained from sheep or cows and the human growth hormone which was earlier obtained from cadavers. New medicines are being made by changing the genetic structure of the plant cell.

Pregnancy Cases: Genetic engineering is also a boon for pregnant women who can choose to have their fetuses screened for genetic defects. These screenings can help the parents and doctors prepare for the arrival of the child who may have special needs during or after the delivery. A possible future benefit of genetic engineering which is very eagerly awaited is that a fetus with a genetic defect could be treated with genetic therapy even before it is born. Research is going on for gene therapy for embryos before it is implanted into the mother via in-vitro fertilization. The latest term coined is Designer Babies wherein the couple can actually choose the features of the baby to be born!

Agriculture: The field of agriculture too greatly benefits from genetic engineering which has improved the genetic fitness of various plant species. The common benefits are increase in the efficiency of photosynthesis, increasing the resistance of the plant to salinity, drought and viruses and also reducing the plants need for a nitrogen fertilizer. The latest research at Cornell University is to map the Oat crop so that extra nutrients can be added to the sequence and the make the crop healthier. Similar research is done with the Soya crop as well.

Here is a list of some of the most upfront benefits of genetic engineering:

The pros of genetic engineering are far too many to list. But it is important to understand the boundaries to which the human race can push itself and stop before man starts playing the role of God.

See the original post:

Benefits of Genetic Engineering - Biology Wise

Global Human Augmentation Market : Industry Analysis and Forecast (2019-2027) By Technology, Devices, and Region. – Galus Australis

Global Human Augmentation Market size was US$ 70.9 Bn in 2019 and is expected to reach US$ XX Bn by 2027, at a CAGR of 23.9% during the forecast period.

Request For View Sample Report Page :@https://www.maximizemarketresearch.com/request-sample/66366/

The report study has analyzed the revenue impact of COVID -19 pandemic on the sales revenue of market leaders, market followers, and market disrupters in the report, and the same is reflected in our analysis.

Market Definition

Human augmentation is the latest advanced technology that intends to augment the mental and physical capabilities of the human body by using artificial, scientific, and natural technology. It is also called as human 2.0 and human performance enhancement (HPE).

Market Dynamics

A surge in the exploration and adoption of marketable and innovative applications for human augmentation technology byentrepreneurs, engineers,policymakers, andresearchers across the globe is a major driving factor behind the growth of the market. Increasing requirements of augmented technologies such as augmented intelligence to perform several tasks without replacing humans, increasing demand of wearable augmentation products, rising adoption of human augmentation in the healthcare sector, growing advancements in technologies such as human genetic engineering, 3D bioprinting and in neurotechnology, rising adoption of IoT, smart tech devices and rising advancements in robotics automation, andartificial intelligence technologies are expected to improve the growth of the marketduring the forecast period.

Nevertheless, high costs associated with human augmentation devices, social, legal, and ethical concerns, lack of skilled personnel to handle human augmentation devices, and rising risks of identity and data breaches are some of the restraining factors that could hamper the growth of the market.

Global Human Augmentation Market: Segmentation AnalysisBy technology, wearable augmentation segment dominated the market in 2019 and is projected to witness fast growth at CAGR of XX% during the forecast period. Growing adoption of smart wearable devices such as wrist-wear, eye-wear, foot-wear, neck-wear, and body-wear devices such as smart glasses, HMDs, HUDs, smartwatches, smart jewellery, and smart clothes by consumers across the globe is attributed to the growth of the market. MMR expected that industrial wearable human augmentation devices will witness huge demand in the North American market in the coming years due to its portability, efficiency, and convenience. Increasing the adoption of medical wearable devices in the healthcare industry is propelling the growth of the market.

Some examples of wearable human augmentation:

There are numerous wearable augmentation devicespresent in the global market. Growing adoption of these devices by consumers across the globe to enhance their physical capabilities such as low vision is impelling the growth of the market. Some of the examples of these devices are as follows:

Do Inquiry Before Purchasing Report Here: @https://www.maximizemarketresearch.com/inquiry-before-buying/66366/

ESight- It is a wearable augmentation device and its appearance looks the same as glasses. This device provides blind persons with the capability to see their surrounding environment. Exoskeletons- It is a mechanical wearable device that is used to wear on the outside of the body. This is the type of industrial wearable device which is used by human workers to lift 200 pounds of heavy machinery. Teslasuit- It is wearable smart clothing or outfit which is used to provide haptic feedback, to track the consumers movements and to control the consumers temperature.

Global Human Augmentation Market: Regional Analysis

Region-wise, North America dominated the market in 2019 and is expected to maintain its dominance at a CAGR of XX% during the forecast period. The US and Canada are the major contributors behind the growth of the market in the region. The growth is attributed to the growing and early adoption of human augmentation devices by various end-users across the region.

Increasing investments in artificial intelligence technologies, increasing demand for wearable augmentation devices from the healthcare industry, and growing technological advancements in virtual reality are driving the growth of the market in the NA region.

The objective of the report is to present a comprehensive analysis of the Global Human Augmentation Market including all the stakeholders of the industry. The past and current status of the industry with forecasted market size and trends are presented in the report with the analysis of complicated data in simple language. The report covers all the aspects of the industry with a dedicated study of key players that includes market leaders, followers, and new entrants.

PORTER, SVOR, PESTEL analysis with the potential impact of micro-economic factors of the market have been presented in the report. External as well as internal factors that are supposed to affect the business positively or negatively have been analyzed, which will give a clear futuristic view of the industry to the decision-makers. The report also helps in understanding Global Human Augmentation Market dynamics, structure by analyzing the market segments and projects the Global Human Augmentation Market. Clear representation of competitive analysis of key players by Application, price, financial position, Product portfolio, growth strategies, and regional presence in the Global Human Augmentation Market make the report investors guide.The Scope of Global Human Augmentation Market

Global Human Augmentation Market, By Technology

Wearable Virtual Reality Augmented Reality Augmented Intelligence Exoskeleton Intelligent Virtual AssistantsGlobal Human Augmentation Market, By Device

Body Worn Non-body WornGlobal Human Augmentation Market, By Region

North America Europe Asia Pacific South America Middle East & AfricaGlobal Human Augmentation Market, Key Players

Google Inc Samsung Electronics Co. Ltd Ekso Bionics Holdings Inc Vuzix Corporation Garmin Fossil Group Inc B-Temia Inc Casio Magic Leap Inc Rewalk Robotics Inc Polar Electro P&S Mechanics Jawbone Inc Life Sense Group B.V Atoun Mobvoi Rex Bionics Goqii Guangdong BBK Electronics Co. Ltd Atheer Inc

Browse Full Report with Facts and Figures of Human Augmentation Market Report at:https://www.maximizemarketresearch.com/market-report/global-human-augmentation-market/66366/

Major Table Human Augmentation Market of Contents Report

About Us:

Maximize Market Research provides B2B and B2C market research on 20,000 high growth emerging technologies & opportunities in Chemical, Healthcare, Pharmaceuticals, Electronics & Communications, Internet of Things, Food and Beverages, Aerospace and Defense and other manufacturing sectors.

Contact info:

Name: Vikas Godage

Organization: Maximize Market Research Pvt. Ltd.

Email: [emailprotected]

Contact: +919607065656 / +919607195908

Website: http://www.maximizemarketresearch.com

Read the original:

Global Human Augmentation Market : Industry Analysis and Forecast (2019-2027) By Technology, Devices, and Region. - Galus Australis

Genetic Engineering in Humans – Curing Diseases and …

Over the past few years, the field of biotechnology has advanced at a very high rate that scientists can now edit plants and animals at the genomic level. Different genetic engineering or genome-editing techniques such aszinc fingernucleases, transcription activator-like effector nucleases (TALENs), meganucleases and theCRISPR/Cas9 system have aided scientists to alter genomes to create modified organisms.

Like in plants and animals, could genome-editing be performed in humans? Yes. But a bigger question arises here, should genome editing techniques be used to create designer babies, to remove heritable diseases or to enhance the human capabilities? It is one of the most controversial topics among scientists and hence it all comes down to ethics.

In a recent research, Shoukhrat Mitalipov of Oregon Health Sciences University in Portland reported successfully repairing a genetic mutation in human embryos bringing the idea of genetic engineering in humans closer to reality.

To understand the ethical implications of genetic engineering in humans, it is important to first understand the basics.

Genetic engineering is basically manipulating or changing the DNA to alter the organisms appearance in a particular way. The human body cells contain encoded information compiled into a form called genes, which are responsible for the bodys growth, structure and functioning. Human genetic engineering decodes this information and applies it to the welfare of mankind.

For example, all over the world, several scientists have reported the singing in mice. However, the frequencies at which they sing is not audible to humans. The Alstons brown mouse or Alstons singing mouse is a famous example. It would be interesting to hear these songs too.

Japanese geneticists at the University of Osaka were conducting a research to study the mutagenic effects in a strain of mice that were genetically engineered. Among many effects, the mutation may have caused the alteration in the vocalization in the mice giving birth to an offspring which could sing at a frequency audible to humans.This genetic modification (which was actually an accident) may help in studying the communication patterns in mice as well as in comparing of similarities and differences with other mammals. Some other examples of genetic engineering are GloFish, drug-producing chickens, cows that make human-like milk, diesel-producing bacteria, banana vaccines and disease-preventing mosquitoes.

Based on their type of cell, there are two types of genetic engineering;

Human genetic engineering can further be classified into two types;

In human genetic engineering, the genes or the DNA of a person is changed. This can be used to bring about structural changes in human beings. More importantly, it can be used to introduce the genes for certain positive and desirable traits in embryos. Genetic engineering in humans can result in finding a permanent cure for many diseases.

Some people are born with or acquire exceptional qualities. If the genes responsible for these qualities can be identified, they can be introduced in the early embryos. The embryo develops into a baby called Designer baby or customized baby. Human genetic engineering is advancing at an increasing rate and might evolve to such an extent discovering new genes and implanting them into human embryos will be possible.

Let us take an example of bacteria to understand how genetic engineering works. Insulin is aprotein produced in the pancreasthat helps in the regulation of the sugar levels in our blood. People with type 1diabetes eithercannot produce insulin or produce insufficient insulin in the body. They have to acquire insulin from external sources to control their blood sugar levels. In 1982, Genetic engineering was used to produce a type of insulin which is similar to the human insulin, called the Humulin frombacteria which was then approved and licensed for human use.

Using this process, Chinese scientists have edited the genome of the human embryo for the first time. According to Nature News report, Researchers at Sun Yat-sen University in Guangzhou, China, were partially successful in using a genetic engineering technique to modify a gene in non-viable human embryos which was responsible for the fatal blood disorder.

The technique used, called CRISPR (short for clustered regularly interspaced short palindromic repeats) technology involves an enzyme complex known as CRISPR/Cas9, originating in bacteria as a defence system. CRISPR is a short, repeated DNA sequence that matches the genetic sequence of interest to be modified by the researchers. CRISPR works along with the Cas9 enzyme that acts like molecular scissors and cuts the DNA at a specific site.

As explained by John Reidhaar-Olson, a biochemist at Albert Einstein College of Medicine in New York First, in a simple explanation, the CRISPR/Cas9 complex navigates through the cells DNA, searching for the sequence that matches the CRISPR and binds to the sequence once found. The Cas9 then cuts the DNA which, in this case, is repaired by inserting a piece of DNA desired by the researcher.

Since 2013, CRISPR system has been to edit genes in adult human cells and animal embryos but for the first time has been used for modification in human embryos.

Junjiu Huang, a genetics researcher at Sun Yat-sen University, injected the CRISPR/Cas9 complex into human embryos with the aim of repairing a gene responsible for Beta thalassaemia which is a fatal blood disorder that reduces the production of haemoglobin. The non-viable embryos were obtained from local fertility clinics. These embryos would have been unable to survive independently after birth or develop properly as they had been fertilized by two sperms. The procedure was performed on 86 embryos and gene editing was allowed to take place in four days. Out of 86, 71 of the embryos survived and 54 of them were tested.

Splicing (removal of introns and joining of exonsineukaryotic mRNA) only occurred in 28 embryos successfully indicating the removal of faulty gene and the incorporation of the healthy gene in its place. However, in order for the technique to be used in viable human embryos, the success rate would need to be closer to 100%.

While partial success was achieved, certain worrisome mutations responsible for the detrimental effect on cells during gene-editing were also observed and at a much higher rate in mouse embryos or adult human cells undergoing the same procedure.

One of the most beneficial applications of genetic engineering is gene therapy. Gene therapy is one of the most important benefits of human genetic engineering. Over the last few years, gene therapy has successfully treated certain heart diseases. Driven by this success, researchers are working to find cures for all the genetic diseases. This will eventually lead to a healthier and more evolved human race.Inspired by the recent success of gene therapy trialsin human children and infants, researchers are now moving towards the treatment of genetic disorders before birth. The idea of using fetal gene therapy to treat genetic disorders that cant be treated after birth has generated hype among some of the scientists. Parents will be able to look forward to a healthy baby. Genetic engineering can be done in embryos prior to implantation into the mother.However, some are also questioning the feasibility and practicality of the therapy in humans.

While genetic engineering or modification may seem easy to cure diseases, it may produce certain side effects. While focusing on and treating one defect, there is a possibility it may cause another. A cell is responsible for various functions in the body and manipulating its genes without any counter effect or side effect may not be that easy.

Other than side effects, Cloning, for instance, can lead to an ethical disturbance among the humans risking the individuality and the diversity of human beings. Ironically, man will become just another man-made thing!

Among the social aspects of human genetic engineering, it can impose a heavy financial burden on the society, which may cause a rift between the rich and the poor in the society. Its feasibility and most importantly its affordability will also be a determinant of its popularity.

Human genetic engineering is a widely and rapidly advancing field. It can lead to miracles. But when assessing its benefits, its threats need to be assessed carefully too. Human genetic engineering can be beneficial to human beings and its potential advantages can come into reality only if it is handled with responsibility.

Like Loading...

Related

Follow this link:

Genetic Engineering in Humans - Curing Diseases and ...

Human Genetic Engineering Probe Ministries

Although much has occurred in this field since this article was written in 2000, the questions addressed by Dr. Bohlin are still timely and relevant. Is manipulating our genetic code simply a tool or does it deal with deeper issues? Dealing with genetic engineering must be done within the context of the broader ethical and theological issues involved. In the article, Dr. Bohlin provides an excellent summary driven from his biblical worldview perspective.

Genetic technology harbors the potential to change the human species forever. The soon to be completed Human Genome Project will empower genetic scientists with a human biological instruction book. The genes in all our cells contain the code for proteins that provide the structure and function to all our tissues and organs. Knowing this complete code will open new horizons for treating and perhaps curing diseases that have remained mysteries for millennia. But along with the commendable and compassionate use of genetic technology comes the specter of both shadowy purposes and malevolent aims.

For some, the potential for misuse is reason enough for closing the door completelythe benefits just arent worth the risks. In this article, Id like to explore the application of genetic technology to human beings and apply biblical wisdom to the eventual ethical quagmires that are not very far away. In this section well investigate the various ways humans can be engineered.

Since we have introduced foreign genes into the embryos of mice, cows, sheep, and pigs for years, theres no technological reason to suggest that it cant be done in humans too. Currently, there are two ways of pursuing gene transfer. One is simply to attempt to alleviate the symptoms of a genetic disease. This entails gene therapy, attempting to transfer the normal gene into only those tissues most affected by the disease. For instance, bronchial infections are the major cause of early death for patients with cystic fibrosis (CF). The lungs of CF patients produce thick mucus that provides a great growth medium for bacteria and viruses. If the normal gene can be inserted in to the cells of the lungs, perhaps both the quality and quantity of their life can be enhanced. But this is not a complete cure and they will still pass the CF gene on to their children.

In order to cure a genetic illness, the defective gene must be replaced throughout the body. If the genetic defect is detected in an early embryo, its possible to add the gene at this stage, allowing the normal gene to be present in all tissues including reproductive tissues. This technique has been used to add foreign genes to mice, sheep, pigs, and cows.

However, at present, no laboratory is known to be attempting this well-developed technology in humans. Princeton molecular biologist Lee Silver offers two reasons.{1} First, even in animals, it only works 50% of the time. Second, even when successful, about 5% of the time, the new gene gets placed in the middle of an existing gene, creating a new mutation. Currently these odds are not acceptable to scientists and especially potential clients hoping for genetic engineering of their offspring. But these are only problems of technique. Its reasonable to assume that these difficulties can be overcome with further research.

The primary use for human genetic engineering concerns the curing of genetic disease. But even this should be approached cautiously. Certainly within a Christian worldview, relieving suffering wherever possible is to walk in Jesus footsteps. But what diseases? How far should our ability to interfere in life be allowed to go? So far gene therapy is primarily tested for debilitating and ultimately fatal diseases such as cystic fibrosis.

The first gene therapy trial in humans corrected a life-threatening immune disorder in a two-year-old girl who, now ten years later, is doing well. The gene therapy required dozens of applications but has saved the family from a $60,000 per year bill for necessary drug treatment without the gene therapy.{2} Recently, sixteen heart disease patients, who were literally waiting for death, received a solution containing copies of a gene that triggers blood vessel growth by injection straight into the heart. By growing new blood vessels around clogged arteries, all sixteen showed improvement and six were completely relieved of pain.

In each of these cases, gene therapy was performed as a last resort for a fatal condition. This seems to easily fall within the medical boundaries of seeking to cure while at the same time causing no harm. The problem will arise when gene therapy will be sought to alleviate a condition that is less than life-threatening and perhaps considered by some to simply be one of lifes inconveniences, such as a gene that may offer resistance to AIDS or may enhance memory. Such genes are known now and many are suggesting that these goals will and should be available for gene therapy.

The most troublesome aspect of gene therapy has been determining the best method of delivering the gene to the right cells and enticing them to incorporate the gene into the cells chromosomes. Most researchers have used crippled forms of viruses that naturally incorporate their genes into cells. The entire field of gene therapy was dealt a severe setback in September 1999 upon the death of Jesse Gelsinger who had undergone gene therapy for an inherited enzyme deficiency at the University of Pennsylvania.{3} Jesse apparently suffered a severe immune reaction and died four days after being injected with the engineered virus.

The same virus vector had been used safely in thousands of other trials, but in this case, after releasing stacks of clinical data and answering questions for two days, the researchers didnt fully understand what had gone wrong.{4} Other institutions were also found to have failed to file immediate reports as required of serious adverse events in their trials, prompting a congressional review.{5} All this should indicate that the answers to the technical problems of gene therapy have not been answered and progress will be slowed as guidelines and reporting procedures are studied and reevaluated.

The simple answer is no, at least for the foreseeable future. Gene therapy currently targets existing tissue in a existing child or adult. This may alleviate or eliminate symptoms in that individual, but will not affect future children. To accomplish a correction for future generations, gene therapy would need to target the germ cells, the sperm and egg. This poses numerous technical problems at the present time. There is also a very real concern about making genetic decisions for future generations without their consent.

Some would seek to get around these difficulties by performing gene therapy in early embryos before tissue differentiation has taken place. This would allow the new gene to be incorporated into all tissues, including reproductive organs. However, this process does nothing to alleviate the condition of those already suffering from genetic disease. Also, as mentioned earlier this week, this procedure would put embryos at unacceptable risk due to the inherent rate of failure and potential damage to the embryo.

Another way to affect germ line gene therapy would involve a combination of gene therapy and cloning.{6} An embryo, fertilized in vitro, from the sperm and egg of a couple at risk for sickle-cell anemia, for example, could be tested for the sickle-cell gene. If the embryo tests positive, cells could be removed from this early embryo and grown in culture. Then the normal hemoglobin gene would be added to these cultured cells.

If the technique for human cloning could be perfected, then one of these cells could be cloned to create a new individual. If the cloning were successful, the resulting baby would be an identical twin of the original embryo, only with the sickle-cell gene replaced with the normal hemoglobin gene. This would result in a normal healthy baby. Unfortunately, the initial embryo was sacrificed to allow the engineering of its identical twin, an ethically unacceptable trade-off.

So what we have seen, is that even human gene therapy is not a long-term solution, but a temporary and individual one. But even in condoning the use of gene therapy for therapeutic ends, we need to be careful that those for whom gene therapy is unavailable either for ethical or monetary reasons, dont get pushed aside. It would be easy to shun those with uncorrected defects as less than desirable or even less than human. There is, indeed, much to think about.

The possibility of someone or some government utilizing the new tools of genetic engineering to create a superior race of humans must at least be considered. We need to emphasize, however, that we simply do not know what genetic factors determine popularly desired traits such as athletic ability, intelligence, appearance and personality. For sure, each of these has a significant component that may be available for genetic manipulation, but its safe to say that our knowledge of each of these traits is in its infancy.

Even as knowledge of these areas grows, other genetic qualities may prevent their engineering. So far, few genes have only a single application in the body. Most genes are found to have multiple effects, sometimes in different tissues. Therefore, to engineer a gene for enhancement of a particular traitsay memorymay inadvertently cause increased susceptibility to drug addiction.

But what if in the next 50 to 100 years, many of these unknowns can be anticipated and engineering for advantageous traits becomes possible. What can we expect? Our concern is that without a redirection of the worldview of the culture, there will be a growing propensity to want to take over the evolution of the human species. The many people see it, we are simply upright, large-brained apes. There is no such thing as an independent mind. Our mind becomes simply a physical construct of the brain. While the brain is certainly complicated and our level of understanding of its intricate machinery grows daily, some hope that in the future we may comprehend enough to change who and what we are as a species in order to meet the future demands of survival.

Edward O. Wilson, a Harvard entomologist, believes that we will soon be faced with difficult genetic dilemmas. Because of expected advances in gene therapy, we will not only be able to eliminate or at least alleviate genetic disease, we may be able to enhance certain human abilities such as mathematics or verbal ability. He says, Soon we must look deep within ourselves and decide what we wish to become.{7} As early as 1978, Wilson reflected on our eventual need to decide how human we wish to remain.{8}

Surprisingly, Wilson predicts that future generations will opt only for repair of disabling disease and stop short of genetic enhancements. His only rationale however, is a question. Why should a species give up the defining core of its existence, built by millions of years of biological trial and error?{9} Wilson is naively optimistic. There are loud voices already claiming that man can intentionally engineer our evolutionary future better than chance mutations and natural selection. The time to change the course of this slow train to destruction is now, not later.

Many of the questions surrounding the ethical use of genetic engineering practices are difficult to answer with a simple yes or no. This is one of them. The answer revolves around the method used to determine the sex selection and the timing of the selection itself.

For instance, if the sex of a fetus is determined and deemed undesirable, it can only be rectified by termination of the embryo or fetus, either in the lab or in the womb by abortion. There is every reason to prohibit this process. First, an innocent life has been sacrificed. The principle of the sanctity of human life demands that a new innocent life not be killed for any reason apart from saving the life of the mother. Second, even in this country where abortion is legal, one would hope that restrictions would be put in place to prevent the taking of a life simply because its the wrong sex.

However, procedures do exist that can separate sperm that carry the Y chromosome from those that carry the X chromosome. Eggs fertilized by sperm carrying the Y will be male, and eggs fertilized by sperm carrying the X will be female. If the sperm sample used to fertilize an egg has been selected for the Y chromosome, you simply increase the odds of having a boy (~90%) over a girl. So long as the couple is willing to accept either a boy or girl and will not discard the embryo or abort the baby if its the wrong sex, its difficult to say that such a procedure should be prohibited.

One reason to utilize this procedure is to reduce the risk of a sex-linked genetic disease. Color-blindness, hemophilia, and fragile X syndrome can be due to mutations on the X chromosome. Therefore, males (with only one X chromosome) are much more likely to suffer from these traits when either the mother is a carrier or the father is affected. (In females, the second X chromosome will usually carry the normal gene, masking the mutated gene on the other X chromosome.) Selecting for a girl by sperm selection greatly reduces the possibility of having a child with either of these genetic diseases. Again, its difficult to argue against the desire to reduce suffering when a life has not been forfeited.

But we must ask, is sex determination by sperm selection wise? A couple that already has a boy and simply wants a girl to balance their family, seems innocent enough. But why is this important? What fuels this desire? Its dangerous to take more and more control over our lives and leave the sovereignty of God far behind. This isnt a situation of life and death or even reducing suffering.

But while it may be difficult to find anything seriously wrong with sex selection, its also difficult to find anything good about it. Even when the purpose may be to avoid a sex-linked disease, we run the risk of communicating to others affected by these diseases that because they could have been avoided, their life is somehow less valuable. So while it may not be prudent to prohibit such practices, it certainly should not be approached casually either.

Notes

1. Lee Silver, Remaking Eden: Cloning and Beyond in a Brave New World, New York, NY: Avon Books, p. 230-231. 2. Leon Jaroff, Success stories, Time, 11 January 1999, p. 72-73. 3. Sally Lehrman, Virus treatment questioned after gene therapy death, Nature Vol. 401 (7 October 1999): 517-518. 4. Eliot Marshall, Gene therapy death prompts review of adenovirus vector, Science Vol. 286 (17 December 1999): 2244-2245. 5. Meredith Wadman, NIH under fire over gene-therapy trials, Nature Vol. 403 (20 January 1999): 237. 6. Steve Mirsky and John Rennie, What cloning means for gene therapy, Scientific American, June 1997, p. 122-123. 7. Ibid., p. 277. 8. Edward Wilson, On Human Nature, Cambridge, Mass.: Harvard University Press, p. 6. 9. E. Wilson, Consilience, p. 277.

2000 Probe Ministries

Post Views: 1,659

On January 8, 2007, the Associated Press reported that scientists from Wake Forest University and Harvard University discovered a new type of stem cell found in the amniotic fluid within

Kerby Anderson provides a biblical look at genetic engineering. Christians would be wise to distinguish between two types of research: genetic repair (acceptable) and the creation of new forms of

Link:

Human Genetic Engineering Probe Ministries

Human Genetic Engineering – AllAboutPopularIssues.org

Human Genetic Engineering - A Hot Issue!Human genetic engineering is a hot topic in the legislative and executive branches of the U.S. government. Time will tell how committed the United States will be regarding the absolute ban on human cloning.

Human Genetic Engineering - Position of the U.S. GovernmentHuman genetic engineering has made its way to Capitol Hill. On July 31, 2001, the House of Representatives passed a bill which would ban human cloning, not only for reproduction, but for medical research purposes as well. The Human Cloning Prohibition Act of 2001, sponsored by Rep. Weldon (R-fL) and co-sponsored by over 100 Representatives, passed by a bipartisan vote of 265-to-162. The Act makes it unlawful to: "1) perform or attempt to perform human cloning, 2) participate in an attempt to perform cloning, or 3) ship or receive the product of human cloning for any purpose." The Act also imposes penalties of up to 10 years imprisonment and no less than $1,000,000 for breaking the law. The same bill, sponsored by Sen. Brownback (R-kS), is currently being debated in the Senate.

The White House also opposes "any and all attempts to clone a human being; [they] oppose the use of human somatic cell nuclear transfer cloning techniques either to assist human reproduction or to develop cell or tissue-based therapies."

Human Genetic Engineering - The ProblemsThere are many arguments against human genetic engineering, including the established safety issues, the loss of identity and individuality, and human diversity. With therapeutic cloning, not only do the above issues apply, but you add all the moral and religious issues related to the willful killing of human embryos. Maybe the greatest concern of all is that man would become simply another man-made thing. As with any other man-made thing, the designer "stands above [its design], not as an equal but as a superior, transcending it by his will and creative prowess." The cloned child will be dehumanized. (See, Leon Kass, Preventing a Brave New World: Why we should ban human cloning now, New Republic Online, May 21, 2001.)

Human Genetic Engineering - A Final ThoughtHuman genetic engineering leads to man usurping God as the almighty creator and designer of life. No longer will a child be considered a blessing from God, but rather, a product manufactured by a scientist. Man will be a created being of man. However, man was always intended to be a created being of God, in His absolute love, wisdom and glory.

Learn More Now!

What is your response?

Yes, I want to follow Jesus

I am a follower of Jesus

I still have questions

Follow this link:

Human Genetic Engineering - AllAboutPopularIssues.org

Human Genetic Engineering – Evolution 21st Century Style?

So Whats with the Transhumanism Thing?

Transhumanism is a philosophical movement that is strongly related to humanism. It has specific beliefs about what the fate of humanity should be and how technology will help us shape and achieve that future. Ive put together a small number of core topic articles to get you orientated to the transhumanism movement and some of the most important concepts. You can tackle them in any order you want to, but I suggest you do them in this order.

First, have a look at What is transhumanism?, which I think most people would agree is a good place to start.

Right after that one, its a good idea to read Common misconceptions about transhumanists.

If you get those out of the way, you may be interested to read Understanding transhuman rights, which will give you a great idea of what it would be like living in a transhuman society.

Finally, the last two core topics are about concepts that are not subscribed to by all transhumanists, but are so popular in the movement that they deserve to be put here. The first is an article titled What is the singularity and the second is titled What are post-scarcity economics?.

If you get through all the core topics, youll know pretty much all you need in order to feel grounded in this interesting philosophical movement.With that out of the way, let me explain how the rest of the site works.

Transhumanism covers a wide range of ideas, fields, and technologies. So to make it all easier Ive tried to narrow them down to a few key areas. Obviously, many of these technologies overlap with each other, but wherever possible Ive tried to sort them neatly.

There are eight topic sections on this site besides the core topics weve already talked about, so lets look at each of these sections in alphabetical order.

Continue reading here:

Human Genetic Engineering - Evolution 21st Century Style?

HUMAN GENETIC ENGINEERING OR HUMAN GENE EDITING CONCERNS …

This assignment looks at human genetic engineering or human gene editing concerns. Global warming isnt the only vexing issue; the world is wrestling. While delegates gathered in Paris to discuss climate change, the International Summit on Human Gene Editing convened in Washington. The Summit debated the alteration of human DNA and how far scientists should go when editing human DNA. The main focus was whether scientists should use powerful new genetic engineering techniques to edit genes. The editing of genes is either in human eggs, sperm, or embryos. The extremely controversial step raises a host of thorny safety and ethical issues. The introduction of new diseases into the human gene pool is among human genetic engineering or human gene editing concerns.

The CRISPR/Cas9 system is also among human genetic engineering or human gene editing concerns. The CRISPR/Cas9 system has been revolutionary in the world of genetic research. However, as genetic engineering moves into human applications, its time to ask how far human genetic engineering is going. The introduction of the CRISPR/Cas9 system in 2012 kicked-started the rapid development of gene-editing technology. The system was kick-started into the widely practiced technique that it is today. With use on the bacterial genome becoming old hat, researchers are turning to human use. Although becoming a reality, the alteration of human DNA remains something seemingly fictional.

future science and the alteration of human DNA

Human genetic engineering or human gene editing concerns continue to rise as research on the same continues. Genes influence health and disease, as well as human traits and behavior. Ongoing advances make it increasingly likely that scientists will someday incorporate the alteration of human DNA. The alteration will genetically engineer humans to possess certain desired traits. Of course, the possibility of human genetic engineering raises numerous ethical and legal questions. Although such questions rarely have clear answers, different scientists expertise informs us of peoples genomic ethical boundaries. There have been human gene editing concerns regarding whether there should be the performance of genetic testing for adult-onset conditions.

>>Download

Post Views: 13

Originally posted here:

HUMAN GENETIC ENGINEERING OR HUMAN GENE EDITING CONCERNS ...

US Medical Tourism Market 2020: Analysis Of Sales, Overview, Segmentation And Growth Rate To 2027 – Cole of Duty

Trusted Business Insights answers what are the scenarios for growth and recovery and whether there will be any lasting structural impact from the unfolding crisis for the U.S. Medical Tourism market.

Trusted Business Insights presents an updated and Latest Study on U.S. Medical Tourism Market 2019-2026. The report contains market predictions related to market size, revenue, production, CAGR, Consumption, gross margin, price, and other substantial factors. While emphasizing the key driving and restraining forces for this market, the report also offers a complete study of the future trends and developments of the market.The report further elaborates on the micro and macroeconomic aspects including the socio-political landscape that is anticipated to shape the demand of the U.S. Medical Tourism market during the forecast period (2019-2029).It also examines the role of the leading market players involved in the industry including their corporate overview, financial summary, and SWOT analysis.

Get Sample Copy of this Report @ U.S. Medical Tourism Market Size, Share, Market Research and Industry Forecast Report, 2026 (Includes Business Impact of COVID-19)

Industry Insights, Market Size, CAGR, High-Level Analysis: U.S. Medical Tourism Market

The U.S. medical tourism market size was valued at USD 6.7 billion in 2018 and is expected to register a CAGR of 8.7% over the forecast period. Though the number of Americans traveling outside U.S. for availing medical treatments is increasing, inbound medical tourism in the country is also witnessing a significant growth.Joint Commission International (JCI) is a nonprofit organization that evaluates healthcare facilities around the world. JCI accreditation is considered the benchmark for quality care in hospitals and clinics. JCI accredits over 15,000 healthcare facilities in U.S. Most hospitals in the country are focusing on creating a medical tourism revenue stream. Thus, these hospitals should build on their already existing portfolio rather than adding new service lines.In U.S., major healthcare facilities, through their international patient departments, are promoting themselves across different countries worldwide. Patients from several countries travel to U.S. for factors such as better quality care, faster treatments, and access to procedures that are unavailable in their home countries.

JCI partners with hospitals, clinics, and academic healthcare centers; health systems and agencies, and government ministries to promote rigorous standards of care and to provide solutions for achieving peak performance. The eligible hospitals receive international accreditation and certification by the JCI. JCI accreditation are considered as a gold standard in the medical tourism industry.

Type Insights of U.S. Medical Tourism Market

Based on type, the market is segmented into inbound and outbound. Inbound medical tourism segment dominated the market in 2018 due to the increasing incidence of cancer, cardiovascular disorders, and other chronic conditions. The country hosts a strong research pipeline for advanced treatment alternatives to conventional procedures such as human genetic engineering. Since 2018, four clinical trials were launched in U.S. to use CRISPR to treat serious medical conditions including cancers such as melanoma and lymphoma.However, U.S. outbound medical tourism is expected to grow at a rapid rate over the forecast period. Availability of additional benefits including better healthcare, latest technologies, innovative medicines, modern devices, better hospitality, and personalized care are some of the drivers of this market. The demand for outbound medical tourism was contributed by Thailands status as one of the most popular tourism destinations in Asia.

Market Share Insights of U.S. Medical Tourism Market

The key industry participants in the U.S. inbound medical tourism marketinclude Cleveland Clinic, MD Anderson Cancer Center, Mayo Clinic, The John Hopkins Hospital, TIRR Memorial Hermann, McLean Hospital, Dana-Farber Cancer Institute, Baptist Health South Florida, and Cancer Treatment Centers of America.These hospitals undertake several strategies, including partnerships and collaborations with employers, overseas physicians, and other travel service organizations, to attract medical tourists. For instance, Cleveland Clinic Abu Dhabi partnered with Etihad Airways to offer medical travel packages, thereby promoting Abu Dhabi as a prominent medical travel destination.Some of the key participants in the U.S. outbound medical tourism market include Gleneagles Hospital, Samitivej Hospital, Prince Court Medical Centre, Fortis Hospital, Christus Muguerza Super Specialty Hospital, and Shouldice Hospital. Medical tourists travel from high-cost to low-cost countries for healthcare due to them being uninsured or underinsured and prolonged wait time for appointments in U.S. Thus, cross border healthcare is primarily driven by the need of patients for treatment affordability, no waiting lists, and high quality of care.Several innovative health insurance plans have been developed to support outbound medical tourism in U.S. For instance, Access Baja has been introduced in California in January 2018 to offer coverage options with copayments and low premiums for employees working in U.S., who want access healthcare services in Mexico.In 2019, Sistemas Medicos Nacionales S.A. de C.V. became the first Mexican HMO to receive a healthcare service plan licensed by the State of California. It offers employees living in San Diego county or Tijuana with affordable across-the-border healthcare service plans, which is licensed by the California Department of Managed Health Care, subject to Knox-Keene Health Care Service Plan Act.

Segmentations, Sub Segmentations, CAGR, & High-Level Analysis overview of U.S. Medical Tourism Market Research ReportThis report forecasts revenue growth at country level and provides an analysis of the latest industry trends in each of the sub-segments from 2015 to 2026. For this study, this market research report has segmented the U.S. medical tourism market report based on type:

Type Outlook (Revenue, USD Million, 2019 2030)

Inbound

Outbound

Quick Read Table of Contents of this Report @ U.S. Medical Tourism Market Size, Share, Market Research and Industry Forecast Report, 2026 (Includes Business Impact of COVID-19)

Trusted Business InsightsShelly ArnoldMedia & Marketing ExecutiveEmail Me For Any ClarificationsConnect on LinkedInClick to follow Trusted Business Insights LinkedIn for Market Data and Updates.US: +1 646 568 9797UK: +44 330 808 0580

Read the original:

US Medical Tourism Market 2020: Analysis Of Sales, Overview, Segmentation And Growth Rate To 2027 - Cole of Duty

The Chinese Scientist Who Made The First Genetically Engineered Babies Is Going To Prison – BuzzFeed News

A Chinese court sentenced biomedical scientist He Jiankui and two accomplices to prison on Monday for illegal medical practice for genetically engineering three babies.

In November 2018, He announced the birth of the first two children, twin girls named Lulu and Nana, as well as the pregnancy of a second woman carrying a genetically engineered fetus. The news created a scientific firestorm, with human genetic engineering experiments widely viewed as dangerous and unethical by scientific organizations worldwide. The third baby has now been born, according to reporting from Chinas state news agency.

The genetic engineering team fabricated an ethics review of their experiment, according to the Nanshan District People's Court of Shenzhen City ruling. They used the faked permissions to recruit couples living with HIV in hopes of helping them to conceive children genetically engineered to receive a mutation giving them immunity to some forms of the disease.

He, formerly a biomedical scientist at the Southern University of Science and Technology in Shenzen, received a prison sentence of three years and a fine equivalent to $480,000. His associates, Zhang Renli and Qin Jinzhou, received jail terms of two years and 18 months with a two-year reprieve, according to the ruling, for practicing medicine without a license and violating Chinese regulations governing assisted reproduction.

The prison sentence and stiff financial penalty sends a message to other Chinese scientists that unsanctioned efforts at human germline editing will not be tolerated, University of Pennsylvania Perelman School of Medicine researcher Kiran Musunuru told BuzzFeed News, by email. I expect that it will have a deterrent effect, certainly in China and possibly elsewhere.

At an October conference, Musunuru had reported that a draft study submitted to a scientific journal about the twins by Hes team suggested that the genetic engineering attempt had badly misfired, targeting the wrong location for the mutation and potentially seeding other mutations throughout the DNA of the children.

Science academies worldwide formed an oversight commission in March, following widespread condemnation of the experiments.

The court ruling found the three sentenced scientists acted "in the pursuit of personal fame and gain" and have seriously "disrupted medical order, according to Chinese state media.

View post:

The Chinese Scientist Who Made The First Genetically Engineered Babies Is Going To Prison - BuzzFeed News

Bill McKibben’s Book Falter Explores End of Humanity – The Intercept

Is the human race approaching its demise? The question itself may sound hyperbolic or like a throwback to the rapture and apocalypse. Yet there is reason to believe that such fears are no longer so overblown. The threat of climate change is forcing millions around the world to realistically confront a future in which their lives, at a minimum, look radically worse than they are today. At the same time, emerging technologies of genetic engineering and artificial intelligence are giving a small, technocratic elite the power to radically alter homo sapiens to the point where the species no longer resembles itself. Whether through ecological collapse or technological change, human beings are fast approaching a dangerous precipice.

The threats that we face today are not exaggerated. They are real, visible, and potentially imminent. They are also the subject of a recent book by Bill McKibben, entitled Falter: Has the Human Game Begun to Play Itself Out? McKibben is an environmentalist and author, as well as the founder of 350.org, a campaign group working to reduce carbon emissions. His book provides a sober, empirical analysis of the reasons why the human race may be reaching its final stages.

Image: Henry Holt and Co.

Can you explain what you mean by the human game?

I was looking for a phrase to describe the totality of everything that we do as human beings. You could also term it as human civilization, or the human project. But game seems like a more appropriate term. Not because its trivial, but because, like any other game, it doesnt really have a goal outside of itself. The only goal is to continue to play, and hopefully play well. Playing the human game well might be described as living with dignity and ensuring that others can live with dignity as well.

There are very serious threats now facing the human game. Basic questions of human survival and identity are being realistically called into question. Its become clear that climate change is dramatically shrinking the size of the board on which the game is played. At the same time, some emerging technologies threaten the idea that human beings as a species will even be around to play in the future.

Could you briefly run down the implications of climate change for the future of human civilization, as we presently understand it?

Climate change is by far the biggest thing that humans have ever managed to do on this planet. It has altered the chemistry of the atmosphere in fundamental ways, raised the temperature of the planet over1 degree Celsius, melted half the summer ice in the Arctic, and made the oceans 30 percent more acidic. We are seeing uncontrollable forest fires around the world, along with record levels of drought and flooding. In some places, average daily temperatures are already becoming too hot for human beings to even work during the daylight.

People are making plans to leave major cities and low-lying coastal areas, where their ancestors have lived for thousands of years. Even in rich countries like the United States, critical infrastructure is being strained. We saw this recently with the shutdown of electrical power in much of California due to wildfire risk. This is what weve done at merely 1 degree Celsius of warming above pre-industrial levels. It is already becoming difficult to live in large parts of the planet. On our current trajectory, we are headed for 3 or 4 degrees of warming. At that level, we simply wont have a civilization like we do now.

Since the major culprit in climate change remains the fossil fuel industry, what practical steps can be taken to get their activities under control? And given that they also share a planet with everyone else, what exactly is their plan for a future of climate dystopia?

We have already made efforts at divestment and halting the construction of pipelines, but the next crucial area is finance: focusing on the banks and asset managers that give them the money to do what they do. It has become very clear that the only goal of the fossil fuel industry is to protect their business model at all costs, even at the cost of the planet. Major oil companies like Exxon knew about the connection between carbon emissions and climate change in the 1980s. They knew and believed in what was coming. Instead of rationally adjusting their behavior to avoid it, they invested millions in lobbying and disinformation to ensure that the world wouldnt do anything to make them change or stop their activities.

Just as we had long taken for granted the stability of the planet, we have likewise taken for granted the stability of the human species.

To the extent that any fossil fuel company thinks about the long run at all and its not clear that any still do they know that their days are numbered. Renewable energy costs are plummeting, and what the industry is fighting for now is to just keep themselves going for a few more decades. Their goal is to ensure that were still burning a lot of oil and gas in 10 or 20 years, rather than trying to get off the stuff as fast as possible.

The other major threat that you identify is posed by technologies like genetic engineering. Can you explain the threat that they pose to human identity and purpose?

Just as we had long taken for granted the stability of the planet, we have likewise taken for granted the stability of the human species. There are technologies now emerging that call into question very fundamental assumption about what it means to be a human being. Take, for example,genetic engineering technologies like CRISPR. These are already now coming into effect, as we saw recently in China, where a pair of twins were reportedly born after having their genes modified in embryo. I dont see any problem with using gene editing to help existing people with existing diseases. That is very different, however, from genetically engineering embryos with specialized modifications.

Lets say for example that an expectant couple decides to engineer their new child to have a certain hormonal balance aimed at improving their mood. That child may reach adolescence one day and find themselves feeling very happy without any particular explanation why. Are they falling in love? Or is it just their genetic engineering specs kicking in? Human beings could soon be designed with a whole range of new specs that modifies their thoughts, feelings, and abilities. I think that such a prospect not far-fetched at all today will be a devastating attack on the most vital things about being human. It will call into question basic ideas of who we are and how we think about ourselves.

There is also the implication of accelerating technological change in genetic engineering technology. After modifying their first child, those same parents may come back five years later to the clinic to make changes to their second child. In the meantime, the technology has marched on, and you can now get a whole new series of upgrades and tweaks. What does that mean for the first child? It makes them the iPhone 6: obsolete. Thats a very new idea for human beings. One of the standard features of technology is obsolescence. A situation where you are rapidly making people themselves obsolete seems wrongheaded to me.

As things stand, these technologies will take the economic inequality presently in existence and encode it in our genes.

There also seems to be a question of economic inequality here, in the sense that people with more resources will be the ones with the access to these genetic enhancements.

As things stand, these technologies will take the economic inequality presently in existence and encode it in our genes. This is so obviously going to happen if we continue down this path that no one bothers to argue otherwise. Lee Silver, a professor at Princeton University who is one of the leading proponents of genetic modification, has already said that in the future we will have two unequal classes of human beings: GenRich and naturals. He and many others have already begun taking such a future as granted.

Do you think that artificial intelligence poses a similar threat to human beings?

Many of the first generation of people who studied AI came away deeply afraid of its potential implications. There is a fear that smart robots and programming codes may get out of hand and end up posing a threat to human beings. Those fears may or may not be real. At the end of the day, they worry me less than the more fundamental assault on human meaning and purpose posed by these technologies. They can easily eliminate most of the choices and activities that have given us our basic sense of identity as human beings.

What should be the priority of social movements seeking to defend the human game at the moment? And do we have cause for optimism?

Climate change is such an immediate and overpowering issue that it should be the focus of our attention right now, because it could make everything else moot. Ive gotten to watch the rise of the climate movement over many years and it gives me cause for some optimism. Weve recently seen massive climate strikes around the world. The Democratic Party in the United States is becoming energized on this issue. These are good signs. Whether they come in time or not, we dont know. But the advent of human genetic engineering is not getting the attention it deserves at the present. The profound implications of CRISPR and other rapidly evolving technologies are things that we should give much more attention. From a strategic perspective, it would be good to get a resistance going sooner than later. As we have seen with fossil fuels, once there is a huge, powerful industry behind something, it becomes much more difficult to control.

It seems like at core there is an ideological issue underlying all of these threats that are presently facing human beings.

Its instructive that a lot of the fantasies underlying the most extreme manifestations of genetic engineering and AI come from people in Silicon Valley who share a libertarian mindset. They are essentially hip versions of the Koch brothers. They share an ethos with the fossil fuel industry that says no one should ever question decisions made by the powerful and that no one should ever get in the way of business and technological innovation.

Meanwhile, the public is being told and has been told for a long time that theyre nothing but individuals and nothing but consumers. That goes against everything we know about human nature. Human beings are happy when theyre part of working communities, not when theyre out on their own as individuals trying to take over the universe. Thats what all these battles are in some sense about: building human solidarity against a hyper-individualist elite. We need to find out once again how to make decisions as a society, rather than have a small group of super-wealthy people privately making them for us.

More here:

Bill McKibben's Book Falter Explores End of Humanity - The Intercept

Human Genetic Engineering : History

Human Genetic Engineering History goes back to the 1919 when an engineer from Hungary gave a term biotechnology to products developed by using raw materials. The engineer made use of this term in its best possible sense. Civilizations in the ancient times discovered that a lot of products can be made by using micro-organisms.

However, people that time have no idea about there are active agents in the microbes. Back in 7000 B.C. some existing tribes also made precious discoveries about how to make beer using yeast. TheHuman Genetic Engineering History continues going ahead since those times. There is a lot of difference between Biotechnology and genetic engineering.

In one hand, gene manipulation is the result of equating biotechnology. However, many aspects are there that define biotechnology. On the other hand, genetic engineering came to perspective, because of its specific technique for manipulating genes.

The term Human Genetic Engineering made it presence felt in 1970. This is the time when several methods were devised with the help of molecular biologists for identifying or for isolating clone genes. Methods were also devised for manipulating the genes to other species or for mutating them in humans.

Restrictive enzymes got discovered during this research, and many have considered as the main success in the Human Genetic Engineering History. This enzyme can make organisms to isolate the DNA, and then it gets mixed with a vector preparation. Hybrid molecules can easily be generated with the sticky ends virtue. This molecule contains interest genes that can later get inserted into the vector.

Ethical concerns involved in Human Genetics

Many scientists knew that a lot of risk is there during the transfer of genes from one person to the other. Human Genetic Engineering History contains all the factors responsible for the invention of genetic engineering as a part of advance sciences. They found that their labs have been poised when they started experimenting clone genes.

Scientists also organized several meetings in order to discuss the risks involved in the transformation of genes. All scientists were given a chance to keep their points of view on the above subject. They made discussion on all the dangers that can potentially take place during their research. However, the meeting went unprecedented.

In this meeting, they made necessary or relevant decisions regarding the amount of time that might be needed for sorting out the solution. Certain guidelines came to existence for the recombinant organism biological and physical isolation. This should be done for ensuring that the organisms do not get mixed with the environment. Human Genetic Engineering History involves profound or numerous consequences.

Even if these recombinant organisms get mixed in the environment, then there will still be some time to make sure that it does effect the environment to a great effect. Gene cloning was at its peak position, and known to people of all religions and tribes by the end of 1976. Human Genetic Engineering History also involves the different advantages of advantages and disadvantage gene therapy can have on the living things.

Human Genetic Engineering : History

3.75 (74.92%) 185 votes

See original here:

Human Genetic Engineering : History

Human Genetic Engineering Effects

Some people can think of Human Genetic Engineering as a thing that makes them live a healthier life for a long time. People can think of it as a something straight from the heaven or a programmed human being. Genetic engineering is a concept that can be used for enhancing the life of human beings.

However, Human Genetic Engineering Effects are also there that can harm humans. A lot of doctors or scientists involved in gene engineering believe that if the research produces accurate and effective manipulation of DNA in the humans, then they can make medicines for diseases that have no cure. This will also enable the doctors to make changes in the genes of a child before the birth of that child, so there will be no defects on a child from birth.

This process can also be applied on curing hereditary disease. It will prevent the disease from carrying forward to other coming generations. This research primarily focused on being applied on families that have a history of suffering from diseases. It will fix the wrong positioning of the genes. TheHuman Genetic Engineering Effects are in its application towards animals and plants that have been modified genetically. When farmers make use of gene-engineering for breeding plants, then this will result in fast production of food items. Fast and increased production will also put down the prices of several food items. Human Genetic Engineering can also add taste and nutrition to different food items.

Human Genetic Engineering Effects can also help in fighting with severe uncured diseases. Those who suffer from life threatening diseases like cancer or AIDS can have a better idea about maintaining their lives according to the circumstances. This can only be done with the help of Human Genetic Engineering.

Hereditary diseases will not trouble any person, and nor there will be any fear of deadly virus taking place in people on all corners of the world. Human Genetic Engineering can achieve all these things in a theoretical way. Human Genetic Engineering Effects can also be seen in societies concerning health. It has tremendous benefits on health.

Human Genetic Engineering can help people in fighting with cystic fibrosis problems. It also helps to fight against diabetes, and many other specific diseases. Bubble boy is also a disease that can be treated successfully with the help Human Genetic Engineering. It is also termed as Severe Combined Immune efficiency.

Gene mutation is the only thing responsible for the characterization of this deadly disease. This mutation causes ADA deficiencies that later result in destroying the immune system cells. Human Genetic Engineering Effects include ecological problems that might be present in organisms developed or generated by Human Genetic Engineering. However, it can leave positive impacts on a lot of diseases.

One cannot predict the changes that can occur with the use of species that generates with the help of Human Genetic Engineering Effects. A newly generated species creates ecology imbalances due to Human Genetic Engineering Effects. This is a similar case with exotic or natural species.

Human Genetic Engineering Effects

3.62 (72.47%) 178 votes

Read more from the original source:

Human Genetic Engineering Effects

Human Genetic Engineering – Probe Ministries

Although much has occurred in this field since this article was written in 2000, the questions addressed by Dr. Bohlin are still timely and relevant. Is manipulating our genetic code simply a tool or does it deal with deeper issues? Dealing with genetic engineering must be done within the context of the broader ethical and theological issues involved. In the article, Dr. Bohlin provides an excellent summary driven from his biblical worldview perspective.

Genetic technology harbors the potential to change the human species forever. The soon to be completed Human Genome Project will empower genetic scientists with a human biological instruction book. The genes in all our cells contain the code for proteins that provide the structure and function to all our tissues and organs. Knowing this complete code will open new horizons for treating and perhaps curing diseases that have remained mysteries for millennia. But along with the commendable and compassionate use of genetic technology comes the specter of both shadowy purposes and malevolent aims.

For some, the potential for misuse is reason enough for closing the door completelythe benefits just arent worth the risks. In this article, Id like to explore the application of genetic technology to human beings and apply biblical wisdom to the eventual ethical quagmires that are not very far away. In this section well investigate the various ways humans can be engineered.

Since we have introduced foreign genes into the embryos of mice, cows, sheep, and pigs for years, theres no technological reason to suggest that it cant be done in humans too. Currently, there are two ways of pursuing gene transfer. One is simply to attempt to alleviate the symptoms of a genetic disease. This entails gene therapy, attempting to transfer the normal gene into only those tissues most affected by the disease. For instance, bronchial infections are the major cause of early death for patients with cystic fibrosis (CF). The lungs of CF patients produce thick mucus that provides a great growth medium for bacteria and viruses. If the normal gene can be inserted in to the cells of the lungs, perhaps both the quality and quantity of their life can be enhanced. But this is not a complete cure and they will still pass the CF gene on to their children.

In order to cure a genetic illness, the defective gene must be replaced throughout the body. If the genetic defect is detected in an early embryo, its possible to add the gene at this stage, allowing the normal gene to be present in all tissues including reproductive tissues. This technique has been used to add foreign genes to mice, sheep, pigs, and cows.

However, at present, no laboratory is known to be attempting this well-developed technology in humans. Princeton molecular biologist Lee Silver offers two reasons.{1} First, even in animals, it only works 50% of the time. Second, even when successful, about 5% of the time, the new gene gets placed in the middle of an existing gene, creating a new mutation. Currently these odds are not acceptable to scientists and especially potential clients hoping for genetic engineering of their offspring. But these are only problems of technique. Its reasonable to assume that these difficulties can be overcome with further research.

The primary use for human genetic engineering concerns the curing of genetic disease. But even this should be approached cautiously. Certainly within a Christian worldview, relieving suffering wherever possible is to walk in Jesus footsteps. But what diseases? How far should our ability to interfere in life be allowed to go? So far gene therapy is primarily tested for debilitating and ultimately fatal diseases such as cystic fibrosis.

The first gene therapy trial in humans corrected a life-threatening immune disorder in a two-year-old girl who, now ten years later, is doing well. The gene therapy required dozens of applications but has saved the family from a $60,000 per year bill for necessary drug treatment without the gene therapy.{2} Recently, sixteen heart disease patients, who were literally waiting for death, received a solution containing copies of a gene that triggers blood vessel growth by injection straight into the heart. By growing new blood vessels around clogged arteries, all sixteen showed improvement and six were completely relieved of pain.

In each of these cases, gene therapy was performed as a last resort for a fatal condition. This seems to easily fall within the medical boundaries of seeking to cure while at the same time causing no harm. The problem will arise when gene therapy will be sought to alleviate a condition that is less than life-threatening and perhaps considered by some to simply be one of lifes inconveniences, such as a gene that may offer resistance to AIDS or may enhance memory. Such genes are known now and many are suggesting that these goals will and should be available for gene therapy.

The most troublesome aspect of gene therapy has been determining the best method of delivering the gene to the right cells and enticing them to incorporate the gene into the cells chromosomes. Most researchers have used crippled forms of viruses that naturally incorporate their genes into cells. The entire field of gene therapy was dealt a severe setback in September 1999 upon the death of Jesse Gelsinger who had undergone gene therapy for an inherited enzyme deficiency at the University of Pennsylvania.{3} Jesse apparently suffered a severe immune reaction and died four days after being injected with the engineered virus.

The same virus vector had been used safely in thousands of other trials, but in this case, after releasing stacks of clinical data and answering questions for two days, the researchers didnt fully understand what had gone wrong.{4} Other institutions were also found to have failed to file immediate reports as required of serious adverse events in their trials, prompting a congressional review.{5} All this should indicate that the answers to the technical problems of gene therapy have not been answered and progress will be slowed as guidelines and reporting procedures are studied and reevaluated.

The simple answer is no, at least for the foreseeable future. Gene therapy currently targets existing tissue in a existing child or adult. This may alleviate or eliminate symptoms in that individual, but will not affect future children. To accomplish a correction for future generations, gene therapy would need to target the germ cells, the sperm and egg. This poses numerous technical problems at the present time. There is also a very real concern about making genetic decisions for future generations without their consent.

Some would seek to get around these difficulties by performing gene therapy in early embryos before tissue differentiation has taken place. This would allow the new gene to be incorporated into all tissues, including reproductive organs. However, this process does nothing to alleviate the condition of those already suffering from genetic disease. Also, as mentioned earlier this week, this procedure would put embryos at unacceptable risk due to the inherent rate of failure and potential damage to the embryo.

Another way to affect germ line gene therapy would involve a combination of gene therapy and cloning.{6} An embryo, fertilized in vitro, from the sperm and egg of a couple at risk for sickle-cell anemia, for example, could be tested for the sickle-cell gene. If the embryo tests positive, cells could be removed from this early embryo and grown in culture. Then the normal hemoglobin gene would be added to these cultured cells.

If the technique for human cloning could be perfected, then one of these cells could be cloned to create a new individual. If the cloning were successful, the resulting baby would be an identical twin of the original embryo, only with the sickle-cell gene replaced with the normal hemoglobin gene. This would result in a normal healthy baby. Unfortunately, the initial embryo was sacrificed to allow the engineering of its identical twin, an ethically unacceptable trade-off.

So what we have seen, is that even human gene therapy is not a long-term solution, but a temporary and individual one. But even in condoning the use of gene therapy for therapeutic ends, we need to be careful that those for whom gene therapy is unavailable either for ethical or monetary reasons, dont get pushed aside. It would be easy to shun those with uncorrected defects as less than desirable or even less than human. There is, indeed, much to think about.

The possibility of someone or some government utilizing the new tools of genetic engineering to create a superior race of humans must at least be considered. We need to emphasize, however, that we simply do not know what genetic factors determine popularly desired traits such as athletic ability, intelligence, appearance and personality. For sure, each of these has a significant component that may be available for genetic manipulation, but its safe to say that our knowledge of each of these traits is in its infancy.

Even as knowledge of these areas grows, other genetic qualities may prevent their engineering. So far, few genes have only a single application in the body. Most genes are found to have multiple effects, sometimes in different tissues. Therefore, to engineer a gene for enhancement of a particular traitsay memorymay inadvertently cause increased susceptibility to drug addiction.

But what if in the next 50 to 100 years, many of these unknowns can be anticipated and engineering for advantageous traits becomes possible. What can we expect? Our concern is that without a redirection of the worldview of the culture, there will be a growing propensity to want to take over the evolution of the human species. The many people see it, we are simply upright, large-brained apes. There is no such thing as an independent mind. Our mind becomes simply a physical construct of the brain. While the brain is certainly complicated and our level of understanding of its intricate machinery grows daily, some hope that in the future we may comprehend enough to change who and what we are as a species in order to meet the future demands of survival.

Edward O. Wilson, a Harvard entomologist, believes that we will soon be faced with difficult genetic dilemmas. Because of expected advances in gene therapy, we will not only be able to eliminate or at least alleviate genetic disease, we may be able to enhance certain human abilities such as mathematics or verbal ability. He says, Soon we must look deep within ourselves and decide what we wish to become.{7} As early as 1978, Wilson reflected on our eventual need to decide how human we wish to remain.{8}

Surprisingly, Wilson predicts that future generations will opt only for repair of disabling disease and stop short of genetic enhancements. His only rationale however, is a question. Why should a species give up the defining core of its existence, built by millions of years of biological trial and error?{9} Wilson is naively optimistic. There are loud voices already claiming that man can intentionally engineer our evolutionary future better than chance mutations and natural selection. The time to change the course of this slow train to destruction is now, not later.

Many of the questions surrounding the ethical use of genetic engineering practices are difficult to answer with a simple yes or no. This is one of them. The answer revolves around the method used to determine the sex selection and the timing of the selection itself.

For instance, if the sex of a fetus is determined and deemed undesirable, it can only be rectified by termination of the embryo or fetus, either in the lab or in the womb by abortion. There is every reason to prohibit this process. First, an innocent life has been sacrificed. The principle of the sanctity of human life demands that a new innocent life not be killed for any reason apart from saving the life of the mother. Second, even in this country where abortion is legal, one would hope that restrictions would be put in place to prevent the taking of a life simply because its the wrong sex.

However, procedures do exist that can separate sperm that carry the Y chromosome from those that carry the X chromosome. Eggs fertilized by sperm carrying the Y will be male, and eggs fertilized by sperm carrying the X will be female. If the sperm sample used to fertilize an egg has been selected for the Y chromosome, you simply increase the odds of having a boy (~90%) over a girl. So long as the couple is willing to accept either a boy or girl and will not discard the embryo or abort the baby if its the wrong sex, its difficult to say that such a procedure should be prohibited.

One reason to utilize this procedure is to reduce the risk of a sex-linked genetic disease. Color-blindness, hemophilia, and fragile X syndrome can be due to mutations on the X chromosome. Therefore, males (with only one X chromosome) are much more likely to suffer from these traits when either the mother is a carrier or the father is affected. (In females, the second X chromosome will usually carry the normal gene, masking the mutated gene on the other X chromosome.) Selecting for a girl by sperm selection greatly reduces the possibility of having a child with either of these genetic diseases. Again, its difficult to argue against the desire to reduce suffering when a life has not been forfeited.

But we must ask, is sex determination by sperm selection wise? A couple that already has a boy and simply wants a girl to balance their family, seems innocent enough. But why is this important? What fuels this desire? Its dangerous to take more and more control over our lives and leave the sovereignty of God far behind. This isnt a situation of life and death or even reducing suffering.

But while it may be difficult to find anything seriously wrong with sex selection, its also difficult to find anything good about it. Even when the purpose may be to avoid a sex-linked disease, we run the risk of communicating to others affected by these diseases that because they could have been avoided, their life is somehow less valuable. So while it may not be prudent to prohibit such practices, it certainly should not be approached casually either.

Notes

1. Lee Silver, Remaking Eden: Cloning and Beyond in a Brave New World, New York, NY: Avon Books, p. 230-231. 2. Leon Jaroff, Success stories, Time, 11 January 1999, p. 72-73. 3. Sally Lehrman, Virus treatment questioned after gene therapy death, Nature Vol. 401 (7 October 1999): 517-518. 4. Eliot Marshall, Gene therapy death prompts review of adenovirus vector, Science Vol. 286 (17 December 1999): 2244-2245. 5. Meredith Wadman, NIH under fire over gene-therapy trials, Nature Vol. 403 (20 January 1999): 237. 6. Steve Mirsky and John Rennie, What cloning means for gene therapy, Scientific American, June 1997, p. 122-123. 7. Ibid., p. 277. 8. Edward Wilson, On Human Nature, Cambridge, Mass.: Harvard University Press, p. 6. 9. E. Wilson, Consilience, p. 277.

2000 Probe Ministries

On January 8, 2007, the Associated Press reported that scientists from Wake Forest University and Harvard University discovered a new type of stem cell found in the amniotic fluid within

Genetic Diseases The age of genetics has arrived. Society is in the midst of a genetic revolution that some futurists predict will have a greater impact on the culture than

Go here to see the original:

Human Genetic Engineering - Probe Ministries

Human Genetic Engineering | APNORC.org | APNORC.org

Americans favor the use of gene editing to prevent disease or disabilities, while there is strong opposition to using the technology to change a babys physical characteristics, such eye color or intelligence. Support for eradicating disease and disabilities was strong regardless of party identification, education or religious preference.The same holds true for the opposition to altering genes in order to change physical features or capabilities.

Americans hold similar views about the ethics of gene editing.About 6 in 10 consider editing the genes of embryos for the purpose of preventing or reducing the risk of disease to be morally acceptable.Fifty-four percent say using the technology to prevents a non-fatal condition such as blindness as morally acceptable.Two-thirds say it is morally unacceptable to use gene editing to change a babys physical features or characteristics.

What about altering an adults genetic material without changing the genes of their offspring?The idea of using gene editing technology to prevent or cure a genetic disorder in an adult is supported by 56 percent, opposed by 17 percent, and 27 percent neither favor nor oppose.

While Americans favor using gene editing to deal with physical ailments, there is less support for the use of taxpayer money to finance testing on human embryos to develop the technology. Overall, 48 percent oppose federal funding to test gene editing technology, while 26 percent favor it and 25 percent neither favor nor oppose. Republicans are particularly against using government money for the development of gene editing.

Regardless of support for the technology, there are some concerns about possible ramifications.Fifty-two percent say the unethical use of gene editing is very likely, and 45 percent think it's very likely the technology would have unintended effects on human evolution. Few think it's likely that most people would be able to afford the technology.

Most Americans say it is at least somewhat likely that the development of gene editing technology will lead to further medical advances, eliminate many genetic illnesses, and be adequately tested.

The nationwide poll was conducted December 13-16, 2018 using the AmeriSpeak Panel, the probability-based panel of NORC at the University of Chicago. Online and telephone interviews using landlines and cell phones were conducted with 1,067 adults. The margin of sampling error is plus or minus 4.1 percentage points.

Read the original:

Human Genetic Engineering | APNORC.org | APNORC.org

Human Genetic Engineering: Wrong | [site:name] | National …

(Ralwel/Dreamstime)Conservatives and progressives both have reasons for opposing it.

The genetic engineering of human beings has been a dream and a nightmare since scientists first speculated about it a century ago. Futurists and transhumanists have long thought that genetic engineering could radically improve the human race, extending our lifespans or boosting our intelligence, while more responsible scientists have suggested that genetic modification could be used to cure diseases like Huntingtons, Tay-Sachs, and other deadly inherited conditions.

Over the past few years, a new technology has emerged that seems to finally make precise genetic modifications of human beings possible. This week, scientists, ethicists, and policy experts from the American, Chinese, and British national academies of science are gathered for a conference in Washington, D.C., to discuss the prospects of editing human genes.

The new technology that has brought questions about genetically modifying humans back on the agenda is called CRISPR-Cas9. It stands above previous methods for genetic engineering in both its precision and its simplicity. CRISPR-Cas9 relies on a single enzyme system that can be guided by small strings of RNA molecules to any site in the genome. Older methods for genetic engineering required scientists to find or design new proteins to target different sites in the genome, a technically demanding and labor-intensive task. The RNA molecules that CRISPR-Cas9 relies on, on the other hand, can simply be ordered from any number of biotechnology companies.

What makes this new technology especially controversial is the prospect that it could be used to modify the human germline that is, that it could be used to make changes that would not only affect a particular patient but would also be passed on to that patients children, and so on through the generations. Modifying genes in a human embryo is one way to accomplish this, and speakers at the meeting also discussed a different form of germline engineering, one that involves modifying the stem cells that produce sperm. This can be done either by performing gene therapy on men directly or by extracting their stem cells and then genetically modifying them in the lab to produce genetically modified sperm that could be used for in vitro fertilization or artificial insemination.

RELATED: U.S. Prepares to Push Human Genetic Engineering

All too often, deliberations about new biotechnologies seem to focus on managing public opinion so that scientists wont have to worry about the pesky obstructions of democratic oversight or moral arguments. Those who take a strong moral stance against the manipulation of human genetics or the destruction of human embryos are generally not welcome at these kinds of meetings. After all, the suggestion that we should not pursue some scientific avenues because they represent the unjust exploitation of human beings spoils the whole idea of coming to a consensus about how best to move forward.

Deliberations about new biotechnologies seem to focus on managing public opinion so that scientists wont have to worry about the pesky obstructions of democratic oversight or moral arguments.

This consensus-based approach was well on display in the statement released by the meetings organizers recommending that modification of the germline not be done until the technology can be made safe and there is broad societal consensus about the appropriateness of the proposed application, and furthermore that as scientific knowledge advances and societal views evolve, the clinical use of germline editing should be revisited on a regular basis. Recommendations like these ignore the possibility that there might be some wisdom in the view that it is morally wrong to genetically design our children, or that some future consensus that we come to hold as our societal views evolve might be foolish and misguided. Whats more, the organizers recommended allowing the genetic modification of human embryos, on the condition that the modified cells should not be used to establish a pregnancy.

There were unfortunately no conservative or pro-life scholars at this meeting who might have pushed back against this technological boosterism and callous disregard for unborn human life. Yet the absence thus far of conservative and pro-life voices does not mean that everyone at the conference was resolutely in favor of genetic engineering. There were a number of liberal critics of biotechnology, notably Marcy Darnovsky of the Center for Genetics and Society, who made a compelling case against using gene editing to modify the human germline. On the other side were ethicists like John Harris, a utilitarian philosopher at Manchester University, who demanded that genetic engineering be made available with only minimal restrictions. Many of the scientists were very excited about what this technology might enable us to do, though some, like Eric Lander, a geneticist at MIT, expressed skepticism about whether the genetic modification of human embryos would have much practical use.

#share#The scientists speaking at the conference tend to see the moral issues in terms of individual patients. Their focus is on whether these new technologies can be safe and effective ways of treating disease and satisfying the preferences and desires of individuals. But progressive critics argue that these scientists are missing the broader social context in which the technologies would be implemented, and the ways in which biotechnology might contribute to the oppression of marginalized groups.

Both these perspectives can be valuable. Focusing on what is good for individual patients can be an important corrective to the tyrannical impulse to use medicine and public-health measures not for actual human beings, but for whatPaul Ramsey calledthat celebrated non-patient, the human species. But the progressives are also right that medical procedures, especially those dealing with reproduction, are not simply about the patient and the doctor: The child must also be considered, and we should remember as well the kinds of social and economic pressures that might be driving individuals to seek medical interventions to prevent the birth of a child with disabilities.

Conservatives and todays progressives ought to share a concern about the risks of a potential new type of eugenics to harm minorities and the disabled.

Both the scientists, with their emphasis on individuals, and the progressives, with their emphasis on group oppression, draw lessons from the dark history of eugenics, the Progressive Era movement to sterilize the unfit that had a baleful influence on the laws of many nations, including the United States, in the early 20th century. At the conference, science historian Daniel J. Kevles gave a presentation on the origins of eugenics in the sciences of genetics and statistics and discussed the crude racial stereotypes and prejudices held by many Americans in the early 1900s. He described how the eugenics movement harmed and oppressed racial minorities and people with disabilities. (Kevless bookIn the Name of Eugenicsis an excellent introduction to this dark chapter in our history.) Conservatives and todays progressives ought to share a concern about the risks of a potential new type of eugenics to harm minorities and the disabled.

But conservatives are uniquely suited to point out that gene editing unites two errors characteristic of our age: genetic perfectionism and an overemphasis on individual autonomy. First, we conservatives understand that the family is the foundational unit of society, and that its basic structure a married man and woman having children whom they love and care for unconditionally should not be tinkered with by social or biological engineers. The eugenics movement put an abstraction, the human gene pool, above that fundamental unit of society, the family.

Second, biotechnologies like gene editing risk combining the problem of genetic perfectionism with an extreme emphasis on individual autonomy. Gene editing is thought to offer a way for parents to maximize their control over the properties of their offspring, transforming a relationship that should be characterized by unconditional love and acceptance into one in which children are seen as products of their parents desires and wishes, to be provisionally accepted and molded in accord with parental preferences.

This is how we should look at the debates over emerging biotechnologies: by focusing on the relationship between parents and children, and on how that relationship might be undermined by increasing the power of parents to control the biological properties of their offspring. That this conservative insight has been largely absent from these debates over gene editing is unfortunate. Conservatives should be doing more to make their voices heard on this issue.

Follow this link:

Human Genetic Engineering: Wrong | [site:name] | National ...

Human Genetic Engineering – Popular Issues

Human Genetic Engineering - A Hot Issue!Human genetic engineering is a hot topic in the legislative and executive branches of the U.S. government. Time will tell how committed the United States will be regarding the absolute ban on human cloning.

Human Genetic Engineering - Position of the U.S. GovernmentHuman genetic engineering has made its way to Capitol Hill. On July 31, 2001, the House of Representatives passed a bill which would ban human cloning, not only for reproduction, but for medical research purposes as well. The Human Cloning Prohibition Act of 2001, sponsored by Rep. Weldon (R-fL) and co-sponsored by over 100 Representatives, passed by a bipartisan vote of 265-to-162. The Act makes it unlawful to: "1) perform or attempt to perform human cloning, 2) participate in an attempt to perform cloning, or 3) ship or receive the product of human cloning for any purpose." The Act also imposes penalties of up to 10 years imprisonment and no less than $1,000,000 for breaking the law. The same bill, sponsored by Sen. Brownback (R-kS), is currently being debated in the Senate.

The White House also opposes "any and all attempts to clone a human being; [they] oppose the use of human somatic cell nuclear transfer cloning techniques either to assist human reproduction or to develop cell or tissue-based therapies."

Human Genetic Engineering - The ProblemsThere are many arguments against human genetic engineering, including the established safety issues, the loss of identity and individuality, and human diversity. With therapeutic cloning, not only do the above issues apply, but you add all the moral and religious issues related to the willful killing of human embryos. Maybe the greatest concern of all is that man would become simply another man-made thing. As with any other man-made thing, the designer "stands above [its design], not as an equal but as a superior, transcending it by his will and creative prowess." The cloned child will be dehumanized. (See, Leon Kass, Preventing a Brave New World: Why we should ban human cloning now, New Republic Online, May 21, 2001.)

Human Genetic Engineering - A Final ThoughtHuman genetic engineering leads to man usurping God as the almighty creator and designer of life. No longer will a child be considered a blessing from God, but rather, a product manufactured by a scientist. Man will be a created being of man. However, man was always intended to be a created being of God, in His absolute love, wisdom and glory.

Learn More Now!

What is your response?

Yes, today I am deciding to follow Jesus

Yes, I am already a follower of Jesus

I still have questions

Go here to read the rest:

Human Genetic Engineering - Popular Issues

Genomics and Human Genetic Engineering – ASME

Genomics is a hot market. A new research reportby Markets and Markets estimates that the global genome editing market is expected to reachabout $3.5 billionby 2019, up from $1.8 billion in 2014. This demand is driven by the growth of biotechnology and pharmaceutical R&D, as well as advances in technology. Cell-line engineering accounts for the greatest share of the overall genomics market.

The rapid evolution of genomics is, however, causing legal and ethical concerns, which could slow down the projected growth of the market. For example, the National Institutes of Healths National Human Genome Research Institute (NHGRI) has established its Ethical, Legal and Social Implications (ELSI) Research Program to address these issues. Privacy is a huge concernthe NHGRI maintains it is essential to develop, implement, evaluate, and refine new approaches and policies that recognize participants' interests in the privacy and use of the genomic and medical data, while simultaneously enabling broad access to these data to facilitate scientific discovery.

There is also the broader and more complex issue of how genomics impacts social beliefs and policies around the world regarding research and health. Genomics has profound implications for how we understand ourselves as individuals and as members of families, communities, and societyand even for how we understand what it means to be human, states NHGRI. Long-held beliefs about the continuum between health and disease may be transformed, as may concepts of free will and responsibility. These conceptual shifts have implications for current approaches to research, health and social policies.

Global genome editing market by region (top), and by application (bottom). Image: Markets and Markets

One of the newest genomic technologies that is causing considerable ethical consternation is CRISPR-cas9, which is expected to be the largest and fastest-growing segment of the global genome editing market over the next five years.

Developed by Jennifer Doudna, a professor of chemistry and of molecular and cell biologyat the University of California-Berkeley, CRISPR-cas9 simplifies gene editing for many types of cells including human egg, sperm, or embryo. The process has revolutionized the field of genome engineering and offers tremendous potential for editing genes that cause predisposition traits for certain diseases. Discovered as an adaptive immune system in bacteria for protection against bacteria-invading viruses, CRISPR-cas9 wasdeveloped as a way to target and edit genomes, reports Ryan Clarke on http://www.techcrunch.com. This process permanently modifies an organisms genome, so that each successive generation of offspring will carry the change.

These groundbreaking capabilities have resulted in numerous discussions about ethics of use for this technologyfor example, designing genetically perfect offspring. Ultimately social preferences could skew the genetic balance of the human species, warns Clarke.

Scientists are increasingly giving voice to similar concerns. As published in Science, a group of prominent scientists, including Doudna herself, urged that steps be taken to ensure the application of genome engineering technologiesincluding her own CRISPR-Cas9is done in a safe and ethical manner. In our view, writes Edward Lanphier, president and CEO of Sangamo BioSciences, in Nature, genome editing in human embryos using current technologies could have unpredictable effects on future generations. This makes it dangerous and ethically unacceptable. Such research could be exploited for non-therapeutic modifications.

In April 2015, researchers from Sun Yat-sen University in Guangzhou, China described their efforts at editing the genes of a human embryo. Using the CRISPR-cas9 system, this was the first-ever attempt to genome engineer a living human embryo. Results were highly inconsistent and included unexpected effects, such as random introduction of mutations. Out of the 86 total embryos utilized in the study, 71 survived the initial CRISPR snips, only 28 successfully spliced in the new DNA, and a small fraction of those splices actually generated a functional protein. The researchers stopped the study because the science is too immature.

This work prompted another vigorous round of debate in the scientific community regarding the ethicsof genetic manipulation. It did prompt the National Institutes of Health to announce it would not fund anyresearch that tampers with the human germ line. Despite the funding ban, the NIH also acknowledged the importance of the CRISPR-cas9 technology in a press release.

"This technology is also being used to develop the next generation of antimicrobials, which can specifically target harmful strains of bacteria and viruses," the NIH statement reads."In the first clinical application of genomic editing, a related genome editing technique (using a zinc finger nuclease) was used to create HIV-1 resistance in human immune cells, bringing HIV viral load down to undetectable levels in at least one individual. Advances in technology have given us an elegant new way of carrying out genome editing, but strong arguments against the use of gene-editing technologies in human embryos remain.

Mark Crawford is an independent writer.

Learn about the latest trends in medicine and biology at ASMEs Global Congress onNanoEngineering for Medicine and Biology.

NIH Statement

getmedia/fe344cf1-0d83-4d34-b80a-54240678fab2/Genomics-and-Human-Genetic-Engineering_thumb.jpg.aspx?width=60&height=60&ext=.jpg

See the original post:

Genomics and Human Genetic Engineering - ASME

Human Genetic Engineering Pros And Cons

Many human genetic engineering pros and cons are there that have stayed the same since its introduction to humanity. When the humans started harnessing the atomic powers, then just few years later they also start recognizing the effects of human genetic engineering on mankind. Many scientists have a belief that gene therapy can be a mainstream for saving lives of many people. A lot of human genetic engineering pros and cons have been involved since the evolution of genetic engineering. Mentioned below are some important advantages or pros of genetic engineering:

Other human genetic engineering pros and cons include the desirable characteristics in different plants and animals at the same time convenient. One can also do the manipulation of genes in trees or big plants. This will enable the trees to absorb increased amount of carbon dioxide, and it will reduce the effects of global warming. However, there is a question from critics that whether man has the right to do such manipulations or alterations in the genes of natural things.

With human genetic engineering, there is always a chance for altering the wheat plants genetics, which will then enable it to grow insulin. Human genetic engineering pros and cons have been among the concern of a lot of people involved in genetic engineering. Likewise the pros, certain cons are there of using the genetic engineering. Mentioned below are the cons of human genetic engineering:

The evolution of genetic engineering gets the consideration of being the biggest breakthroughs in the history of mankind after the evolution of atomic energy, and few other scientific discoveries. However, human genetic engineering pros and cons together have contributed a lot in creating a controversial image of it among the people.

All these eventualities have forced the government of many countries to make strict legislation laws to put restrictions on different experiment being made on human genetic engineering. They have made this decision by considering different human genetic engineering pros and cons.

Human Genetic Engineering Pros And Cons

3.12 (62.35%) 3288 votes

Read this article:

Human Genetic Engineering Pros And Cons

Human or Superhuman? – National Catholic Register

Church Teaching on Genetic Engineering: May 6 issue column.

Human genetic engineering has always been the stuff of science-fiction novels and blockbuster Hollywood films. Except that it is no longer confined to books and movies.

Scientists and doctors are already attempting to genetically alter human beings and our cells. And whether you realize it or not, you and your children are being bombarded in popular media with mixed messages on the ethics surrounding human genetic engineering.

So what does the Church say about the genetic engineering of humans?

The majority of Catholics would likely say that the Church opposes any genetic modification in humans. But that is not what our Church teaches. Actually, the Church does support human genetic engineering; it just has to be the right kind.

Surprised? Most Catholics probably are.

To understand Catholic Church teaching on genetic engineering, it is critical to understand an important distinction under the umbrella of genetic engineering: the difference between therapy and enhancement. It is a distinction that every Catholic should learn to identify, both in the real world and in fiction. Gene therapy and genetic enhancement are technically both genetic engineering, but there are important moral differences.

For decades, researchers have worked toward using genetic modification called gene therapy to cure devastating genetic diseases. Gene therapy delivers a copy of a normal gene into the cells of a patient in an attempt to correct a defective gene. This genetic alteration would then cure or slow the progress of that disease. In many cases, the added gene would produce a protein that is missing or not functioning in a patient because of a genetic mutation.

One of the best examples where researchers hope gene therapy will be able to treat genetic disease is Duchenne Muscular Dystrophy or DMD. DMD is an inherited disorder where a patient cannot make dystrophin, a protein that supports muscle tissue. DMD strikes in early childhood and slowly degrades all muscle tissue, including heart muscle. The average life expectancy of someone with DMD is only 30 years.

Over the last few years, researchers have been studying mice with DMD. They have been successful in inserting the normal dystrophin gene into the DNA of the mice. These genetically engineered mice were then able to produce eight times more dystrophin than mice with DMD. More dystrophin means more muscle, which, in the case of a devastating muscle-wasting disease like DMD, would be a lifesaver.

Almost immediately after the announcement of this breakthrough, the researchers were inundated with calls from bodybuilders and athletes who wanted to be genetically modified to make more muscle.

The callers essentially wanted to take the genetic engineering designed to treat a fatal disease and apply it to their already healthy bodies.

Genetically engineering a normal man who wants more muscle to improve his athletic ability is no longer gene therapy. Instead, it is genetic enhancement.

Genetic enhancement would take an otherwise healthy person and genetically modify him to be more than human, not just in strength, but also in intelligence, beauty or any other desirable trait.

So why is the distinction between gene therapy and genetic enhancement important? The Catholic Church is clear that gene therapy is good, while genetic enhancement is morally wrong.

Why? Because gene therapy seeks to return a patient to normal human functioning. Genetic enhancement, on the other hand, assumes that mans normal state is flawed and lacking, that mans natural biology needs enhancing. Genetic enhancement would intentionally and fundamentally alter a human being in ways not possible by nature, which means in ways God never intended.

The goal of medical intervention must always be the natural development of a human being, respecting the patients inherent dignity and worth. Enhancement destroys that inherent dignity by completely rejecting mankinds natural biology. From the Charter for Health Care Workers by the Pontifical Council for Pastoral Assistance:

In moral evaluation, a distinction must be made between strictly therapeutic manipulation, which aims to cure illnesses caused by genetic or chromosome anomalies (genetic therapy), and manipulation, altering the human genetic patrimony. A curative intervention, which is also called genetic surgery, will be considered desirable in principle, provided its purpose is the real promotion of the personal well-being of the individual, without damaging his integrity or worsening his condition of life.

On the other hand, interventions which are not directly curative, the purpose of which is the production of human beings selected according to sex or other predetermined qualities, which change the genotype of the individual and of the human species, are contrary to the personal dignity of the human being, to his integrity and to his identity. Therefore, they can be in no way justified on the pretext that they will produce some beneficial results for humanity in the future. No social or scientific usefulness and no ideological purpose could ever justify an intervention on the human genome unless it be therapeutic; that is, its finality must be the natural development of the human being.

So genetic engineering to cure or treat disease or disability is good.

Genetic engineering to change the fundamental nature of mankind, to take an otherwise healthy person and engineer him to be more than human is bad.

There is much misinformation surrounding the Catholic Churchs teaching on human genetic engineering. One example is in a piece in The New York Times by David Frum. Frum states that John Paul II supported genetic enhancement and, therefore, the Church does as well. Frum performs a sleight of hand, whether intentional or not. See if you can spot it:

The anti-abortion instincts of many conservatives naturally incline them to look at such [genetic engineering] techniques with suspicion and, indeed, it is certainly easy to imagine how they might be abused. Yet in an important address delivered as long ago as 1983, Pope John Paul II argued that genetic enhancement was permissible indeed, laudable even from a Catholic point of view, as long as it met certain basic moral rules. Among those rules: that these therapies be available to all.

Frum discusses enhancement and therapy as if they are the same. He equates them using the words therapies and enhancement interchangeably. Because John Paul II praised gene therapy, the assumption was that he must laud genetic enhancement as well. This confusion is common because, many argue, there is not a technical difference between therapy and enhancement, so lumping them together is acceptable.

Catholics must not fall into this trap. Philosophically, gene therapy and genetic enhancement are different. One seeks to return normal functioning; the other seeks to take normal functioning and alter it to be abnormal.

There are practical differences between therapy and enhancement as well. Genetic engineering has already had unintended consequences and unforeseen side effects. Gene-therapy trials to cure disease in humans have been going on for decades. All has not gone as planned. Some patients have developed cancer as a result of these attempts at genetically altering their cells.

In 1999, a boy named Jesse Gelsinger was injected with a virus designed to deliver a gene to treat a genetic liver disease. Jesse could have continued with his current treatment regime of medication, but he wanted to help others with the same disorder, so he enrolled in the trial. Tragically, Jesse died four days later from the gene therapy he received.

In 2007, 36-year-old mother Jolee Mohr died while participating in a gene-therapy trial. She had rheumatoid arthritis, and just after the gene therapy (also using a virus for delivery) was injected into her knee, she developed a sudden infection that caused organ failure. An investigation concluded that her death was likely not a direct result of the gene therapy, but some experts think that with something as treatable as rheumatoid arthritis she should never have been entered into such a trial. They argued that, because of the risks, gene therapy should only be used for treating life-threatening illness.

In other words, genetic engineering should only be tried in cases where the benefits will outweigh the risks, as in the treatment of life-threatening conditions. Currently, gene therapy is being undertaken because the risk of the genetic engineering is outweighed by the devastation of the disease it is attempting to cure. With the risks inherent in genetic modification, it should never be attempted on an otherwise healthy person.

You may be thinking that such risky enhancement experiments would never happen. Scientists and doctors would never attempt genetic modifications in healthy humans; human enhancements only exist in science fiction and will stay there. Except science and academia are already looking into it.

The National Institutes of Health (NIH) has awarded Maxwell Mehlman, director of the Law-Medicine Center at Case Western Reserve University School of Law, $773,000 to develop standards for tests on human subjects in genetic-enhancement research. Research that would take otherwise normal humans and make them smarter, stronger or better-looking. If the existing human-trial standards cannot meet the ethical conditions needed for genetic-enhancement research, Mehlman has been asked to recommend changes.

In a recent paper in the journal Ethics, Policy & Environment, S. Matthew Liao, a professor of philosophy and bioethics at New York University, explored ways humanity can change its nature to combat climate change. One of the suggestions Liao discusses is to genetically engineer human eyes to be like cat eyes so we can all see in the dark. This would reduce the need for lighting and reduce energy usage. Liao also discusses genetically modifying our offspring to be smaller so they eat less and use fewer resources.

Of course, Liao insists these are just discussions of possibilities, but what begins as discussions among academics often becomes common among the masses.

Once gene therapy has been perfected and becomes a mainstream treatment for genetic disease, the cries for genetic enhancement will be deafening. The masses will scream that they can do to their bodies as they wish and they wish to no longer be simply human. They wish to be super human.

And with conscience clauses for medical professionals under attack, doctors and nurses may be unable to morally object to genetically altering their perfectly healthy patient or a parents perfectly healthy child.

It is important for Catholics to not turn their backs on technical advancements in biotechnology simply because the advancements are complex.

We can still influence the public consciousness when it comes to human genetic engineering. We are obliged to loudly draw the line between therapy and enhancement otherwise, society, like Frum, will confuse the two.

It is not too late to make sure medically relevant genetic engineering does not turn into engineering that forever changes the nature of man.

Rebecca Taylor is a clinicallaboratory specialist inmolecular biology.She writes about bioethics on her

blog Mary Meets Dolly.

Here is the original post:

Human or Superhuman? - National Catholic Register

Genetic engineering in science fiction – Wikipedia

In literature and especially in science fiction, genetic engineering has been used as a theme or a plot device in many stories.[1][2]

In his 1924 essay Daedalus, or Science and the Future, J. B. S. Haldane predicted a day when biologists would invent new algae to feed the world and ectogenetic children would be created and modified using eugenic selection. Aldous Huxley developed these ideas in a satirical direction for his 1932 novel Brave New World, in which ectogenetic embryos were developed in selected environments to create children of an 'Alpha', 'Beta', or 'Gamma' type.[3]

The advent of large-scale genetic engineering has increased its presence in fiction.[4][5] Genetics research consortia, such as the Wellcome Trust Sanger Institute, have felt the need to distinguish genetic engineering fact from fiction in explaining their work to the public,[1] and have explored the role that genetic engineering has played in the public perception of programs, such as the Human Genome Project.[6]

Beyond the usual library catalog classifications,[7] the Wellcome Trust Sanger Institute[1] and the NHGRI[6] have compiled catalogs of literature in various media with genetics and genetic engineering as a theme or plot device. Such compilations are also available at fan sites.[8]

In the 2000 television series Andromeda, the Nietzscheans (Homo sapiens invictus in Latin) are a race of genetically engineered humans who religiously follow the works of Friedrich Nietzsche, social Darwinism and Dawkinite genetic competitiveness. They claim to be physically perfect and are distinguished by bone blades protruding outwards from the wrist area.

In the book 2312 by Kim Stanley Robinson, genetic engineering of humans, plants and animals and how that affects a society spread over the solar system is explored.

In the Animorphs book series, race of aliens known as the Hork-Bajir were engineered by a race known as the Arns. Another race, the Iskhoots, are another example of genetic engineering. The outer body, the Isk, was created by the Yoort, who also modify themselves to be symbotic to the Isk. Also, a being known as the Ellimist has made species such as the Pemalites by this method.

In the 1983 film Anna to the Infinite Power, the main character was one of seven genetically cloned humans created by Anna Zimmerman as a way to groom a perfect person in her image. After her death, her work was carried on by her successor Dr. Henry Jelliff, who had other plans for the project. But in the end we learn that her original genetic creation, Michaela Dupont, has already acquired her creator's abilities, including how to build a genetic replicator from scratch.

The 1996 video game series Resident Evil involves the creation of genetically engineered viruses which turn humans and animals into organisms such as zombies, the Tyrants or Hunters by a worldwide pharmaceutical company called the Umbrella Corporation.

In the video game series BioShock, most of the enemies in both BioShock and BioShock 2, referred to as "splicers", as well as the player, gain superpowers and enhance their physical and mental capabilities by means of genetically engineered plasmids, created by use of ADAM stem cells secreted by a species of sea slug.[9]

The novel Beggars in Spain by Nancy Kress and its sequels are widely recognized by science fiction critics as among the most sophisticated fictional treatments of genetic engineering. They portray genetically-engineered characters whose abilities are far greater than those of ordinary humans (e.g. they are effectively immortal and they function without needing to sleep). At issue is what responsibility they have to use their abilities to help "normal" human beings. Kress explores libertarian and more collectivist philosophies, attempting to define the extent of people's mutual responsibility for each other's welfare.

In the Battletech science fiction series, the Clans have developed a genetic engineering program for their warriors, consisting of eugenics and the use of artificial wombs.

In The Champion Maker, a novel by Kevin Joseph, a track coach and a teenage phenom stumble upon a dark conspiracy involving genetic engineering while pursuing Olympic gold.

In the CoDominium series, the planet Sauron develops a supersoldier program. The result were the Sauron Cyborgs, and soldiers. The Cyborgs, who made up only a very small part of the population of Sauron, were part highly genetically engineered human, and part machine. Cyborgs held very high status in Sauron society.

Sauron soldiers, who made up the balance of the population, were the result of generations of genetic engineering. The Sauron soldiers had a variety of physical characteristics and abilities that made the soldiers the best in combat and survival in many hostile environments. For instance, their bones were stronger than unmodified humans. Their lungs extract oxygen more efficiently than normal unmodified humans, allowing them to exert themselves without getting short of breath, or function at high altitudes. Sauron soldiers also have the ability to change the focal length of their eyes, so that they can "zoom" in on a distant object, much like an eagle.

The alien Moties also have used genetic engineering.

In the science fiction series Crest of the Stars, the Abh are a race of genetically engineered humans, who continue to practice the technology. All Abh have been adapted to live in zero-gravity environments, with the same features such as beauty, long life, lifelong youthful appearance, blue hair, and a "space sensory organ".

In the 2000 TV series Dark Angel, the main character Max is one of a group of genetically engineered supersoldiers spliced with feline DNA.

In military science fiction 1993 television series Exosquad, the plot revolves around the conflict between Terrans (baseline humans) and Neosapiens, a race of genetically engineered sentient (and sterile) humanoids, who were originally bred for slave labour but revolted under the leadership of Phaeton and captured the Homeworlds (Earth, Venus and Mars). During the war, various sub-broods of Neosapiens were invented, such as, Neo Megas (intellectually superior to almost any being in the Solar System), Neo Warriors (cross-breeds with various animals) and Neo Lords (the ultimate supersoldiers).

Genetic modification is also found in the 2002 anime series Gundam SEED. It features enhanced humans called Coordinators who were created from ordinary humans through genetic modification.

In Marvel Comics, the 31st century adventurers called the Guardians of the Galaxy are genetically engineered residents of Mercury, Jupiter, and Pluto.

The 1997 film Gattaca deals with the idea of genetic engineering and eugenics as it projects what class relations would look like in a future society after a few generations of the possibility of genetic engineering.

In Marvel Comics, the Inhumans are the result of genetic engineering of early humans by the Kree alien race.

Rather than deliberate engineering, this 2017 novel by British author Steve Turnbull features a plague that carries genetic material across species, causing a wide variety of mutations. Human attempts to control this plague have resulted in a fascist dystopia.

In the Leviathan universe, a group known as the Darwinists use genetically engineered animals as weapons.

The 2000AD strip, Lobster Random features a former soldier-turned-torturer, who has been modified to not feel pain or need to sleep and has a pair of lobster claws grafted to his hips. This state has left him somewhat grouchy.

In Metal Gear Solid, the Genome Army were given gene therapy enhancements.

Also in the series, the Les Enfants Terribles project involved genetic engineering.

The Moreau series by S. Andrew Swann has as the central premise the proliferation of humanoid genetically-engineered animals. The name of the series (and of the creatures themselves) comes from the H. G. Wells novel The Island of Dr. Moreau. In the Wells novel, humanoid animals were created surgically, though this detail has been changed to be genetic manipulation in most film adaptations.

The Neanderthal Parallax novel by Robert J. Sawyer depicts a eugenic society that has benefitted immensely from the sterilization of dangerous criminals as well as preventing the 5% least intelligent from procreating for ten generations.

In the Neon Genesis Evangelion anime series, the character Rei Ayanami is implied to be a lab-created being combining human and angelic DNA. (compare to the Biblical Nephilim)

Genetic engineering (or something very like it) features prominently in Last and First Men, a 1930 novel by Olaf Stapledon.

Genetic engineering is depicted as widespread in the civilized world of Oryx and Crake. Prior to the apocalypse, though, its use among humans is not mentioned. Author Margaret Atwood describes many transgenic creatures such as Pigoons (though originally designed to be harvested for organs, post-apocalyptic-plague, they become more intelligent and vicious, traveling in packs), Snats (snake-rat hybrids who may or may not be extinct), wolvogs (wolf-dog hybrids), and the relatively harmless "rakunks" (skunk-raccoon hybrids, originally designed as pets with no scent glands).

In Plague, a 1979 film, a bacterium in an agricultural experiment accidentally escapes from a research laboratory in Canada, reaching the American Northeast and Great Britain.

Using a method similar to the DNA Resequencer from Stargate SG-1, and even called DNA Resequencing, the Operation Overdrive Power Rangers were given powers of superhuman strength, enhanced hearing, enhanced eyesight, super bouncing, super speed, and invisibility.

Quake II and Quake 4, released in 1997 and 2005, contain genetically-engineered Stroggs.

In the long-running 2006 series Rogue Trooper, the eponymous hero is a Genetic Infantryman, one of an elite group of supersoldiers genetically modified to resist the poisons left in the Nu-Earth atmosphere by decades of war. The original concept from the pages of 80s cult sci-fi comic 2000 AD (of Judge Dredd fame).

James Blish's The Seedling Stars (1956) is the classic story of controlled mutation for adaptability. In this novel (originally a series of short stories) the Adapted Men are reshaped human beings, designed for life on a variety of other planets. This is one of science fiction's most unreservedly optimistic accounts to date of technological efforts to reshape human beings.

In "The Man Who Grew Too Much" episode (2014), Sideshow Bob steals DNA from a GMO company, thus making himself the very first genetically engineered human, and attempts to combine his DNA with that of the smartest people ever to exist on Earth.

In Sleeper, a 1973 parody of many science fiction tropes, genetically modified crops are shown to grow gigantic.

The short-lived 1990s television series Space: Above and Beyond includes a race of genetically engineered and artificially gestated humans who are born at the physical age of 18, and are collectively known as In Vitros or sometimes, derogatorily, "tanks" or "nipple-necks". At the time of the series storyline, this artificial human race was integrated with the parent species, but significant discrimination still occurred.

The Ultimate Life Form project that produced Shadow the Hedgehog and Biolizard in the Sonic the Hedgehog series was a genetic engineering project.

In the Star Trek universe, genetic engineering has featured in a couple of films, and a number of television episodes.

The Breen, the Dominion, Species 8472, the Xindi, and the Federation use technology with organic components.

Khan Noonien Singh, who appeared in Space Seed and Star Trek II: The Wrath of Khan, was a product of genetic engineering. His physical structure was modified to make him stronger and to give him greater stamina than a regular human. His mind was also enhanced. However, the creation of Khan would have serious consequences because the superior abilities given to him created superior ambition. Along with other enhanced individuals, they tried to take over the planet. When they were reawakened by the Enterprise, Khan set himself to taking over the universe. Later, he became consumed by grief and rage, and set himself on the goal of destroying Kirk.

Others of these genetically enhanced augments wreaked havoc in the 22nd century, and eventually some of their enhanced DNA was blended with Klingon DNA, creating the human-looking Klingons of the early 23rd century (See Star Trek: Enterprise episodes "Affliction" and "Divergence").

Because of the experiences with genetic engineering, the Federation had banned it except to correct genetic birth defects, but a number of parents still illegally subjected their children to genetic engineering for a variety of reasons. This often created brilliant but unstable individuals. Such children are not allowed to serve in Starfleet or practice medicine, though Julian Bashir is a notable exception to this. Despite the ban, the Federation allowed the Darwin station to conduct human genetic engineering, which resulted in a telepathic, telekentic humans with a very effective immune system.

In Attack of the Clones, the Kamino cloners who created the clone army for the Galactic Republic had used engineering to enhance their clones. They modified the genetic structure of all but one to accelerate their growth rate, make them less independent, and make them better suited to combat operations.

Later, the Yuuzhan Vong are a race who exclusively use organic technology and regard mechanical technology as heresy. Everything from starships to communications devices to weapons are bred and grown to suit their needs.

In the show Stargate SG-1, the DNA Resequencer was a device built by the Ancients, designed to make extreme upgrades to humans by realigning their DNA and upgrading their brain activity. The machine gave them superhuman abilities, such as telekensis, telepathy, precognition, superhuman senses, strength, and intellect, the power to heal at an incredible rate, and the power to heal others by touch.

In the futuristic tabletop and video game series, Warhammer 40,000, the Imperium of Man uses genetic engineering to enhance the abilities of various militant factions such as the Space Marines, the Thunder Warriors, and the Adeptus Custodes. In the case of Space Marines, a series of synthesized, metamorphosis-inducing organs, known as gene seed, is made from the genome of the twenty original Primarchs and used to start the transformation of these superhuman warriors.

At the same time, the Tau Empire uses a form of eugenic breeding to improve the physical and mental condition of its various castes.

In the e-book, Methuselah's Virus, an ageing pharmaceutical billionaire accidentally creates a contagious virus capable of infecting people with extreme longevity when his genetic engineering experiment goes wrong. The novel then examines the problem of what happens if Methuselah's Virus is at risk of spreading to everyone on the entire planet.

In World Hunger, author Brian Kenneth Swain paints the harrowing picture of a life sciences company that field tests a new strain of genetically modified crop, the unexpected side effect of which is the creation of several new species of large and very aggressive insects.

Genetic engineering is an essential theme of the illustrated book Man After Man: An Anthropology of the Future by Dougal Dixon, where it is used to colonize other star systems and save the humans of Earth from extinction.

The Survival Gene e-book contains the author Artsun Akopyan's idea that people can't preserve nature as it is forever, so they'll have to change their own genetics in the future or die. In the novel, wave genetics is used to save humankind and all life on Earth.

A series of books by David Brin in which humans have encountered the Five Galazies, a multitude of sentient species which all practice Uplift raising species to sapience through genetic engineering. Humans, believing they have risen to sapience through evolution alone, are seen as heretics. But they have some status because at the time of contact humans had already Uplifted two species chimpanzees and bottlenose dolphins.

Eugenics is a recurrent theme in science fiction, often with both dystopian and utopian elements. The two giant contributions in this field are the novel Brave New World (1932) by Aldous Huxley, which describes a society where control of human biology by the state results in permanent social stratification.

There tends to be a eugenic undercurrent in the science fiction concept of the supersoldier. Several depictions of these supersoldiers usually have them bred for combat or genetically selected for attributes that are beneficial to modern or future combat.

The Brave New World theme also plays a role in the 1997 film Gattaca, whose plot turns around reprogenetics, genetic testing, and the social consequences of eugenics. Boris Vian (under the pseudonym Vernon Sullivan) takes a more light-hearted approach in his novel Et on tuera tous les affreux ("And we'll kill all the ugly ones").

Other novels touching upon the subject include The Gate to Women's Country by Sheri S. Tepper and That Hideous Strength by C. S. Lewis. The Eugenics Wars are a significant part of the background story of the Star Trek universe (episodes "Space Seed", "Borderland", "Cold Station 12", "The Augments" and the film Star Trek II: The Wrath of Khan). Eugenics also plays a significant role in the Neanderthal Parallax trilogy where eugenics-practicing Neanderthals from a near-utopian parallel world create a gateway to earth. Cowl by Neal Asher describes the collapse of western civilization due to dysgenics. Also Eugenics is the name for the medical company in La Foire aux immortels book by Enki Bilal and on the Immortel (Ad Vitam) movie by the same author.

In Frank Herbert's Dune series of novels, selective breeding programs form a significant theme. Early in the series, the Bene Gesserit religious order manipulates breeding patterns over many generations in order to create the Kwisatz Haderach. In God Emperor of Dune, the emperor Leto II again manipulates human breeding in order to achieve his own ends. The Bene Tleilaxu also employed genetic engineering to create human beings with specific genetic attributes. The Dune series ended with causal determinism playing a large role in the development of behavior, but the eugenics theme remained a crucial part of the story.

In Orson Scott Card's novel Ender's Game, Ender is only allowed to be conceived because of a special government exception due to his parent's high intelligence and the extraordinary performance of his siblings. In Ender's Shadow, Bean is a test-tube baby and the result of a failed eugenics experiment aimed at creating child geniuses.

In the novels Methuselah's Children and Time Enough for Love by Robert A. Heinlein, a large trust fund is created to give financial encouragement to marriage among people (the Howard Families) whose parents and grandparents were long lived. The result is a subset of Earth's population who has significantly above-average life spans. Members of this group appear in many of the works by the same author.

In the 1982 Robert Heinlein novel Friday, the main character has been genetically engineered from multiple sets of donors, including, as she finds out later her boss. These enhancements give her superior strength, speed, eyesight in addition to healing and other advanced attributes. Creations like her are considered to be AP's (Artificial Person).

In Eoin Colfer's book The Supernaturalist, Ditto is a Bartoli Baby, which is the name for a failed experiment of the famed Dr. Bartoli. Bartoli tried to create a superior race of humans, but they ended in arrested development, with mutations including extrasensory perception and healing hands.

In Larry Niven's Ringworld series, the character Teela Brown is a result of several generations of winners of the "Birthright Lottery", a system which attempts to encourage lucky people to breed, treating good luck as a genetic trait.

In season 2 of Dark Angel, the main 'bad guy' Ames White is a member of a cult known as the Conclave which has infiltrated various levels of society to breed super-humans. They are trying to exterminate all the Transgenics, including the main character Max Guevara, whom they view as being genetically unclean for having some animal DNA spliced with human.

In the movie Immortel (Ad Vitam), Director/Writer Enki Bilal titled the name of the evil corrupt organization specializing in genetic manipulation, and some very disturbing genetic "enhancement" eugenics. Eugenics has come to be a powerful organization and uses people and mutants of "lesser" genetic stock as guinea pigs. The movie is based on the Nikopol trilogy in Heavy Metal comic books.

In the video game Grand Theft Auto: Vice City, a fictional character called Pastor Richards, a caricature of an extreme and insane televangelist, is featured as a guest on a discussion radio show about morality. On this show, he describes shooting people who do not agree with him and who are not "morally correct", which the show's host describes as "amateur eugenics".

In the 2006 Mike Judge film Idiocracy, a fictional character, pvt. Joe Bauers, aka Not Sure (played by Luke Wilson), awakens from a cryogenic stasis in the year 2505 into a world devastated by dysgenic degeneration. Bauers, who was chosen for his averageness, is discovered to be the smartest human alive and eventually becomes president of the United States.

The manga series Battle Angel Alita and its sequel Battle Angel Alita: Last Order (Gunnm and Gunnm: Last Order as it is known in Japan) by Yukito Kishiro, contains multiple references to the theme of eugenics. The most obvious is the sky city Tiphares (Salem in Japanese edition). Dr. Desty Nova, in the first series in Volume 9, reveals the eugenical nature of the city to Alita (Gally or Yoko) and it is further explored in the sequel series. A James Cameron movie based on the series is due for release on 2018.[10]

In the French 2000 police drama Crimson Rivers, inspectors Pierre Niemans (played by Jean Reno) and his colleague Max Kerkerian (Vincent Cassel) attempt to solve series of murders triggered by eugenics experiment that was going on for years in university town of Guernon.

In the Cosmic Era universe of the Gundam anime series (Mobile Suit Gundam SEED), war is fought between the normal human beings without genetic enhancements, also known as the Naturals, and the Coordinators, who are genetically enhanced. It explores the pros and cons as well as possible repercussions from Eugenics

The Khommites of planet Khomm practice this through the method of self-cloning, believing they are perfect.

The book Uglies, part of a four-book series by Scott Westerfeld, revolves around a girl named Tally who lives in a world where everyone at the age of sixteen receives extensive cosmetic surgery to turn into "Pretties" and join society. Although it deals with extreme cosmetic surgery, the utopian (or dystopian, depending on one's interpretation) ideals in the book are similar to those present in the books mentioned above.

View post:

Genetic engineering in science fiction - Wikipedia