The genomic basis of the plant island syndrome in Darwin’s giant daisies – Nature.com

Posted: June 30, 2022 at 9:18 pm

Darwin, C. On the origin of species by means of natural selection, or, The preservation of favoured races in the struggle for life. (1859).

Wallace, A. R. The Malay Archipelago: The Land of the Orang-utan and the Bird of Paradise; a Narrative of Travel, with Studies of Man and Nature (Courier Corporation, 1962).

Mayr, E. Systematics and the Origin of Species from the Viewpoint of a Zoologist (Columbia Uni. Press, 1942).

Emerson, B. C. Speciation on islands: what are we learning? Biol. J. Linn. Soc. Lond. 95, 4752 (2008).

Article Google Scholar

Lomolino, M. V., Riddle, B. R., Whittaker, R. J., Brown, J. H. & Lomolino, M. V. Biogeography (Sunderland, Mass: Sinauer Associates, 2017).

Baeckens, S. & Van Damme, R. The island syndrome. Curr. Biol. 30, R338R339 (2020).

CAS Article PubMed Google Scholar

Burns, K. C. Evolution in Isolation: The Search for an Island Syndrome in Plants (Cambridge University Press, 2019).

Blaschke, J. D. & Sanders, R. W. Preliminary insights into the phylogeny and speciation of scalesia (asteraceae), galpagos islands. J. Bot. Res. Inst. Tex. 3, 177191 (2009).

Google Scholar

Fernndez-Mazuecos, M. et al. The radiation of Darwins giant daisies in the Galpagos Islands. Curr. Biol. 30, 49894998.e7 (2020).

Article CAS PubMed Google Scholar

Crawford, D. J. et al. Genetic diversity in Asteraceae endemic to oceanic islands: Bakers Law and polyploidy. Syst. Evol. Biogeogr. Compos 139, 151 (2009).

Google Scholar

Eliasson, U. Studies in Galpagos plants. XIV. The genus Scalesia Arn. Opera Bot. 36, 1117 (1974).

Google Scholar

Itow, S. Phytogeography and ecology of Scalesia (compositae) endemic to the Galapagos islands! Pac. Sci. 49, 1730 (1995).

Google Scholar

Stcklin, J. Darwin and the plants of the Galpagos-Islands. Bauhinia 21, 3348 (2009).

Google Scholar

Ono, M. Chromosome number of Scalesia (Compositae), an endemic genus of the Galapagos Islands. J. Jpn. Bot. 42, 353360 (1967).

Google Scholar

Eliasson, U. Studies in Galapagos plants. XIV. The genus Scalesia Arn. Opera Bot. 36, 1117 (1974).

Google Scholar

Meudt, H. M. et al. Polyploidy on islands: its emergence and importance for diversification. Front. Plant Sci. 12, 637214 (2021).

PubMed Central Article PubMed Google Scholar

Spring, O., Heil, N. & Vogler, B. Sesquiterpene lactones and flavanones in Scalesia species. Phytochemistry 46, 13691373 (1997).

CAS Article Google Scholar

Schilling, E. E., Panero, J. L. & Eliasson, U. H. Evidence from chloroplast DNA restriction site analysis on the relationships of Scalesia (Asteraceae: Heliantheae). Am. J. Bot. 81, 248254 (1994).

Article Google Scholar

Peona, V., Weissensteiner, M. H. & Suh, A. How complete are complete genome assemblies?-An avian perspective. Mol. Ecol. Resour. 18, 11881195 (2018).

CAS Article PubMed Google Scholar

Badouin, H. et al. The sunflower genome provides insights into oil metabolism, flowering and Asterid evolution. Nature 546, 148152 (2017).

ADS CAS Article PubMed Google Scholar

Reyes-Chin-Wo, S. et al. Genome assembly with in vitro proximity ligation data and whole-genome triplication in lettuce. Nat. Commun. 8, 14953 (2017).

ADS CAS PubMed Central Article PubMed Google Scholar

Bellinger, M. R., Datlof, E., Selph, K. E., Gallaher, T. J. & Knope, M. L. A genome for Bidens hawaiensis: a member of a hexaploid Hawaiian plant adaptive radiation. J. Hered. https://doi.org/10.1093/jhered/esab077 (2022).

Edger, P. P., McKain, M. R., Bird, K. A. & VanBuren, R. Subgenome assignment in allopolyploids: challenges and future directions. Curr. Opin. Plant Biol. 42, 7680 (2018).

CAS Article PubMed Google Scholar

Session, A. M. et al. Genome evolution in the allotetraploid frog Xenopus laevis. Nature 538, 336343 (2016).

ADS CAS PubMed Central Article PubMed Google Scholar

Mitros, T. et al. Genome biology of the paleotetraploid perennial biomass crop Miscanthus. Nat. Commun. 11, 5442 (2020).

ADS CAS PubMed Central Article PubMed Google Scholar

Funk, V. A. Systematics, Evolution, and Biogeography of Compositae (International Association for Plant Taxonomy, 2009).

Julca, I. et al. Genomic evidence for recurrent genetic admixture during the domestication of Mediterranean olive trees (Olea europaea L.). BMC Biol 18, 148 (2020).

PubMed Central Article PubMed Google Scholar

te Beest, M. et al. The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot. 109, 1945 (2012).

Article PubMed Google Scholar

Mandel, J. R. et al. A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae. Proc. Natl Acad. Sci. USA 116, 1408314088 (2019).

CAS PubMed Central Article PubMed Google Scholar

Whittaker, R. J., School of Geography Robert J Whittaker & Fernandez-Palacios, J. M. Island Biogeography: Ecology, Evolution, and Conservation (OUP Oxford, 2007).

Diop, S. I. et al. A pseudomolecule-scale genome assembly of the liverwort Marchantia polymorpha. Plant J. 101, 13781396 (2020).

CAS Article PubMed Google Scholar

Li, F.-W. et al. Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts. Nat. Plants 6, 259272 (2020).

CAS PubMed Central Article PubMed Google Scholar

Lang, D. et al. ThePhyscomitrella patenschromosome-scale assembly reveals moss genome structure and evolution. Plant J. 93, 515533 (2018).

CAS Article PubMed Google Scholar

Bird, K. A., VanBuren, R., Puzey, J. R. & Edger, P. P. The causes and consequences of subgenome dominance in hybrids and recent polyploids. N. Phytol. 220, 8793 (2018).

Article Google Scholar

Freeling, M., Scanlon, M. J. & Fowler, J. E. Fractionation and subfunctionalization following genome duplications: mechanisms that drive gene content and their consequences. Curr. Opin. Genet. Dev. 35, 110118 (2015).

CAS Article PubMed Google Scholar

Wolfe, K. H. Yesterdays polyploids and the mystery of diploidization. Nat. Rev. Genet. 2, 333341 (2001).

CAS Article PubMed Google Scholar

Bird, K. A. et al. Replaying the evolutionary tape to investigate subgenome dominance in allopolyploid Brassica napus. N. Phytol. 230, 354371 (2021).

CAS Article Google Scholar

Alger, E. I. & Edger, P. P. One subgenome to rule them all: underlying mechanisms of subgenome dominance. Curr. Opin. Plant Biol. 54, 108113 (2020).

CAS Article PubMed Google Scholar

Renny-Byfield, S., Gong, L., Gallagher, J. P. & Wendel, J. F. Persistence of subgenomes in paleopolyploid cotton after 60 my of evolution. Mol. Biol. Evol. 32, 10631071 (2015).

CAS Article PubMed Google Scholar

Douglas, G. M. et al. Hybrid origins and the earliest stages of diploidization in the highly successful recent polyploid Capsella bursa-pastoris. Proc. Natl Acad. Sci. USA 112, 28062811 (2015).

ADS CAS PubMed Central Article PubMed Google Scholar

Barrier, M., Baldwin, B. G., Robichaux, R. H. & Purugganan, M. D. Interspecific hybrid ancestry of a plant adaptive radiation: allopolyploidy of the Hawaiian silversword alliance (Asteraceae) inferred from floral homeotic gene duplications. Mol. Biol. Evol. 16, 11051113 (1999).

CAS Article PubMed Google Scholar

Catchen, J. M., Conery, J. S. & Postlethwait, J. H. Automated identification of conserved synteny after whole-genome duplication. Genome Res. 19, 14971505 (2009).

CAS PubMed Central Article PubMed Google Scholar

szi, E. et al. E2FB interacts with RETINOBLASTOMA RELATED and regulates cell proliferation during leaf development. Plant Physiol. 182, 518533 (2020).

Article CAS PubMed Google Scholar

Berckmans, B. et al. Light-dependent regulation of DEL1 is determined by the antagonistic action of E2Fb and E2Fc. Plant Physiol. 157, 14401451 (2011).

CAS PubMed Central Article PubMed Google Scholar

Kojima, S. et al. Asymmetric leaves2 and Elongator, a histone acetyltransferase complex, mediate the establishment of polarity in leaves of Arabidopsis thaliana. Plant Cell Physiol. 52, 12591273 (2011).

CAS Article PubMed Google Scholar

Husbands, A. Y., Benkovics, A. H., Nogueira, F. T. S., Lodha, M. & Timmermans, M. C. P. The ASYMMETRIC LEAVES complex employs multiple modes of regulation to affect adaxial-abaxial patterning and leaf complexity. Plant Cell 27, 33213335 (2016).

Article CAS Google Scholar

Crane, R. A. et al. Negative regulation of age-related developmental leaf senescence by the IAOx pathway, PEN1, and PEN3. Front. Plant Sci. 10, 1202 (2019).

PubMed Central Article PubMed Google Scholar

Fu, M. et al. AtWDS1 negatively regulates age-dependent and dark-induced leaf senescence in Arabidopsis. Plant Sci. 285, 4454 (2019).

CAS Article PubMed Google Scholar

Zhang, B., Jia, J., Yang, M., Yan, C. & Han, Y. Overexpression of a LAM domain containing RNA-binding protein LARP1c induces precocious leaf senescence in Arabidopsis. Mol. Cells 34, 367374 (2012).

PubMed Central Article CAS PubMed Google Scholar

Ma, Z., Wu, W., Huang, W. & Huang, J. Down-regulation of specific plastid ribosomal proteins suppresses thf1 leaf variegation, implying a role of THF1 in plastid gene expression. Photosynth. Res. 126, 301310 (2015).

CAS Article PubMed Google Scholar

Wang, Z. et al. Two chloroplast proteins suppress drought resistance by affecting ROS production in guard cells. Plant Physiol. 172, 24912503 (2016).

CAS PubMed Central Article PubMed Google Scholar

Meurer, J. et al. PALE CRESS binds to plastid RNAs and facilitates the biogenesis of the 50S ribosomal subunit. Plant J. 92, 400413 (2017).

CAS Article PubMed Google Scholar

Holding, D. The chloroplast and leaf developmental mutant, pale cress, exhibits light-conditional severity and symptoms characteristic of its ABA deficiency. Ann. Bot. 86, 953962 (2000).

CAS Article Google Scholar

Meurer, J., Grevelding, C., Westhoff, P. & Reiss, B. The PAC protein affects the maturation of specific chloroplast mRNAs in Arabidopsis thaliana. Mol. Gen. Genet. MGG 258, 342351 (1998).

CAS Article PubMed Google Scholar

View original post here:
The genomic basis of the plant island syndrome in Darwin's giant daisies - Nature.com

Related Posts