12345...102030...


Ethereum Price Forecast and Analysis – September 15, 2017

China is the only Ethereum news that matters today, as crypto markets continue to reel from a Chinese crackdown on local exchanges. The entire crypto market is under siege.

Ethereum to USD prices are down about 20.85% and Ethereum to Bitcoin prices dropped roughly 3.1%, suggesting that investors are coalescing around the market leader in times of uncertainty.

With ETH prices touching a two-month low at $201.62, many are wondering when the pain will stop. The truth is, there might be more pain to come.

Two of China’s largest cryptocurrency exchanges have not yet shut.

The post Ethereum Price Forecast and Analysis – September 15, 2017 appeared first on Profit Confidential.

Link:

Ethereum Price Forecast and Analysis – September 15, 2017

Bitcoin Price Forecast and Analysis – September 19, 2017

Bitcoin (BTC) is once again nearing the all-important $4,000 threshold, a significant bounce-back compared to last week’s low point of $3,200 that came as a result of China’s crackdown on initial coin offerings (ICO).

Of course, the brightest cryptocurrency future has to include the Chinese market and its loads of cash, but for now, Bitcoin should be able to pull itself up steadily back to the $5,000 mark without China’s help.

Cryptocurrencies will need to find a way to reintegrate themselves into the Chinese market in the long term. BTC prices benefit from a surge in.

The post Bitcoin Price Forecast and Analysis – September 19, 2017 appeared first on Profit Confidential.

Read the original:

Bitcoin Price Forecast and Analysis – September 19, 2017

Litecoin Price Forecast and Analysis – September 19, 2017

While most of the cryptocurrency market hit the snooze button on Monday, Litecoin traders were up and about. More than $408.0 million worth of LTC coins changed hands as the Litecoin to USD exchange rate jumped roughly 4.11%.

Litecoin also gained around 2.9% against Bitcoin, possibly balancing for the different speeds in their recoveries. Nevertheless, it’ll be a long time before the two currencies are disentangled.

To this day, investors perceive Litecoin as “the silver to Bitcoin’s gold.”

There were moments when the market started to value LTC based on Litecoin news alone (which led to all-time highs), but then China rained on everyone’s parade by shutting down.

The post Litecoin Price Forecast and Analysis – September 19, 2017 appeared first on Profit Confidential.

See original here:

Litecoin Price Forecast and Analysis – September 19, 2017

Ripple Price Forecast and Analysis – September 19, 2017

Ripple prices took a break from the high drama of recent weeks, ending the last 24 hours a slight twitch up to around $0.185670. The stability of the Ripple to USD exchange rate is a constructive signal for investors that grew nervous after the Chinese crackdown.

After all, XRP fell by double digits only a few days ago, putting our annual Ripple price prediction in jeopardy. Cooler heads have prevailed since then, and Ripple is back above where it was a.

The post Ripple Price Forecast and Analysis – September 19, 2017 appeared first on Profit Confidential.

Continue reading here:

Ripple Price Forecast and Analysis – September 19, 2017

Ripple Price Forecast and Analysis – September 18, 2017

For the first time in a week, cryptocurrencies stuck their heads above water. The Ripple-to-USD exchange rate jumped 7.13% to $0.188622, while simultaneously falling 4.22% against Bitcoin.

China’s ban on cryptocurrency exchanges was once again the biggest piece of Ripple news. This time, however, prices moved to the upside, because investors realized that last week’s reaction was a little excessive (if not downright apocalyptic).

What makes it worse is that Ripple didn’t deserve the beating it took last week.

For one thing, less than five percent of its.

The post Ripple Price Forecast and Analysis – September 18, 2017 appeared first on Profit Confidential.

Read this article:

Ripple Price Forecast and Analysis – September 18, 2017

Litecoin Price Forecast and Analysis – September 18, 2017

Despite China taking a bat to Litecoin’s knees, the Litecoin-to-USD exchange rate bounced up about 9.68% to roughly $51.89. “What explosive piece of Litecoin news caused this rally?” you ask.

Oddly, nothing in particular.

This was a see-saw moment for Litecoin prices. After tilting hard towards the bearish side last week, investors pushed off the bottom to bring LTC prices back above $50.00.

Perhaps they thought the reaction to China’s ban on cryptocurrency exchanges was a tad overblown. Or perhaps they thought LTC is a buy under $50.00.

In either case, the surge in prices is likely to continue now that the fog of uncertainty has lifted.

Last week, we knew nothing.

The post Litecoin Price Forecast and Analysis – September 18, 2017 appeared first on Profit Confidential.

See the original post:

Litecoin Price Forecast and Analysis – September 18, 2017

Ethereum Price Forecast and Analysis – September 18, 2017

Hallelujah! After a week of non-stop pain, investors finally moved past China’s ban on cryptocurrency exchanges. They bid up prices, bet on fundamentals, and were rewarded with flashing green numbers on their trading monitors.

For instance, the Ethereum-to-USD exchange rate jumped 17% to $280.69 on Sunday.

Considering that it slipped below $200.00 on Friday, the rebound was particularly steep. Who said there’s no resilience in cryptocurrencies? It took less than a week to shrug off China’s ban, which was definitely more than a flesh wound.

Ethereum gained.

The post Ethereum Price Forecast and Analysis – September 18, 2017 appeared first on Profit Confidential.

More here:

Ethereum Price Forecast and Analysis – September 18, 2017

This Cryptocurrency Could Be the Next Bitcoin

Bitcoin Turned $25 into $34 Million
Bitcoin, bitcoin, bitcoin, bitcoin, bitcoin, bitcoin…bitcoin. It’s all that anyone seems to be talking about, yet the volatility of Bitcoin is terrifying. Double-digit swings are a normal occurrence. And no one can explain what it does, at least not in plain English.

But there’s no denying that Bitcoin is a gold mine.

Investors who bought BTC coins in 2013 would have gained 2,411% by now. And those who “mined” the currency made even bigger returns..

The post This Cryptocurrency Could Be the Next Bitcoin appeared first on Profit Confidential.

Read more:

This Cryptocurrency Could Be the Next Bitcoin

Ripple Price Forecast and Analysis – September 15, 2017

As with the rest of the cryptocurrency market, China takes center stage in our Ripple news update. It’s the only thing that matters at the moment, though one could argue that XRP is unfairly caught in the crossfire.

After all, less than five percent of Ripple’s trading volume comes from within China. Add that to the fact that the ban is on trading, and not “blockchain activities,” and it seems like Ripple’s eastward expansion is still on track.

What the regulators objected to was the “disorder” of cryptocurrency exchanges. They aren’t fond of chaos. But.

The post Ripple Price Forecast and Analysis – September 15, 2017 appeared first on Profit Confidential.

See more here:

Ripple Price Forecast and Analysis – September 15, 2017

Ethereum Price Forecast and Analysis – September 19, 2017

As the dust settles from China’s crackdown on cryptocurrencies, Ethereum looks poised for a rally that could send it across the $300.00 level. However, the situation remains tenuous.

The Chinese ban confirmed the worst fears of some investors—that central banks and other vested interests will regulate against cryptocurrencies to keep their hold on power.

It’s not an unreasonable fear, but I should add that regulators only banned yuan to crypto exchanges, not the existence of blockchain itself. That may sound like a difference without a distinction, but it could be.

The post Ethereum Price Forecast and Analysis – September 19, 2017 appeared first on Profit Confidential.

Here is the original post:

Ethereum Price Forecast and Analysis – September 19, 2017

New Medical Geneticists Join Ted Rogers Centre for Heart Research – Newswise (press release)

Newswise TORONTO, September 6, 2017 The Ted Rogers Centre for Heart Research today announces that Dr. Raymond Kim is its newest scientific lead, guiding efforts at the countrys only clinic devoted to cardiac genomics.

The Ted Rogers Centre Cardiac Genome Clinic is Canadas first such program to investigate the genetic causes of heart failure in both children and adults. At one of the worlds only cardiac genome clinics, researchers use whole genome sequencing to help identify the cause, formulate appropriate treatment options and optimize the management of patients and family members.

Genomics is a major part of our mission to better understand the nature of heart failure in order to develop novel treatments and preventative strategies, said Dr. Mansoor Husain, executive director of the Ted Rogers Centre. We are excited to have Raymond on board to build a unique program that is set up to have a very positive impact on heart failure care across the lifespan.

Dr. Kim, one of a handful of dual-trained internal medicine and medical genetics specialists in Toronto, is a rising star in medical genetics. He holds appointments at the Division of Clinical and Metabolic Genetics at SickKids, at the Fred A. Litwin Family Centre in Genetic Medicine that is jointly run by UHN and Mount Sinai Hospital, and at the Princess Margaret Cancer Centre. His research interests include genomic medicine, rare disorder registries and weaving novel genetic technologies into patient care.

Dr. Kim will co-direct the Cardiac Genome Clinic along with fellow medical geneticist Dr. Rebekah Jobling (SickKids), who is medical geneticist in the SickKids Division of Clinical and Metabolic Genetics and molecular geneticist in its Genome Diagnostics Molecular Laboratory.

The clinic opens up the incredible opportunity for families facing cardiovascular issues to have a team of scientists search for answers in the genome, said Dr. Kim. Genome testing will gradually become a normalized part of care, and we are at the forefront of this evolution, and are already helping shape best practices in this area.The addition of unique team members like Dr. Jobling makes our team world-class.

Dr. Kim joins three other scientific leads of the Ted Rogers Centre for Heart Research: Dr. Seema Mital, Dr. Heather Ross, and Professor Craig Simmons who are respective experts in genetics, heart failure, and cell and tissue engineering. Together, they are helping direct a vast, collaborative effort to change the lives of Canadians who live with, or are at risk of, heart failure a costly disease that is a global epidemic.

ABOUT THE TED ROGERS CENTRE FOR HEART RESEARCH

The Ted Rogers Centre for Heart Research aims to develop new diagnoses, treatments and tools to prevent and individually manage heart failure Canadas fastest growing cardiac disease. Enabled by an unprecedented gift of $130 million from the Rogers family, the Centre was jointly conceived by its three partner organizations: The Hospital for Sick Children, University Health Network, and the University of Toronto. Together, they committed an additional $139 million toward the Centre representing a $270 million investment in basic science, translational and clinical research, innovation, and education in regenerative medicine, genomics, and the clinical care of children and adults. It is addressing heart failure across the lifespan. http://www.tedrogersresearch.ca / @trogersresearch

To transform the care of children and adults with heart failure through discovery, innovation and knowledge translation.

Continued here:
New Medical Geneticists Join Ted Rogers Centre for Heart Research – Newswise (press release)

Taconic Biosciences Sponsors Custom Model to Support Kabuki Syndrome, a Rare Disorder Causing Intellectual … – GlobeNewswire (press release)

HUDSON, N.Y., Aug. 31, 2017 (GLOBE NEWSWIRE) — Taconic Biosciences, a global leader in genetically engineered rodent models and associated services, is funding the development of a custom mouse model to study Kabuki syndrome, a rare genetic disorder. Taconic is donating model generation services as a third-time sponsor of the Rare Disease Science Challenge, BeHEARD. Hosted by the Rare Genomics Institute, the Rare Disease Science Challenge is an annual event in which industry sponsors donate services to accelerate rare disease research.

Characterized by mild to moderate intellectual disability, stunted growth, immune dysregulation, and hearing loss, Kabuki syndrome is caused by mutations in the KMT2D or KDM6A genes. Taconic will use CRISPR/Cas 9 gene editing technology to develop the first Kmt2d missense mouse model of Kabuki syndrome and generate a cohort of mice for study. In parallel, Taconic will cryopreserve and store the mouse line.

Taconic recognizes the vital role mouse models play in understanding the mechanisms of rare diseases and the challenges of funding their research, said Bob Rosenthal, CEO, Taconic Biosciences. Taconic is committed to advancing rare disease research through efforts such as sponsorship of the BeHEARD challenge and donation of an integrated solution of model generation, breeding and cryopreservation capabilities.

Teresa Luperchio, PhD, a postdoctoral fellow in the laboratory of Hans Bjornsson, MD, PhD, director of the Epigenetics and Chromatin Clinic, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, will employ the Taconic model. Dr. Bjornssons lab previously characterized a mouse model carrying a loss-of-function variant of the Kmt2d gene and demonstrated reversal of some learning and memory deficits using therapeutic strategies. However, the initial mouse line models only a subset of individuals with Kabuki syndrome. Taconic will generate a Kabuki syndrome mouse model based on a patient-specific missense mutation. This will enable investigators to assess whether therapies they are developing can reverse disability in a wider spectrum of the Kabuki syndrome patient population.

The model will be invaluable in moving the field closer to treating what has been viewed as an untreatable disorder. Experience with our first mouse model showed that for patients with the KMT2D mutation, the disease may be treatable in humans, Dr. Bjornsson said. We hope the Taconic model will demonstrate this capability in an expanded patient population, allowing us to employ a single therapeutic strategy for all Kabuki syndrome type 1 patients.

Taconics ability to develop a patient-specific model was essential. Generating a model that closely represents what is seen in patients is critical for translating our findings from the bench to the clinic, Dr. Luperchio says.

To learn more about Taconics custom model generation, please call 1-888-TACONIC (888-822-6642) in the US or +45 70 23 04 05 in Europe, or email info@taconic.com.

To learn about the BeHEARD Project, visit http://www.raregenomics.org/beheard-competition/.

About Taconic Biosciences, Inc.Taconic Biosciences is a global leader in genetically engineered rodent models and services. Founded in 1952, Taconic helps biotechnology companies and institutions acquire, custom generate, breed, precondition, test, and distribute valuable research models worldwide. Specialists in genetically engineered mouse and rat models, precision research mouse models, and integrated model design and breeding services, Taconic operates three service laboratories and six breeding facilities in the U.S. and Europe, maintains distributor relationships in Asia and has global shipping capabilities to provide animal models almost anywhere in the world.

Follow this link:
Taconic Biosciences Sponsors Custom Model to Support Kabuki Syndrome, a Rare Disorder Causing Intellectual … – GlobeNewswire (press release)

Genetics – Wikipedia

This article is about the general scientific term. For the scientific journal, see Genetics (journal).

Genetics is the study of genes, genetic variation, and heredity in living organisms.[1][2] It is generally considered a field of biology, but intersects frequently with many other life sciences and is strongly linked with the study of information systems.

The father of genetics is Gregor Mendel, a late 19th-century scientist and Augustinian friar. Mendel studied “trait inheritance”, patterns in the way traits are handed down from parents to offspring. He observed that organisms (pea plants) inherit traits by way of discrete “units of inheritance”. This term, still used today, is a somewhat ambiguous definition of what is referred to as a gene.

Trait inheritance and molecular inheritance mechanisms of genes are still primary principles of genetics in the 21st century, but modern genetics has expanded beyond inheritance to studying the function and behavior of genes. Gene structure and function, variation, and distribution are studied within the context of the cell, the organism (e.g. dominance), and within the context of a population. Genetics has given rise to a number of subfields, including epigenetics and population genetics. Organisms studied within the broad field span the domain of life, including bacteria, plants, animals, and humans.

Genetic processes work in combination with an organism’s environment and experiences to influence development and behavior, often referred to as nature versus nurture. The intracellular or extracellular environment of a cell or organism may switch gene transcription on or off. A classic example is two seeds of genetically identical corn, one placed in a temperate climate and one in an arid climate. While the average height of the two corn stalks may be genetically determined to be equal, the one in the arid climate only grows to half the height of the one in the temperate climate due to lack of water and nutrients in its environment.

The word genetics stems from the ancient Greek genetikos meaning “genitive”/”generative”, which in turn derives from genesis meaning “origin”.[3][4][5]

The observation that living things inherit traits from their parents has been used since prehistoric times to improve crop plants and animals through selective breeding.[6] The modern science of genetics, seeking to understand this process, began with the work of the Augustinian friar Gregor Mendel in the mid-19th century.[7]

Prior to Mendel, Imre Festetics, a Hungarian noble, who lived in Kszeg before Mendel, was the first who used the word “genetics.” He described several rules of genetic inheritance in his work The genetic law of the Nature (Die genetische Gestze der Natur, 1819). His second law is the same as what Mendel published. In his third law, he developed the basic principles of mutation (he can be considered a forerunner of Hugo de Vries).[8]

Other theories of inheritance preceded his work. A popular theory during Mendel’s time was the concept of blending inheritance: the idea that individuals inherit a smooth blend of traits from their parents.[9] Mendel’s work provided examples where traits were definitely not blended after hybridization, showing that traits are produced by combinations of distinct genes rather than a continuous blend. Blending of traits in the progeny is now explained by the action of multiple genes with quantitative effects. Another theory that had some support at that time was the inheritance of acquired characteristics: the belief that individuals inherit traits strengthened by their parents. This theory (commonly associated with Jean-Baptiste Lamarck) is now known to be wrongthe experiences of individuals do not affect the genes they pass to their children,[10] although evidence in the field of epigenetics has revived some aspects of Lamarck’s theory.[11] Other theories included the pangenesis of Charles Darwin (which had both acquired and inherited aspects) and Francis Galton’s reformulation of pangenesis as both particulate and inherited.[12]

Modern genetics started with Mendel’s studies of the nature of inheritance in plants. In his paper “Versuche ber Pflanzenhybriden” (“Experiments on Plant Hybridization”), presented in 1865 to the Naturforschender Verein (Society for Research in Nature) in Brnn, Mendel traced the inheritance patterns of certain traits in pea plants and described them mathematically.[13] Although this pattern of inheritance could only be observed for a few traits, Mendel’s work suggested that heredity was particulate, not acquired, and that the inheritance patterns of many traits could be explained through simple rules and ratios.

The importance of Mendel’s work did not gain wide understanding until the 1890s, after his death, when other scientists working on similar problems re-discovered his research. William Bateson, a proponent of Mendel’s work, coined the word genetics in 1905[14][15] (the adjective genetic, derived from the Greek word genesis, “origin”, predates the noun and was first used in a biological sense in 1860[16]). Bateson both acted as a mentor and was aided significantly by the work of female scientists from Newnham College at Cambridge, specifically the work of Becky Saunders, Nora Darwin Barlow, and Muriel Wheldale Onslow.[17] Bateson popularized the usage of the word genetics to describe the study of inheritance in his inaugural address to the Third International Conference on Plant Hybridization in London in 1906.[18]

After the rediscovery of Mendel’s work, scientists tried to determine which molecules in the cell were responsible for inheritance. In 1911, Thomas Hunt Morgan argued that genes are on chromosomes, based on observations of a sex-linked white eye mutation in fruit flies.[19] In 1913, his student Alfred Sturtevant used the phenomenon of genetic linkage to show that genes are arranged linearly on the chromosome.[20]

Although genes were known to exist on chromosomes, chromosomes are composed of both protein and DNA, and scientists did not know which of the two is responsible for inheritance. In 1928, Frederick Griffith discovered the phenomenon of transformation (see Griffith’s experiment): dead bacteria could transfer genetic material to “transform” other still-living bacteria. Sixteen years later, in 1944, the AveryMacLeodMcCarty experiment identified DNA as the molecule responsible for transformation.[21] The role of the nucleus as the repository of genetic information in eukaryotes had been established by Hmmerling in 1943 in his work on the single celled alga Acetabularia.[22] The HersheyChase experiment in 1952 confirmed that DNA (rather than protein) is the genetic material of the viruses that infect bacteria, providing further evidence that DNA is the molecule responsible for inheritance.[23]

James Watson and Francis Crick determined the structure of DNA in 1953, using the X-ray crystallography work of Rosalind Franklin and Maurice Wilkins that indicated DNA has a helical structure (i.e., shaped like a corkscrew).[24][25] Their double-helix model had two strands of DNA with the nucleotides pointing inward, each matching a complementary nucleotide on the other strand to form what look like rungs on a twisted ladder.[26] This structure showed that genetic information exists in the sequence of nucleotides on each strand of DNA. The structure also suggested a simple method for replication: if the strands are separated, new partner strands can be reconstructed for each based on the sequence of the old strand. This property is what gives DNA its semi-conservative nature where one strand of new DNA is from an original parent strand.[27]

Although the structure of DNA showed how inheritance works, it was still not known how DNA influences the behavior of cells. In the following years, scientists tried to understand how DNA controls the process of protein production.[28] It was discovered that the cell uses DNA as a template to create matching messenger RNA, molecules with nucleotides very similar to DNA. The nucleotide sequence of a messenger RNA is used to create an amino acid sequence in protein; this translation between nucleotide sequences and amino acid sequences is known as the genetic code.[29]

With the newfound molecular understanding of inheritance came an explosion of research.[30] A notable theory arose from Tomoko Ohta in 1973 with her amendment to the neutral theory of molecular evolution through publishing the nearly neutral theory of molecular evolution. In this theory, Ohta stressed the importance of natural selection and the environment to the rate at which genetic evolution occurs.[31] One important development was chain-termination DNA sequencing in 1977 by Frederick Sanger. This technology allows scientists to read the nucleotide sequence of a DNA molecule.[32] In 1983, Kary Banks Mullis developed the polymerase chain reaction, providing a quick way to isolate and amplify a specific section of DNA from a mixture.[33] The efforts of the Human Genome Project, Department of Energy, NIH, and parallel private efforts by Celera Genomics led to the sequencing of the human genome in 2003.[34][35]

At its most fundamental level, inheritance in organisms occurs by passing discrete heritable units, called genes, from parents to offspring.[36] This property was first observed by Gregor Mendel, who studied the segregation of heritable traits in pea plants.[13][37] In his experiments studying the trait for flower color, Mendel observed that the flowers of each pea plant were either purple or whitebut never an intermediate between the two colors. These different, discrete versions of the same gene are called alleles.

In the case of the pea, which is a diploid species, each individual plant has two copies of each gene, one copy inherited from each parent.[38] Many species, including humans, have this pattern of inheritance. Diploid organisms with two copies of the same allele of a given gene are called homozygous at that gene locus, while organisms with two different alleles of a given gene are called heterozygous.

The set of alleles for a given organism is called its genotype, while the observable traits of the organism are called its phenotype. When organisms are heterozygous at a gene, often one allele is called dominant as its qualities dominate the phenotype of the organism, while the other allele is called recessive as its qualities recede and are not observed. Some alleles do not have complete dominance and instead have incomplete dominance by expressing an intermediate phenotype, or codominance by expressing both alleles at once.[39]

When a pair of organisms reproduce sexually, their offspring randomly inherit one of the two alleles from each parent. These observations of discrete inheritance and the segregation of alleles are collectively known as Mendel’s first law or the Law of Segregation.

Geneticists use diagrams and symbols to describe inheritance. A gene is represented by one or a few letters. Often a “+” symbol is used to mark the usual, non-mutant allele for a gene.[40]

In fertilization and breeding experiments (and especially when discussing Mendel’s laws) the parents are referred to as the “P” generation and the offspring as the “F1” (first filial) generation. When the F1 offspring mate with each other, the offspring are called the “F2” (second filial) generation. One of the common diagrams used to predict the result of cross-breeding is the Punnett square.

When studying human genetic diseases, geneticists often use pedigree charts to represent the inheritance of traits.[41] These charts map the inheritance of a trait in a family tree.

Organisms have thousands of genes, and in sexually reproducing organisms these genes generally assort independently of each other. This means that the inheritance of an allele for yellow or green pea color is unrelated to the inheritance of alleles for white or purple flowers. This phenomenon, known as “Mendel’s second law” or the “law of independent assortment,” means that the alleles of different genes get shuffled between parents to form offspring with many different combinations. (Some genes do not assort independently, demonstrating genetic linkage, a topic discussed later in this article.)

Often different genes can interact in a way that influences the same trait. In the Blue-eyed Mary (Omphalodes verna), for example, there exists a gene with alleles that determine the color of flowers: blue or magenta. Another gene, however, controls whether the flowers have color at all or are white. When a plant has two copies of this white allele, its flowers are whiteregardless of whether the first gene has blue or magenta alleles. This interaction between genes is called epistasis, with the second gene epistatic to the first.[42]

Many traits are not discrete features (e.g. purple or white flowers) but are instead continuous features (e.g. human height and skin color). These complex traits are products of many genes.[43] The influence of these genes is mediated, to varying degrees, by the environment an organism has experienced. The degree to which an organism’s genes contribute to a complex trait is called heritability.[44] Measurement of the heritability of a trait is relativein a more variable environment, the environment has a bigger influence on the total variation of the trait. For example, human height is a trait with complex causes. It has a heritability of 89% in the United States. In Nigeria, however, where people experience a more variable access to good nutrition and health care, height has a heritability of only 62%.[45]

The molecular basis for genes is deoxyribonucleic acid (DNA). DNA is composed of a chain of nucleotides, of which there are four types: adenine (A), cytosine (C), guanine (G), and thymine (T). Genetic information exists in the sequence of these nucleotides, and genes exist as stretches of sequence along the DNA chain.[46]Viruses are the only exception to this rulesometimes viruses use the very similar molecule RNA instead of DNA as their genetic material.[47] Viruses cannot reproduce without a host and are unaffected by many genetic processes, so tend not to be considered living organisms.

DNA normally exists as a double-stranded molecule, coiled into the shape of a double helix. Each nucleotide in DNA preferentially pairs with its partner nucleotide on the opposite strand: A pairs with T, and C pairs with G. Thus, in its two-stranded form, each strand effectively contains all necessary information, redundant with its partner strand. This structure of DNA is the physical basis for inheritance: DNA replication duplicates the genetic information by splitting the strands and using each strand as a template for synthesis of a new partner strand.[48]

Genes are arranged linearly along long chains of DNA base-pair sequences. In bacteria, each cell usually contains a single circular genophore, while eukaryotic organisms (such as plants and animals) have their DNA arranged in multiple linear chromosomes. These DNA strands are often extremely long; the largest human chromosome, for example, is about 247 million base pairs in length.[49] The DNA of a chromosome is associated with structural proteins that organize, compact, and control access to the DNA, forming a material called chromatin; in eukaryotes, chromatin is usually composed of nucleosomes, segments of DNA wound around cores of histone proteins.[50] The full set of hereditary material in an organism (usually the combined DNA sequences of all chromosomes) is called the genome.

While haploid organisms have only one copy of each chromosome, most animals and many plants are diploid, containing two of each chromosome and thus two copies of every gene.[38] The two alleles for a gene are located on identical loci of the two homologous chromosomes, each allele inherited from a different parent.

Many species have so-called sex chromosomes that determine the gender of each organism.[51] In humans and many other animals, the Y chromosome contains the gene that triggers the development of the specifically male characteristics. In evolution, this chromosome has lost most of its content and also most of its genes, while the X chromosome is similar to the other chromosomes and contains many genes. The X and Y chromosomes form a strongly heterogeneous pair.

When cells divide, their full genome is copied and each daughter cell inherits one copy. This process, called mitosis, is the simplest form of reproduction and is the basis for asexual reproduction. Asexual reproduction can also occur in multicellular organisms, producing offspring that inherit their genome from a single parent. Offspring that are genetically identical to their parents are called clones.

Eukaryotic organisms often use sexual reproduction to generate offspring that contain a mixture of genetic material inherited from two different parents. The process of sexual reproduction alternates between forms that contain single copies of the genome (haploid) and double copies (diploid).[38] Haploid cells fuse and combine genetic material to create a diploid cell with paired chromosomes. Diploid organisms form haploids by dividing, without replicating their DNA, to create daughter cells that randomly inherit one of each pair of chromosomes. Most animals and many plants are diploid for most of their lifespan, with the haploid form reduced to single cell gametes such as sperm or eggs.

Although they do not use the haploid/diploid method of sexual reproduction, bacteria have many methods of acquiring new genetic information. Some bacteria can undergo conjugation, transferring a small circular piece of DNA to another bacterium.[52] Bacteria can also take up raw DNA fragments found in the environment and integrate them into their genomes, a phenomenon known as transformation.[53] These processes result in horizontal gene transfer, transmitting fragments of genetic information between organisms that would be otherwise unrelated.

The diploid nature of chromosomes allows for genes on different chromosomes to assort independently or be separated from their homologous pair during sexual reproduction wherein haploid gametes are formed. In this way new combinations of genes can occur in the offspring of a mating pair. Genes on the same chromosome would theoretically never recombine. However, they do, via the cellular process of chromosomal crossover. During crossover, chromosomes exchange stretches of DNA, effectively shuffling the gene alleles between the chromosomes.[54] This process of chromosomal crossover generally occurs during meiosis, a series of cell divisions that creates haploid cells.

The first cytological demonstration of crossing over was performed by Harriet Creighton and Barbara McClintock in 1931. Their research and experiments on corn provided cytological evidence for the genetic theory that linked genes on paired chromosomes do in fact exchange places from one homolog to the other.[55]

The probability of chromosomal crossover occurring between two given points on the chromosome is related to the distance between the points. For an arbitrarily long distance, the probability of crossover is high enough that the inheritance of the genes is effectively uncorrelated.[56] For genes that are closer together, however, the lower probability of crossover means that the genes demonstrate genetic linkage; alleles for the two genes tend to be inherited together. The amounts of linkage between a series of genes can be combined to form a linear linkage map that roughly describes the arrangement of the genes along the chromosome.[57]

Genes generally express their functional effect through the production of proteins, which are complex molecules responsible for most functions in the cell. Proteins are made up of one or more polypeptide chains, each of which is composed of a sequence of amino acids, and the DNA sequence of a gene (through an RNA intermediate) is used to produce a specific amino acid sequence. This process begins with the production of an RNA molecule with a sequence matching the gene’s DNA sequence, a process called transcription.

This messenger RNA molecule is then used to produce a corresponding amino acid sequence through a process called translation. Each group of three nucleotides in the sequence, called a codon, corresponds either to one of the twenty possible amino acids in a protein or an instruction to end the amino acid sequence; this correspondence is called the genetic code.[58] The flow of information is unidirectional: information is transferred from nucleotide sequences into the amino acid sequence of proteins, but it never transfers from protein back into the sequence of DNAa phenomenon Francis Crick called the central dogma of molecular biology.[59]

The specific sequence of amino acids results in a unique three-dimensional structure for that protein, and the three-dimensional structures of proteins are related to their functions.[60][61] Some are simple structural molecules, like the fibers formed by the protein collagen. Proteins can bind to other proteins and simple molecules, sometimes acting as enzymes by facilitating chemical reactions within the bound molecules (without changing the structure of the protein itself). Protein structure is dynamic; the protein hemoglobin bends into slightly different forms as it facilitates the capture, transport, and release of oxygen molecules within mammalian blood.

A single nucleotide difference within DNA can cause a change in the amino acid sequence of a protein. Because protein structures are the result of their amino acid sequences, some changes can dramatically change the properties of a protein by destabilizing the structure or changing the surface of the protein in a way that changes its interaction with other proteins and molecules. For example, sickle-cell anemia is a human genetic disease that results from a single base difference within the coding region for the -globin section of hemoglobin, causing a single amino acid change that changes hemoglobin’s physical properties.[62] Sickle-cell versions of hemoglobin stick to themselves, stacking to form fibers that distort the shape of red blood cells carrying the protein. These sickle-shaped cells no longer flow smoothly through blood vessels, having a tendency to clog or degrade, causing the medical problems associated with this disease.

Some DNA sequences are transcribed into RNA but are not translated into protein productssuch RNA molecules are called non-coding RNA. In some cases, these products fold into structures which are involved in critical cell functions (e.g. ribosomal RNA and transfer RNA). RNA can also have regulatory effects through hybridization interactions with other RNA molecules (e.g. microRNA).

Although genes contain all the information an organism uses to function, the environment plays an important role in determining the ultimate phenotypes an organism displays. The phrase “nature and nurture” refers to this complementary relationship. The phenotype of an organism depends on the interaction of genes and the environment. An interesting example is the coat coloration of the Siamese cat. In this case, the body temperature of the cat plays the role of the environment. The cat’s genes code for dark hair, thus the hair-producing cells in the cat make cellular proteins resulting in dark hair. But these dark hair-producing proteins are sensitive to temperature (i.e. have a mutation causing temperature-sensitivity) and denature in higher-temperature environments, failing to produce dark-hair pigment in areas where the cat has a higher body temperature. In a low-temperature environment, however, the protein’s structure is stable and produces dark-hair pigment normally. The protein remains functional in areas of skin that are coldersuch as its legs, ears, tail and faceso the cat has dark-hair at its extremities.[63]

Environment plays a major role in effects of the human genetic disease phenylketonuria.[64] The mutation that causes phenylketonuria disrupts the ability of the body to break down the amino acid phenylalanine, causing a toxic build-up of an intermediate molecule that, in turn, causes severe symptoms of progressive intellectual disability and seizures. However, if someone with the phenylketonuria mutation follows a strict diet that avoids this amino acid, they remain normal and healthy.

A common method for determining how genes and environment (“nature and nurture”) contribute to a phenotype involves studying identical and fraternal twins, or other siblings of multiple births.[65] Because identical siblings come from the same zygote, they are genetically the same. Fraternal twins are as genetically different from one another as normal siblings. By comparing how often a certain disorder occurs in a pair of identical twins to how often it occurs in a pair of fraternal twins, scientists can determine whether that disorder is caused by genetic or postnatal environmental factors whether it has “nature” or “nurture” causes. One famous example involved the study of the Genain quadruplets, who were identical quadruplets all diagnosed with schizophrenia.[66] However such tests cannot separate genetic factors from environmental factors affecting fetal development.

The genome of a given organism contains thousands of genes, but not all these genes need to be active at any given moment. A gene is expressed when it is being transcribed into mRNA and there exist many cellular methods of controlling the expression of genes such that proteins are produced only when needed by the cell. Transcription factors are regulatory proteins that bind to DNA, either promoting or inhibiting the transcription of a gene.[67] Within the genome of Escherichia coli bacteria, for example, there exists a series of genes necessary for the synthesis of the amino acid tryptophan. However, when tryptophan is already available to the cell, these genes for tryptophan synthesis are no longer needed. The presence of tryptophan directly affects the activity of the genestryptophan molecules bind to the tryptophan repressor (a transcription factor), changing the repressor’s structure such that the repressor binds to the genes. The tryptophan repressor blocks the transcription and expression of the genes, thereby creating negative feedback regulation of the tryptophan synthesis process.[68]

Differences in gene expression are especially clear within multicellular organisms, where cells all contain the same genome but have very different structures and behaviors due to the expression of different sets of genes. All the cells in a multicellular organism derive from a single cell, differentiating into variant cell types in response to external and intercellular signals and gradually establishing different patterns of gene expression to create different behaviors. As no single gene is responsible for the development of structures within multicellular organisms, these patterns arise from the complex interactions between many cells.

Within eukaryotes, there exist structural features of chromatin that influence the transcription of genes, often in the form of modifications to DNA and chromatin that are stably inherited by daughter cells.[69] These features are called “epigenetic” because they exist “on top” of the DNA sequence and retain inheritance from one cell generation to the next. Because of epigenetic features, different cell types grown within the same medium can retain very different properties. Although epigenetic features are generally dynamic over the course of development, some, like the phenomenon of paramutation, have multigenerational inheritance and exist as rare exceptions to the general rule of DNA as the basis for inheritance.[70]

During the process of DNA replication, errors occasionally occur in the polymerization of the second strand. These errors, called mutations, can affect the phenotype of an organism, especially if they occur within the protein coding sequence of a gene. Error rates are usually very low1 error in every 10100million basesdue to the “proofreading” ability of DNA polymerases.[71][72] Processes that increase the rate of changes in DNA are called mutagenic: mutagenic chemicals promote errors in DNA replication, often by interfering with the structure of base-pairing, while UV radiation induces mutations by causing damage to the DNA structure.[73] Chemical damage to DNA occurs naturally as well and cells use DNA repair mechanisms to repair mismatches and breaks. The repair does not, however, always restore the original sequence.

In organisms that use chromosomal crossover to exchange DNA and recombine genes, errors in alignment during meiosis can also cause mutations.[74] Errors in crossover are especially likely when similar sequences cause partner chromosomes to adopt a mistaken alignment; this makes some regions in genomes more prone to mutating in this way. These errors create large structural changes in DNA sequence duplications, inversions, deletions of entire regions or the accidental exchange of whole parts of sequences between different chromosomes (chromosomal translocation).

Mutations alter an organism’s genotype and occasionally this causes different phenotypes to appear. Most mutations have little effect on an organism’s phenotype, health, or reproductive fitness.[75] Mutations that do have an effect are usually detrimental, but occasionally some can be beneficial.[76] Studies in the fly Drosophila melanogaster suggest that if a mutation changes a protein produced by a gene, about 70 percent of these mutations will be harmful with the remainder being either neutral or weakly beneficial.[77]

Population genetics studies the distribution of genetic differences within populations and how these distributions change over time.[78] Changes in the frequency of an allele in a population are mainly influenced by natural selection, where a given allele provides a selective or reproductive advantage to the organism,[79] as well as other factors such as mutation, genetic drift, genetic draft,[80]artificial selection and migration.[81]

Over many generations, the genomes of organisms can change significantly, resulting in evolution. In the process called adaptation, selection for beneficial mutations can cause a species to evolve into forms better able to survive in their environment.[82] New species are formed through the process of speciation, often caused by geographical separations that prevent populations from exchanging genes with each other.[83] The application of genetic principles to the study of population biology and evolution is known as the “modern evolutionary synthesis.”

By comparing the homology between different species’ genomes, it is possible to calculate the evolutionary distance between them and when they may have diverged. Genetic comparisons are generally considered a more accurate method of characterizing the relatedness between species than the comparison of phenotypic characteristics. The evolutionary distances between species can be used to form evolutionary trees; these trees represent the common descent and divergence of species over time, although they do not show the transfer of genetic material between unrelated species (known as horizontal gene transfer and most common in bacteria).[84]

Although geneticists originally studied inheritance in a wide range of organisms, researchers began to specialize in studying the genetics of a particular subset of organisms. The fact that significant research already existed for a given organism would encourage new researchers to choose it for further study, and so eventually a few model organisms became the basis for most genetics research.[85] Common research topics in model organism genetics include the study of gene regulation and the involvement of genes in development and cancer.

Organisms were chosen, in part, for convenienceshort generation times and easy genetic manipulation made some organisms popular genetics research tools. Widely used model organisms include the gut bacterium Escherichia coli, the plant Arabidopsis thaliana, baker’s yeast (Saccharomyces cerevisiae), the nematode Caenorhabditis elegans, the common fruit fly (Drosophila melanogaster), and the common house mouse (Mus musculus).

Medical genetics seeks to understand how genetic variation relates to human health and disease.[86] When searching for an unknown gene that may be involved in a disease, researchers commonly use genetic linkage and genetic pedigree charts to find the location on the genome associated with the disease. At the population level, researchers take advantage of Mendelian randomization to look for locations in the genome that are associated with diseases, a method especially useful for multigenic traits not clearly defined by a single gene.[87] Once a candidate gene is found, further research is often done on the corresponding (or homologous) genes of model organisms. In addition to studying genetic diseases, the increased availability of genotyping methods has led to the field of pharmacogenetics: the study of how genotype can affect drug responses.[88]

Individuals differ in their inherited tendency to develop cancer,[89] and cancer is a genetic disease.[90] The process of cancer development in the body is a combination of events. Mutations occasionally occur within cells in the body as they divide. Although these mutations will not be inherited by any offspring, they can affect the behavior of cells, sometimes causing them to grow and divide more frequently. There are biological mechanisms that attempt to stop this process; signals are given to inappropriately dividing cells that should trigger cell death, but sometimes additional mutations occur that cause cells to ignore these messages. An internal process of natural selection occurs within the body and eventually mutations accumulate within cells to promote their own growth, creating a cancerous tumor that grows and invades various tissues of the body.

Normally, a cell divides only in response to signals called growth factors and stops growing once in contact with surrounding cells and in response to growth-inhibitory signals. It usually then divides a limited number of times and dies, staying within the epithelium where it is unable to migrate to other organs. To become a cancer cell, a cell has to accumulate mutations in a number of genes (three to seven) that allow it to bypass this regulation: it no longer needs growth factors to divide, continues growing when making contact to neighbor cells, ignores inhibitory signals, keeps growing indefinitely and is immortal, escapes from the epithelium and ultimately may be able to escape from the primary tumor, cross the endothelium of a blood vessel, be transported by the bloodstream and colonize a new organ, forming deadly metastasis. Although there are some genetic predispositions in a small fraction of cancers, the major fraction is due to a set of new genetic mutations that originally appear and accumulate in one or a small number of cells that will divide to form the tumor and are not transmitted to the progeny (somatic mutations). The most frequent mutations are a loss of function of p53 protein, a tumor suppressor, or in the p53 pathway, and gain of function mutations in the Ras proteins, or in other oncogenes.

DNA can be manipulated in the laboratory. Restriction enzymes are commonly used enzymes that cut DNA at specific sequences, producing predictable fragments of DNA.[91] DNA fragments can be visualized through use of gel electrophoresis, which separates fragments according to their length.

The use of ligation enzymes allows DNA fragments to be connected. By binding (“ligating”) fragments of DNA together from different sources, researchers can create recombinant DNA, the DNA often associated with genetically modified organisms. Recombinant DNA is commonly used in the context of plasmids: short circular DNA molecules with a few genes on them. In the process known as molecular cloning, researchers can amplify the DNA fragments by inserting plasmids into bacteria and then culturing them on plates of agar (to isolate clones of bacteria cells “cloning” can also refer to the various means of creating cloned (“clonal”) organisms).

DNA can also be amplified using a procedure called the polymerase chain reaction (PCR).[92] By using specific short sequences of DNA, PCR can isolate and exponentially amplify a targeted region of DNA. Because it can amplify from extremely small amounts of DNA, PCR is also often used to detect the presence of specific DNA sequences.

DNA sequencing, one of the most fundamental technologies developed to study genetics, allows researchers to determine the sequence of nucleotides in DNA fragments. The technique of chain-termination sequencing, developed in 1977 by a team led by Frederick Sanger, is still routinely used to sequence DNA fragments.[93] Using this technology, researchers have been able to study the molecular sequences associated with many human diseases.

As sequencing has become less expensive, researchers have sequenced the genomes of many organisms using a process called genome assembly, which utilizes computational tools to stitch together sequences from many different fragments.[94] These technologies were used to sequence the human genome in the Human Genome Project completed in 2003.[34] New high-throughput sequencing technologies are dramatically lowering the cost of DNA sequencing, with many researchers hoping to bring the cost of resequencing a human genome down to a thousand dollars.[95]

Next-generation sequencing (or high-throughput sequencing) came about due to the ever-increasing demand for low-cost sequencing. These sequencing technologies allow the production of potentially millions of sequences concurrently.[96][97] The large amount of sequence data available has created the field of genomics, research that uses computational tools to search for and analyze patterns in the full genomes of organisms. Genomics can also be considered a subfield of bioinformatics, which uses computational approaches to analyze large sets of biological data. A common problem to these fields of research is how to manage and share data that deals with human subject and personally identifiable information. See also genomics data sharing.

On 19 March 2015, a leading group of biologists urged a worldwide ban on clinical use of methods, particularly the use of CRISPR and zinc finger, to edit the human genome in a way that can be inherited.[98][99][100][101] In April 2015, Chinese researchers reported results of basic research to edit the DNA of non-viable human embryos using CRISPR.[102][103]

The rest is here:

Genetics – Wikipedia

Designer babies not the most urgent concern of genetic medicine … – Toronto Star

In this photo provided by Oregon Health & Science University, taken through a microscope, human embryos grow in a laboratory for a few days after researchers used gene editing technology to successfully repair a heart disease-causing genetic mutation. The work, a scientific first led by researchers at Oregon Health & Science University, marks a step toward one day preventing babies from inheriting diseases that run in the family. ( Oregon Health & Science University via AP)

By Johnny Kung

Mon., Aug. 21, 2017

Recently, an international team of scientists successfully corrected a disease-causing gene in human embryos, using a gene editing technique called CRISPR. This has led to much excitement about the prospects of curing debilitating diseases in entire family lineages.

At the same time, the possibility of changing embryos genes has renewed fear about designer babies. The hype in both directions should be tempered by the fact that both these scenarios are some ways off a lot more work will need to be done to improve the techniques safety and efficacy before it can be applied in the clinic.

And because a lot of diseases, as well as other physical and behavioural characteristics, are controlled by the complex interaction of many genes with each other and with the environment, in many cases simple genetic fixes may never be possible.

But while the technology is still in early stages, now is the time to have frank, open and societywide conversations about how gene editing should be moving forward and genetic medicine more broadly, including the use of advanced genetic testing and sequencing to diagnose disease, personalize medical treatments, screening babies, etc.

We must raise broad awareness of the health benefits as well as the personal, social and ethical implications of genetics. This is important for individuals both to understand their options when making decisions about their own health care, and to participate as informed citizens in democratic deliberations about whether and how genetic technologies should be developed and applied.

In the U.S., affordability and insurance coverage strongly influence access to genetic medicine. In Canada, the reality of strapped budgets means access is far from equal either. But our public health-care system means it is at least conceivable that these technologies will eventually be available to a higher proportion of people who need them.

For example, OHIP currently pays for genetic testing and counselling for a number of diseases, such as http://www.mountsinai.on.ca/care/mkbc/medical-services/genetic-testingBRCA testingEND for breast and ovarian cancer, for patients who satisfy certain eligibility criteria. It also covers a kind of genetic screening tests called non-invasive prenatal testing (NIPT) for eligible pregnant women. Precisely because of this potential for widespread adoption, there is all the greater need for broad-based conversations about genetics.

Crucially, to ensure that the largest possible cross section of society will benefit from, and not be harmed by, advances in genetic technologies, these conversations must include the voices of all communities.

This is especially true for those who, for well-justified historical reasons, may harbour deep distrust of the biomedical establishment. In the U.S., for much of the 20th century, the eugenics movement had resulted in a range of sterilization programs, discriminatory policies and scientific abuses (such as the infamous Tuskegee syphilis trials) that disproportionately targeted the poor and, especially, racial minorities such as African Americans.

While the eugenics movement might have been less established in Canada, where it did occur (e.g., the sterilization program in Alberta or the Indian hospitals in B.C.) it had most heavily affected Indigenous communities. In both countries, this shameful history has led to lower trust and usage of the health-care system by the affected communities.

As genetic medicine advances, many scientists and health researchers are pointing out the importance of having the diversity of human populations represented in genetic studies in order to gain medical insights that can benefit everyone. If we fail to fully engage these under-represented communities and ensure that genetics is not just another way to exploit and discriminate against them, then we risk worsening this historical and ongoing injustice.

New genetic technologies, such as gene editing, also bring issues of disability rights into sharper focus. While designer babies may not be an immediate concern, even the possibility of selecting and changing our offsprings characteristics raises thorny questions.

For example, what conditions count as medically necessarily to treat how about deafness, dwarfism, autism, or intersex conditions? Ultimately, it is about what kinds of people get to live, and who gets to make those decisions. Many disability rights advocates (e.g., the Down syndrome community) are already voicing concerns about what these emerging technologies mean for how their communities are seen and valued today.

We must make sure that the conversations around genetics are not only about generalized notions of safety or effectiveness, or concerns of playing God. These conversations must also encompass questions of access and justice, and acknowledge that the benefits and harms of genetic technologies, like any new technologies, are not distributed equally.

And these conversations must involve all communities (be they of different racial or ethnic background, gender or sexuality, and physical or cognitive abilities) in a way that ensures their voices are respected and heard.

This is a task that will involve concerted efforts from scientists, funders and industry, to build trust with these communities and to genuinely listen and respond to their concerns. And it will need to be done in collaboration with many partners, including schools, community and faith groups, and the art/entertainment industry.

The ability to understand and, perhaps one day, change our genetics has huge potential to improve human well-being. Lets make sure that everyone will enjoy these benefits, and that no communities are left behind, or worse yet, harmed in the process.

Johnny Kung is the director of new initiatives for the Personal Genetics Education Project (www.pged.org ) at Harvard Medical Schools Department of Genetics.

The Toronto Star and thestar.com, each property of Toronto Star Newspapers Limited, One Yonge Street, 4th Floor, Toronto, ON, M5E1E6. You can unsubscribe at any time. Please contact us or see our privacy policy for more information.

More here:

Designer babies not the most urgent concern of genetic medicine … – Toronto Star

To Protect Genetic Privacy, Encrypt Your DNA – WIRED

In 2007, DNA pioneer James Watson became the first person to have his entire genome sequencedmaking all of his 6 billion base pairs publicly available for research. Well, almost all of them. He left one spot blank, on the long arm of chromosome 19, where a gene called APOE lives. Certain variations in APOE increase your chances of developing Alzheimers, and Watson wanted to keep that information private.

Except it wasnt. Researchers quickly pointed out you could predict Watsons APOE variant based on signatures in the surrounding DNA. They didnt actually do it, but database managers wasted no time in redacting another two million base pairs surrounding the APOE gene.

This is the dilemma at the heart of precision medicine: It requires people to give up some of their privacy in service of the greater scientific good. To completely eliminate the risk of outing an individual based on their DNA records, youd have to strip it of the same identifying details that make it scientifically useful. But now, computer scientists and mathematicians are working toward an alternative solution. Instead of stripping genomic data, theyre encrypting it.

Gill Bejerano leads a developmental biology lab at Stanford that investigates the genetic roots of human disease. In 2013, when he realized he needed more genomic data, his lab joined Stanford Hospitals Pediatrics Departmentan arduous process that required extensive vetting and training of all his staff and equipment. This is how most institutions solve the privacy perils of data sharing. They limit who can access all the genomes in their possession to a trusted few, and only share obfuscated summary statistics more widely.

So when Bejerano found himself sitting in on a faculty talk given by Dan Boneh, head of the applied cryptography group at Stanford, he was struck with an idea. He scribbled down a mathematical formula for one of the genetic computations he uses often in his work. Afterward, he approached Boneh and showed it to him. Could you compute these outputs without knowing the inputs? he asked. Sure, said Boneh.

Last week, Bejerano and Boneh published a paper in Science that did just that. Using a cryptographic genome cloaking method, the scientists were able to do things like identify responsible mutations in groups of patients with rare diseases and compare groups of patients at two medical centers to find shared mutations associated with shared symptoms, all while keeping 97 percent of each participants unique genetic information completely hidden. They accomplished this by converting variations in each genome into a linear series of values. That allowed them to conduct any analyses they needed while only revealing genes relevant to that particular investigation.

Just like programs have bugs, people have bugs, says Bejerano. Finding disease-causing genetic traits is a lot like spotting flaws in computer code. You have to compare code that works to code that doesnt. But genetic data is much more sensitive, and people (rightly) worry that it might be used against them by insurers, or even stolen by hackers. If a patient held the cryptographic key to their data, they could get a valuable medical diagnosis while not exposing the rest of their genome to outside threats. You can make rules about not discriminating on the basis of genetics, or you can provide technology where you cant discriminate against people even if you wanted to, says Bejerano. Thats a much stronger statement.

The National Institutes of Health have been working toward such a technology since reidentification researchers first began connecting the dots in anonymous genomics data. In 2010, the agency founded a national center for Integrating Data for Analysis, Anonymization and Sharing housed on the campus of UC San Diego. And since 2015, iDash has been funding annual competitions to develop privacy-preserving genomics protocols. Another promising approach iDash has supported is something called fully homomorphic encryption, which allows users to run any computation they want on totally encrypted data without losing years of computing time.

Megan Molteni

The Go-To Gene Sequencing Machine With Very Strange Results

Sarah Zhang

Cheap DNA Sequencing Is Here. Writing DNA Is Next

Rachel Ehrenberg, Science News

Scrubbing IDs Out of Medical Records for Genetic Studies

Kristen Lauter, head of cryptography research at Microsoft, focuses on this form of encryption, and her team has taken home the iDash prize two years running. Critically, the method encodes the data in such a way that scientists dont lose the flexibility to perform medically useful genetic tests. Unlike previous encryption schemes, Lauters tool preserves the underlying mathematical structure of the data. That allows computers to do the math that delivers genetic diagnoses, for example, on totally encrypted data. Scientists get a key to decode the final results, but they never see the source.

This is extra important as more and more genetic data moves off local servers and into the cloud. The NIH lets users download human genomic data from its repositories, and in 2014, the agency started letting people store and analyze that data in private or commercial cloud environments. But under NIHs policy, its the scientists using the datanot the cloud service providerresponsible with ensuring its security. Cloud providers can get hacked, or subpoenaed by law enforcement, something researchers have no control over. That is, unless theres a viable encryption for data stored in the cloud.

If we dont think about it now, in five to 10 years a lot peoples genomic information will be used in ways they did not intend, says Lauter. But encryption is a funny technology to work with, she says. One that requires building trust between researchers and consumers. You can propose any crazy encryption you want and say its secure. Why should anyone believe you?

Thats where federal review comes in. In July, Lauters group, along with researchers from IBM and academic institutions around the world launched a process to standardize homomorphic encryption protocols. The National Institute for Standards and Technology will now begin reviewing draft standards and collecting public comments. If all goes well, genomics researchers and privacy advocates might finally have something they can agree on.

More:

To Protect Genetic Privacy, Encrypt Your DNA – WIRED

Researcher Seeks to Unravel the Brain’s Genetic Tapestry to Tackle Rare Disorder – University of Virginia

In 2013, University of Virginia researcher Michael McConnell published research that would forever change how scientists study brain cells.

McConnell and a team of nationwide collaborators discovered a genetic mosaic in the brains neurons, proving that brain cells are not exact replicas of each other, and that each individual neuron contains a slightly different genetic makeup.

McConnell, an assistant professor in the School of Medicines Department of Biochemistry and Molecular Genetics, has been using this new information to investigate how variations in individual neurons impact neuropsychiatric disorders like schizophrenia and epilepsy. With a recent $50,000 grant from the Bow Foundation, McConnell will expand his research to explore the cause of a rare genetic disorder known as GNAO1 so named for the faulty protein-coding gene that is its likely source.

GNAO1 causes seizures, movement disorders and developmental delays. Currently, only 50 people worldwide are known to have the disease. The Bow Foundation seeks to increase awareness so that other probable victims of the disorder can be properly diagnosed and to raise funds for further research and treatment.

UVA Today recently sat down with McConnell to find out more about how GNAO1 fits into his broader research and what his continued work means for all neuropsychiatric disorders.

Q. Can you explain the general goals of your lab?

A. My lab has two general directions. One is brain somatic mosaicism, which is a finding that different neurons in the brain have different genomes from one another. We usually think every cell in a single persons body has the same blueprint for how they develop and what they become. It turns out that blueprint changes a little bit in the neurons from neuron to neuron. So you have slightly different versions of the same blueprint and we want to know what that means.

The second area of our work focuses on a new technology called induced pluripotent stem cells, or iPSCs. The technology permits us to make stem cell from skin cells. We can do this with patients, and use the stem cells to make specific cell types with same genetic mutations that are in the patients. That lets us create and study the persons brain cells in a dish. So now, if that person has a neurological disease, we can in a dish study that persons disease and identify drugs that alter the disease. Its a very personalized medicine approach to that disease.

Q. Does cell-level genomic variety exist in other areas of the body outside the central nervous system?

A. Every cell in your body has mutations of one kind or another, but brain cells are there for your whole life, so the differences have a bigger impact there. A skin cell is gone in a month. An intestinal cell is gone in a week. Any changes in those cells will rarely have an opportunity to cause a problem unless they cause a tumor.

Q. How does your research intersect with the goals of the Bow Foundation?

A. Let me back up to a little bit of history on that. When I got to UVA four years ago, I started talking quite a lot with Howard Goodkin and Mark Beenhakker. Mark is an assistant professor in pharmacology. Howard is a pediatric neurologist and works with children with epilepsy. I had this interest in epilepsy and UVA has a historic and current strength in epilepsy research.

We started talking about how to use iPSCs the technology that we use to study mosaicism to help Howards patients. As we talked about it and I learned more about epilepsy, we quickly realized that there are a substantial number of patients with epilepsy or seizure disorders where we cant do a genetic test to figure out what drug to use on those patients.

Clinical guidance, like Howards expertise, allows him to make a pretty good diagnosis and know what drugs to try first and second and third. But around 30 percent of children that come in with epilepsy never find the drug that works, and theyre in for a lifetime of trial-and-error. We realized that we could use iPSC-derived neurons to test drugs in the dish instead of going through all of the trial-and-error with patients. Thats the bigger project that weve been moving toward.

The Bow Foundation was formed by patient advocates after this rare genetic mutation in GNAO1 was identified. GNAO1 is a subunit of a G protein-coupled receptor; some mutations in this receptor can lead to epilepsy while others lead to movement disorders.

Were still trying to learn about these patients, and the biggest thing the Bow Foundation is doing is trying to address that by creating a patient registry. At the same time, the foundation has provided funds for us to start making and testing iPSCs and launch this approach to personalized medicine for epilepsy.

In the GNAO1 patients, we expect to be able to study their neurons in a dish and understand why they behave differently, why the electrical activity in their brain is different or why they develop differently.

Q. What other more widespread disorders, in addition to schizophrenia and epilepsy, are likely to benefit from your research?

A. Im part of a broader project called the Brain Somatic Mosaicism Network that is conducting research on diseases that span the neuropsychiatric field. Our lab covers schizophrenia, but other nodes within that network are researching autism, bipolar disorder, Tourette syndrome and other psychiatric diseases where the genetic cause is difficult to identify. Thats the underlying theme.

Read the original:

Researcher Seeks to Unravel the Brain’s Genetic Tapestry to Tackle Rare Disorder – University of Virginia

Learn.Genetics

APA format:

Genetic Science Learning Center. (2015, January 7) Learn.Genetics. Retrieved August 22, 2017, from http://learn.genetics.utah.edu/

CSE format:

Learn.Genetics [Internet]. Salt Lake City (UT): Genetic Science Learning Center; 2015 [cited 2017 Aug 22] Available from http://learn.genetics.utah.edu/

Chicago format:

Genetic Science Learning Center. “Learn.Genetics.” Learn.Genetics.January 7, 2015. Accessed August 22, 2017. http://learn.genetics.utah.edu/.

Visit link:

Learn.Genetics

Alternative medicine can kill you | Genetic Literacy Project – Genetic Literacy Project

Chiropractic, homeopathy, acupuncture, juice diets, and other forms of unproven alternative medicine cannot cure cancer, no matter what some quacks might claim.

[A]s a newstudypublished in theJournal of the National Cancer Institutemakes painfully clear, as a treatment for cancer, alternative medicine does not cure; it kills.

A team of scientists from Yale University perused theNational Cancer Database, a collection of 34 million records of cancer patients along with their treatments and outcomes, to identify patients who elected to forgo conventional cancer treatments like chemotherapy, radiotherapy, and surgery in favor of alternative medicine.

After five years, 78.3% of subjects who received conventional treatments were still alive, compared to only 54.7% of subjects who used alternative medicine. Even more startling, breast cancer patients who used alternative medicine were five times more likely to die. Colorectal cancer patients were four times more likely to die. Lung cancer patients were twice as likely to die.

The GLP aggregated and excerpted this blog/article to reflect the diversity of news, opinion, and analysis. Read full, original post:Alternative Medicine Kills Cancer Patients, Study Finds

See the original post:

Alternative medicine can kill you | Genetic Literacy Project – Genetic Literacy Project

Researcher Seeks to Unravel the Brain’s Genetic Tapestry to Tackle Rare Disorder – University of Virginia

In 2013, University of Virginia researcher Michael McConnell published research that would forever change how scientists study brain cells.

McConnell and a team of nationwide collaborators discovered a genetic mosaic in the brains neurons, proving that brain cells are not exact replicas of each other, and that each individual neuron contains a slightly different genetic makeup.

McConnell, an assistant professor in the School of Medicines Department of Biochemistry and Molecular Genetics, has been using this new information to investigate how variations in individual neurons impact neuropsychiatric disorders like schizophrenia and epilepsy. With a recent $50,000 grant from the Bow Foundation, McConnell will expand his research to explore the cause of a rare genetic disorder known as GNAO1 so named for the faulty protein-coding gene that is its likely source.

GNAO1 causes seizures, movement disorders and developmental delays. Currently, only 50 people worldwide are known to have the disease. The Bow Foundation seeks to increase awareness so that other probable victims of the disorder can be properly diagnosed and to raise funds for further research and treatment.

UVA Today recently sat down with McConnell to find out more about how GNAO1 fits into his broader research and what his continued work means for all neuropsychiatric disorders.

Q. Can you explain the general goals of your lab?

A. My lab has two general directions. One is brain somatic mosaicism, which is a finding that different neurons in the brain have different genomes from one another. We usually think every cell in a single persons body has the same blueprint for how they develop and what they become. It turns out that blueprint changes a little bit in the neurons from neuron to neuron. So you have slightly different versions of the same blueprint and we want to know what that means.

The second area of our work focuses on a new technology called induced pluripotent stem cells, or iPSCs. The technology permits us to make stem cell from skin cells. We can do this with patients, and use the stem cells to make specific cell types with same genetic mutations that are in the patients. That lets us create and study the persons brain cells in a dish. So now, if that person has a neurological disease, we can in a dish study that persons disease and identify drugs that alter the disease. Its a very personalized medicine approach to that disease.

Q. Does cell-level genomic variety exist in other areas of the body outside the central nervous system?

A. Every cell in your body has mutations of one kind or another, but brain cells are there for your whole life, so the differences have a bigger impact there. A skin cell is gone in a month. An intestinal cell is gone in a week. Any changes in those cells will rarely have an opportunity to cause a problem unless they cause a tumor.

Q. How does your research intersect with the goals of the Bow Foundation?

A. Let me back up to a little bit of history on that. When I got to UVA four years ago, I started talking quite a lot with Howard Goodkin and Mark Beenhakker. Mark is an assistant professor in pharmacology. Howard is a pediatric neurologist and works with children with epilepsy. I had this interest in epilepsy and UVA has a historic and current strength in epilepsy research.

We started talking about how to use iPSCs the technology that we use to study mosaicism to help Howards patients. As we talked about it and I learned more about epilepsy, we quickly realized that there are a substantial number of patients with epilepsy or seizure disorders where we cant do a genetic test to figure out what drug to use on those patients.

Clinical guidance, like Howards expertise, allows him to make a pretty good diagnosis and know what drugs to try first and second and third. But around 30 percent of children that come in with epilepsy never find the drug that works, and theyre in for a lifetime of trial-and-error. We realized that we could use iPSC-derived neurons to test drugs in the dish instead of going through all of the trial-and-error with patients. Thats the bigger project that weve been moving toward.

The Bow Foundation was formed by patient advocates after this rare genetic mutation in GNAO1 was identified. GNAO1 is a subunit of a G protein-coupled receptor; some mutations in this receptor can lead to epilepsy while others lead to movement disorders.

Were still trying to learn about these patients, and the biggest thing the Bow Foundation is doing is trying to address that by creating a patient registry. At the same time, the foundation has provided funds for us to start making and testing iPSCs and launch this approach to personalized medicine for epilepsy.

In the GNAO1 patients, we expect to be able to study their neurons in a dish and understand why they behave differently, why the electrical activity in their brain is different or why they develop differently.

Q. What other more widespread disorders, in addition to schizophrenia and epilepsy, are likely to benefit from your research?

A. Im part of a broader project called the Brain Somatic Mosaicism Network that is conducting research on diseases that span the neuropsychiatric field. Our lab covers schizophrenia, but other nodes within that network are researching autism, bipolar disorder, Tourette syndrome and other psychiatric diseases where the genetic cause is difficult to identify. Thats the underlying theme.

More here:

Researcher Seeks to Unravel the Brain’s Genetic Tapestry to Tackle Rare Disorder – University of Virginia

Designer babies the not most urgent concern of genetic medicine … – Toronto Star

In this photo provided by Oregon Health & Science University, taken through a microscope, human embryos grow in a laboratory for a few days after researchers used gene editing technology to successfully repair a heart disease-causing genetic mutation. The work, a scientific first led by researchers at Oregon Health & Science University, marks a step toward one day preventing babies from inheriting diseases that run in the family. ( Oregon Health & Science University via AP)

By Johnny Kung

Mon., Aug. 21, 2017

Recently, an international team of scientists successfully corrected a disease-causing gene in human embryos, using a gene editing technique called CRISPR. This has led to much excitement about the prospects of curing debilitating diseases in entire family lineages.

At the same time, the possibility of changing embryos genes has renewed fear about designer babies. The hype in both directions should be tempered by the fact that both these scenarios are some ways off a lot more work will need to be done to improve the techniques safety and efficacy before it can be applied in the clinic.

And because a lot of diseases, as well as other physical and behavioural characteristics, are controlled by the complex interaction of many genes with each other and with the environment, in many cases simple genetic fixes may never be possible.

But while the technology is still in early stages, now is the time to have frank, open and societywide conversations about how gene editing should be moving forward and genetic medicine more broadly, including the use of advanced genetic testing and sequencing to diagnose disease, personalize medical treatments, screening babies, etc.

We must raise broad awareness of the health benefits as well as the personal, social and ethical implications of genetics. This is important for individuals both to understand their options when making decisions about their own health care, and to participate as informed citizens in democratic deliberations about whether and how genetic technologies should be developed and applied.

In the U.S., affordability and insurance coverage strongly influence access to genetic medicine. In Canada, the reality of strapped budgets means access is far from equal either. But our public health-care system means it is at least conceivable that these technologies will eventually be available to a higher proportion of people who need them.

For example, OHIP currently pays for genetic testing and counselling for a number of diseases, such as http://www.mountsinai.on.ca/care/mkbc/medical-services/genetic-testingBRCA testingEND for breast and ovarian cancer, for patients who satisfy certain eligibility criteria. It also covers a kind of genetic screening tests called non-invasive prenatal testing (NIPT) for eligible pregnant women. Precisely because of this potential for widespread adoption, there is all the greater need for broad-based conversations about genetics.

Crucially, to ensure that the largest possible cross section of society will benefit from, and not be harmed by, advances in genetic technologies, these conversations must include the voices of all communities.

This is especially true for those who, for well-justified historical reasons, may harbour deep distrust of the biomedical establishment. In the U.S., for much of the 20th century, the eugenics movement had resulted in a range of sterilization programs, discriminatory policies and scientific abuses (such as the infamous Tuskegee syphilis trials) that disproportionately targeted the poor and, especially, racial minorities such as African Americans.

While the eugenics movement might have been less established in Canada, where it did occur (e.g., the sterilization program in Alberta or the Indian hospitals in B.C.) it had most heavily affected Indigenous communities. In both countries, this shameful history has led to lower trust and usage of the health-care system by the affected communities.

As genetic medicine advances, many scientists and health researchers are pointing out the importance of having the diversity of human populations represented in genetic studies in order to gain medical insights that can benefit everyone. If we fail to fully engage these under-represented communities and ensure that genetics is not just another way to exploit and discriminate against them, then we risk worsening this historical and ongoing injustice.

New genetic technologies, such as gene editing, also bring issues of disability rights into sharper focus. While designer babies may not be an immediate concern, even the possibility of selecting and changing our offsprings characteristics raises thorny questions.

For example, what conditions count as medically necessarily to treat how about deafness, dwarfism, autism, or intersex conditions? Ultimately, it is about what kinds of people get to live, and who gets to make those decisions. Many disability rights advocates (e.g., the Down syndrome community) are already voicing concerns about what these emerging technologies mean for how their communities are seen and valued today.

We must make sure that the conversations around genetics are not only about generalized notions of safety or effectiveness, or concerns of playing God. These conversations must also encompass questions of access and justice, and acknowledge that the benefits and harms of genetic technologies, like any new technologies, are not distributed equally.

And these conversations must involve all communities (be they of different racial or ethnic background, gender or sexuality, and physical or cognitive abilities) in a way that ensures their voices are respected and heard.

This is a task that will involve concerted efforts from scientists, funders and industry, to build trust with these communities and to genuinely listen and respond to their concerns. And it will need to be done in collaboration with many partners, including schools, community and faith groups, and the art/entertainment industry.

The ability to understand and, perhaps one day, change our genetics has huge potential to improve human well-being. Lets make sure that everyone will enjoy these benefits, and that no communities are left behind, or worse yet, harmed in the process.

Johnny Kung is the director of new initiatives for the Personal Genetics Education Project (www.pged.org ) at Harvard Medical Schools Department of Genetics.

The Toronto Star and thestar.com, each property of Toronto Star Newspapers Limited, One Yonge Street, 4th Floor, Toronto, ON, M5E1E6. You can unsubscribe at any time. Please contact us or see our privacy policy for more information.

Originally posted here:

Designer babies the not most urgent concern of genetic medicine … – Toronto Star


12345...102030...