Genome-wide association study reveals distinct genetic associations related to leaf hair density in two lineages of wheat-wild relative Aegilops…

Posted: October 19, 2022 at 2:39 pm

Solereder, H. Systematic Anatomy of the Dicotyledons: A Handbook for Laboratories of Pure and Applied Botany Vol. 2 (Clarendon Press, 1908).

Google Scholar

Pesch, M. & Hlskamp, M. Creating a two-dimensional pattern de novo during Arabidopsis trichome and root hair initiation. Curr. Opin. Genet. Dev. 14, 422427 (2004).

CAS PubMed Google Scholar

Southwood, S. R. Plant surfaces and insectsAn overview. Insects Plant Surf. (eds Juniper, B & Southwood, S. R) 122 (Edward Arnold, 1986).

Werker, E. Trichome diversity and development. 135 (2000).

Duffey, S. S. Plant glandular trichomes: Their partial role in defence against insects. Insects Plant Surf. (eds Juniper, B & Southwood, S. R) 151172 (Edward Arnold, 1986).

Hare, J. D. & Elle, E. Variable impact of diverse insect herbivores on dimorphic Datura wrightii. Ecology 83, 27112720 (2002).

Google Scholar

Rautio, P. et al. Developmental plasticity in birch leaves: Defoliation causes a shift from glandular to nonglandular trichomes. Oikos 98, 437446 (2002).

Google Scholar

Chassot, C. et al. Acetylation of cell wall is required for structural integrity of the leaf surface and exerts a global impact on plant stress responses. Front. Plant Sci. 6, 113 (2015).

ADS Google Scholar

Hegebarth, D., Buschhaus, C., Wu, M., Bird, D. & Jetter, R. The composition of surface wax on trichomes of Arabidopsis thaliana differs from wax on other epidermal cells. Plant J. 88, 762774 (2016).

CAS PubMed Google Scholar

Choinski, J. S. Jr. & Wise, R. R. Leaf growth development in relation to gas exchange in quercus marilandica Muenchh. J. Plant Physiol. 154, 302309 (1999).

CAS Google Scholar

Benz, B. W. & Martin, C. E. Foliar trichomes, boundary layers, and gas exchange in 12 species of epiphytic Tillandsia (Bromeliaceae). J. Plant Physiol. 163, 648656 (2006).

CAS PubMed Google Scholar

Baur, R., Binder, S. & Benz, G. Nonglandular leaf trichomes as short-term inducible defense of the grey alder, Alnus incana (L.), against the chrysomelid beetle, Agelastica alni L. Oecologia 87, 219226 (1991).

ADS CAS PubMed Google Scholar

Agrawal, A. A. Induced responses to herbivory in wild radish: Effects on several herbivores and plant fitness. Ecology 80, 17131723 (1999).

Google Scholar

Dalin, P. & Bjrkman, C. Adult beetle grazing induces willow trichome defence against subsequent larval feeding. Oecologia 134, 112118 (2003).

ADS PubMed Google Scholar

Yang, W. Y., Wu, B. H., Hu, X. R., Ye, Y. & Zhang, Y. Inheritance in hexaploid wheat of genes for hairy auricles and hairy leaf sheath derived from Aegilops tauschii Coss. Genet. Resour. Crop Evol. 46, 319323 (1999).

CAS Google Scholar

Ehleringer, J. R. & Mooney, H. A. Leaf hairs: Effects on physiological activity and adaptive value to a desert shrub. Oecologia 37, 183200 (1978).

ADS CAS PubMed Google Scholar

Maystrenko, O. I. Identification and localization of genes controlling leaf hairiness of young plants in common wheat. Russ. J. Genet. 12, 515 (1976).

Google Scholar

Blanco, A. et al. A genetic linkage map of durum wheat. Theor. Appl. Genet. 97, 721728 (1998).

CAS Google Scholar

Khlestkina, E. K. et al. Genetic mapping and tagging of wheat genes using RAPD, STS and SSR markers. Cell. Mol. Biol. Lett. 7, 795802 (2002).

CAS PubMed Google Scholar

Luo, W. et al. Genetic analysis of glume hairiness (Hg) gene in bread wheat (Triticum aestivum L). Genet. Resour. Crop Evol. 63, 763769 (2016).

CAS Google Scholar

Taketa, S., Chang, C. L., Ishii, M. & Takeda, K. Chromosome arm location of the gene controlling leaf pubescence of a Chinese local wheat cultivar Hong-mang-mai. Euphytica 125, 141147 (2002).

CAS Google Scholar

Shahinnia, F. et al. Identification of quantitative trait loci for leaf stomatal and epidermal cell traits in wheat (Triticum aestivum L.). In 12th International Wheat Genetic Symposium (2013).

Dobrovolskaya, O. et al. Molecular mapping of genes determining hairy leaf character in common wheat with respect to other species of the Triticeae. Euphytica 155, 285293 (2007).

CAS Google Scholar

Kihara, H. Discovery of the DD-analyzer, one of the ancestors of Triticum vulgare. Agric. Hortic. 19, 1314 (1944).

Google Scholar

McFadden, E. S. & Sears, E. R. The artificial synthesis of Triticum spelta. Rec. Genet. Soc. Am. 13, 2627 (1944).

Google Scholar

Eig, A. Monographisch-kritische bersicht der Gattung Aegilops. Feddes Repert. Specierum Nov. Regni Veg. Beih. 55, 1228 (1929).

Google Scholar

Hammer, K. Vorarbeiten zur monographischen Darstellung von Wildpflanzensortimenten: Aegilops L. Die Kult. 28, 33180 (1980).

Google Scholar

Nishijima, R., Okamoto, Y., Hatano, H. & Takumi, S. Quantitative trait locus analysis for spikelet shape-related traits in wild wheat progenitor Aegilops tauschii: Implications for intraspecific diversification and subspecies differentiation. PLoS ONE 12, e0173210 (2017).

PubMed PubMed Central Google Scholar

Matsuoka, Y., Mori, N. & Kawahara, T. Genealogical use of chloroplast DNA variation for intraspecific studies of Aegilops tauschii Coss. Theor. Appl. Genet. 111, 265271 (2005).

CAS PubMed Google Scholar

Mahjoob, M. M. M. et al. Traits to differentiate lineages and subspecies of Aegilops tauschii, the D genome progenitor species of bread wheat. Diversity 13, 217 (2021).

Google Scholar

Morihiro, H. & Takumi, S. Natural variation of trichome density on leaf in wild wheat Aegilops tauschii Coss. Wheat Inf. Serv. 109, 2010 (2010).

Google Scholar

Liu, Y. et al. Genome-wide association study of 29 morphological traits in Aegilops tauschii. Sci. Rep. 5, 15562 (2015).

ADS CAS PubMed PubMed Central Google Scholar

Suwarno, W. B., Pixley, K. V., Palacios-Rojas, N., Kaeppler, S. M. & Babu, R. Genome-wide association analysis reveals new targets for carotenoid biofortification in maize. Theor. Appl. Genet. 128, 851864 (2015).

CAS PubMed PubMed Central Google Scholar

Sun, C. et al. Genome-wide association study for 13 agronomic traits reveals distribution of superior alleles in bread wheat from the Yellow and Huai Valley of China. Plant Biotechnol. J. 15, 953969 (2017).

CAS PubMed PubMed Central Google Scholar

Dvorak, J., Luo, M. C., Yang, Z. L. & Zhang, H. B. The structure of the Aegilops tauschii genepool and the evolution of hexaploid wheat. Theor. Appl. Genet. 97, 657670 (1998).

CAS Google Scholar

Matsuoka, Y., Takumi, S. & Kawahara, T. Natural variation for fertile triploid F1 hybrid formation in allohexaploid wheat speciation. Theor. Appl. Genet. 115, 509518 (2007).

PubMed Google Scholar

Matsuoka, Y. et al. Durum wheat cultivation associated with Aegilops tauschii in northern Iran. Genet. Resour. Crop Evol. 55, 861868 (2008).

Google Scholar

Matsuoka, Y., Nishioka, E., Kawahara, T. & Takumi, S. Genealogical analysis of subspecies divergence and spikelet-shape diversification in central Eurasian wild wheat Aegilops tauschii Coss. Plant Syst. Evol. 279, 233244 (2009).

Google Scholar

Aghaei, M. J., Mozafari, J., Taleei, A. R., Naghavi, M. R. & Omidi, M. Distribution and diversity of Aegilops tauschii in Iran. Genet. Resour. Crop Evol. 55, 341349 (2008).

Google Scholar

Hamaoka, N. et al. A hairy-leaf gene, BLANKET LEAF, of wild Oryza nivara increases photosynthetic water use efficiency in rice. Rice 10, 1020 (2017).

Google Scholar

Gorafi, Y. S., Kim, J. S., Elbashir, A. A. & Tsujimoto, H. A population of wheat multiple synthetic derivatives: An effective platform to explore, harness and utilize genetic diversity of Aegilops tauschii for wheat improvement. Theor. Appl. Genet. 131, 16151626 (2018).

CAS PubMed PubMed Central Google Scholar

Chen, Z. et al. Detection of a major QTL conditioning trichome length and density on chromosome arm 4BL and development of near isogenic lines targeting this locus in bread wheat. Mol. Breed. 41, 19 (2021).

CAS Google Scholar

Levy, A. A. & Feldman, M. Genetics of morphological traits in wild wheat, Triticum turgidum var. dicoccoides. Euphytica 40, 275281 (1989).

Google Scholar

Yang, W. et al. Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China. J. Genet. Genomics 36, 539546 (2009).

CAS PubMed Google Scholar

Li, J., Wan, H. S. & Yang, W. Y. Synthetic hexaploid wheat enhances variation and adaptive evolution of bread wheat in breeding processes. J. Syst. Evol. 52, 735742 (2014).

Google Scholar

Huang, X. Q., Cster, H., Ganal, M. W. & Rder, M. S. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L). Theor. Appl. Genet. 106, 13791389 (2003).

CAS PubMed Google Scholar

Huang, X. Q., Kempf, H., Ganal, M. W. & Rder, M. S. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (Triticum aestivum L). Theor. Appl. Genet. 109, 933943 (2004).

CAS PubMed Google Scholar

Narasimhamoorthy, B., Gill, B. S., Fritz, A. K., Nelson, J. C. & Brown-Guedira, G. L. Advanced backcross QTL analysis of a hard winter wheat synthetic wheat population. Theor. Appl. Genet. 112, 787796 (2006).

CAS PubMed Google Scholar

Williams, K. & Sorrells, M. E. Three-dimensional seed size and shape QTL in hexaploid wheat (Triticum aestivum L.) populations. Crop Sci. 54, 98110 (2014).

Google Scholar

Tsunewaki, K. Comparative gene analysis of common wheat and its ancestral species. II. Waxiness, growth habit and awnedness. Jpn. J. Bot. 19, 175229 (1966).

Google Scholar

Wang, J. et al. Aegilops tauschii single nucleotide polymorphisms shed light on the origins of wheat D-genome genetic diversity and pinpoint the geographic origin of hexaploid wheat. New Phytol. 198, 925937 (2013).

CAS PubMed Google Scholar

Sohail, Q. et al. Applicability of Aegilops tauschii drought tolerance traits to breeding of hexaploid wheat. Breed. Sci. 61, 347357 (2011).

CAS PubMed PubMed Central Google Scholar

See the rest here:
Genome-wide association study reveals distinct genetic associations related to leaf hair density in two lineages of wheat-wild relative Aegilops...

Related Posts