Page 11234..10..»

Category Archives: Quantum Computing

Quantum Computing: The Why and How – insideHPC

Posted: November 3, 2019 at 2:46 pm

In this video from the Argonne Training Program on Extreme-Scale Computing 2019, Jonathan Baker from the University of Chicago presents: Quantum Computing: The Why and How.

The Argonne Training Program on Extreme-Scale Computing (ATPESC) provides intensive, two weeks of training on the key skills, approaches, and tools to design, implement, and execute computational science and engineering applications on current high-end computing systems and the leadership-class computing systems of the future. As a bridge to that future, this two-week program fills the gap that exists in the training computational scientists typically receive through formal education or other shorter courses. With around 70 participants accepted each year, admission to the ATPESC program is highly competitive. ATPESC is part of the Exascale Computing Project, a collaborative effort of the DOE Office of Science and the National Nuclear Security Administration.

Jonathan Baker is a second year Ph.D student at The University of Chicago advised by Fred Chong. He is studying quantum architectures, specifically how to map quantum algorithms more efficiently to near term devices. Additionally, he is interested in multivalued logic and taking advantage of quantum computings natural access to higher order states and using these states to make computation more efficient. Prior to beginning his Ph.D., he studied at the University of Notre Dame where he obtained a B.S. of Engineering in computer science and a B.S. in Chemistry and Mathematics.

Check out our insideHPC Events Calendar

Read more here:

Quantum Computing: The Why and How - insideHPC

Posted in Quantum Computing | Comments Off on Quantum Computing: The Why and How – insideHPC

Opinion | Quantum supremacy and the cat thats neither alive nor dead – Livemint

Posted: at 2:46 pm

There is this joke about a cat that belonged to a gentleman called Schrdinger: Schrdingers cat walks into a bar. And doesnt."

If you chuckled, you must have been a student of quantum physics. Austrian physicist Erwin Schrdingers Cat Theory is a paradox that explains the seeming contradiction between what we see with our naked eye and what quantum theory says actually is in its microscopic state. He used this to disprove something called the Copenhagen Interpretation" of quantum mechanics. This interpretation states that a particle exists in all states at once until observed". Schrdingers cat is in a box and could be alive or dead. But, till the box is opened, you wont know its state. This would mean that the cat could be both alive and dead at the same time.

Now, hold that thought while we leap from cats to computers. The ones that we use now follow the principles of a Turing machine. Here, information is encoded into bits (either 1s or 0s) and one can apply a series of operations (and, or, not) to those bits to perform any computation. A quantum computer is different, it uses qubits or the quantum analogue of bits. Now, jump back to the cat. Much like the feline in Schrdingers box, a qubit is not always 0 or 1, but can be both at the same time. Only at the end of the computation or when the box is opened, would you know which, but during the computation process, its exact state is indeterminate.

If this leaves you scratching your head, do not fret. In a 2017 Wall Street Journal interview, here is what Bill Gates said: I know a lot of physics and a lot of math. But the one place where they put up slides and it is hieroglyphics, its quantum." Even Einstein had some difficulty grasping the concept and famously dismissed it with, God does not play dice with the universe."

What makes a quantum computer exciting is its ability to exploit these properties of quantum physics to perform certain calculations far more efficiently and faster than any supercomputer. Thus, megacorps such as Microsoft, IBM, and Google have been working on quantum computers. Last week, Google claimed to have achieved quantum supremacy, or the point when such a computer can perform a calculation that a traditional one cannot complete within its lifetime. Googles quantum computer took 200 seconds for a calculation that would take a supercomputer 10,000 years.

While all this is impressive, what does it mean for us? Its hard to fully answer this, as we are venturing into an entirely new area, and the future will reveal applications we have not even imagined yet. Its a bit like classical computing. We did not know how it will totally revolutionize our world. In the same manner, quantum computing could be a game-changer for many industries.

Take big data and analytics. We produce 3 exabits of data every day, equivalent to 300,000 Libraries of Congress. Classical computers are reaching their limits of processing power. However, with exponentially more powerful quantum computers, we could spot unseen patterns in large data sets, integrate data from different data sets, and tackle the whole problem at once. This would be rocket fuel for artificial intelligence (AI), with quantum computing offering quick feedbacks and collapsing the learning curve of machines. This will make AI more intuitive, expand to various industries and help build artificial general intelligence.

Online security will be impacted, with our current data encryption strategies wilting under the assault of quantum power. On the other hand, there will be formidable new cryptographic methods like quantum key distribution, where even if the message gets intercepted, no one can read it (the Cat, again). On a side note, the security of every public blockchain will be under threat from quantum hacks. It was no coincidence that Bitcoins price slumped the day Google announced its breakthrough. Quantum computing could speed up drug development by reviewing multiple molecules simultaneously, quickly sequencing individual DNAs for personalized drugs. Another application lies in weather forecasting and, more importantly, climate-change predictions. It will require the tremendous power of quantum computing to create complex, ever-changing weather models to properly predict and respond to the climate cataclysm that awaits us.

Its a brave new world of quantum computing were entering, and we will discover its possibilities as we go along. If you feel youve got it but are still confused, thats okayit is the nature of this beast. Just step out of the box.

Jaspreet Bindra is a digital transformation and technology expert, and the author of the book The Tech Whisperer

See the article here:

Opinion | Quantum supremacy and the cat thats neither alive nor dead - Livemint

Posted in Quantum Computing | Comments Off on Opinion | Quantum supremacy and the cat thats neither alive nor dead – Livemint

IBM picked a fight with Google over its claims of ‘quantum supremacy.’ Here’s why experts say the feud could shake up the tech industry’s balance of…

Posted: at 2:46 pm

Most people probably couldn't tell you what quantum computing is. And, as we learned last week from an unusual public spat between tech companies, it turns out that the top quantum-computing engineers aren't so sure either.

It all started when Google researchers published a paper in the journal Nature declaring that they achieved "quantum supremacy" a breakthrough in computing speed so radical that, to use a fictional analogy, it might be akin to attaining hyperspace travel speed.

But before the champagne had even been poured, IBM was disputing Google's claims with a blog post, insisting that, technically,"quantum supremacy" hadn't really been reached.

Quantum computers have special properties that allow them to solve problems exponentially faster than even the most powerful computers today. Google researchers said their quantum computer solved a problem in 200 seconds that would take a powerful supercomputer 10,000 years to solve a potential game changer for fighting climate change, discovering drugs, predicting the stock market, and cracking the toughest encryption.

Quantum computing is still in its infant stages, and you won't find it in your office anytime soon, but investors and researchers see huge potential in it. Already, companies like Google, IBM, Microsoft, and Intel are racing tobuild quantum computers, while venture capitalists are pouring money into startups like IonQ, Rigetti Computing, Aliro, and D-Wave.

The feud between IBM and Google is in many ways academic. But it also highlights the prominence and importance within the industry of a technology considered science fiction just a decade ago. As computing technology gets pushed to its limits, new technology like quantum computing has the potential to open entirely new markets and shake up the balance of powers in the tech industry.

And while Google and IBM are taking different approaches to quantum, the rival claims underscore the seriousness with which each company views the technology.

"Google is doing things as a research project," Brian Hopkins, the vice president and principal analyst at Forrester, told Business Insider. "IBM has a commercial strategy, pouring money in to get money out. They want to get to a point where quantum computers are powerful enough so people are willing to pay money to solve problems."

At the same time, rivals like Microsoft, Intel, and quantum-computing startups are lauding Google's experiment and see it as a good sign for quantum computing.

Jim Clarke, Intel's director of quantum hardware, with one of the company's quantum processors. Intel

"We're beginning to have a discussion that a quantum computer can do something that a supercomputer does not," Jim Clarke, the director of quantum hardware at Intel, told Business Insider. "It motivates us that we're on the right path. There's still a long way to go to get to a useful quantum computer. I think this is a positive step along the way."

Computer experts told Business Insider it would take time to prove whether Google did, in fact, reach this benchmark and whether IBM's disputes were correct.

IBM, which built Summit, the most powerful supercomputer, said the experiment could be run by a supercomputer in 2 1/2 days, as opposed to the 10,000 years Google said would be required with a traditional computing technology.

In other words, even though Google's quantum computer is faster, if it were true that the supercomputer could run that same problem in 2 1/2 days, it would not be that large of a difference. Running a problem that takes 10,000 years to solve is impractical, but if it took 2 1/2 days to solve, it would not be that big of a deal.

"The conflict between Google and IBM highlights that there's some ambiguity in the definition of quantum supremacy," Bill Fefferman, an assistant professor of computer science at the University of Chicago, told Business Insider.

Still, Google's work shows the progress of quantum computing, and people shouldn't lose sight of that, despite the arguments about it, Martin Reynolds, the distinguished vice president at Gartner, said.

That being said, since quantum computing is still in its early days, Google's milestone is "a bit like being the record holder in the 3-yard sprint," Reynolds said.

Fefferman added that the "jury is still out" on whether Google has actually reached quantum supremacy, but not because of anything IBM said.

"While it's not completely clear to me that there's currently enough evidence to conclude that we've reached quantum supremacy, Google is certainly breaking new ground and going places people have not gone before," Fefferman said.

And though Google's experiment is a "major scientific breakthrough," it has little influence on commercial users today, Matthew Brisse, the research vice president at Gartner, said.

"It demonstrates progress in the quantum community, but from an end-user perspective, it doesn't change anyone's plans or anyone's project initiatives because we're still many years away," Brisse told Business Insider. "We're literally five to 10 years away from using this in a commercial production environment."

In general, IBM and Google's competitors told Business Insider they saw the experiment as a step forward.

"This is an exciting scientific achievement for the quantum industry and another step on a long journey towards a scalable, viable quantum future," a Microsoft spokesperson said in a statement.

Rigetti Computing CEO Chad Rigetti. YouTube/Y Combinator

Chad Rigetti, the founder and CEO of the startup Rigetti Quantum Computing, called Google's experiment a "remarkable achievement" that should give researchers, policymakers, investors, and other users more confidence in quantum computing.

He added that IBM's claims haven't been tested on actual hardware yet, and even if it were proved, it would still be slower and more expensive to run than on Google's quantum computer.

"The Google experiment is a landmark scientific achievement and the most important milestone to date in quantum computing," Rigetti told Business Insider. "It shows that real commercial applications are now within sight for superconducting qubit systems."

Clarke, of Intel, agreed that it was a positive for the quantum community overall, though he said that calling it "quantum supremacy" might be debatable. Clarke also said that it could show that quantum computers could be more efficient, as he suspects that Google's quantum computer uses much less power than running a Summit supercomputer for over two days.

"What's been interesting to me is seeing some of the negative reactions to this announcement," Clarke told Business Insider. "If you're in the quantum community, any good experiment that suggests there's a long future in quantum computing should be appreciated. I haven't quite understood some of the negative response at this point."

What happens next is that other scientists will review the paper, work to prove or disprove it, and debate whether quantum supremacy has been reached. Ines Montano, an associate professor of applied physics at Northern Arizona University, said IBM would likely work to prove that its supercomputer could run that experiment in a shorter time frame.

"IBM will have to figure out something to put some data to their claim," Montano told Business Insider. "That will be a very public discussion for a while. In the meantime, there's the quest is to find problems that may be more applicable to current things ... We're not as far away as we were thinking 10 years ago."

This will likely take some time, as quantum supremacy is difficult to prove. Still, quantum computing is still in its early stages, experts say, and they expect more advancements in the coming years. Experts predict that the industry is still at least 10 years away from useful quantum computers.

"Google's managed to find a complex problem that they can solve on this system," Reynolds told Business Insider. "It isn't a useful solution, but it is a big step forwards. IBM offers a way to solve the problem with classical hardware in a couple of days. That's also impressive and shows the caliber of thinking that we find in these early quantum programs."

Continued here:

IBM picked a fight with Google over its claims of 'quantum supremacy.' Here's why experts say the feud could shake up the tech industry's balance of...

Posted in Quantum Computing | Comments Off on IBM picked a fight with Google over its claims of ‘quantum supremacy.’ Here’s why experts say the feud could shake up the tech industry’s balance of…

Editorial: Quantum computing is a competition we can’t afford to lose – The Winchester Star

Posted: at 2:46 pm

We Americans have a habit of bragging about our feats of technology. Our chief economic and military rivals namely Russia and China seldom do. They prefer to keep their secrets.

No one in this country is certain, then, how far the state-controlled economies of those nations have gone in developing quantum computing.

What is certain is that our national security, both militarily and economically, demands that the United States be first to perfect the technology. The reason for that was demonstrated in an announcement Wednesday by technology giant Google.

Google officials claim to have achieved a breakthrough in quantum computing. They say they have developed an experimental quantum computing processor capable of completing a complex mathematical calculation in less than four minutes.

Google says it would take the most advanced conventional supercomputer in existence about 10,000 years to do that.

Wrap your mind around that, if you can.

Other companies working with quantum computing, including IBM, Intel and Microsoft, say Google is exaggerating. IBM researchers told The Associated Press the test calculation used by Google actually could be handled by certain supercomputers in two and one-half days.

Still, you get the idea: Quantum computing will give the nation including its armed forces and industries that gets there first an enormous advantage over everyone else. The possibilities, ranging from near-perfect missile defense systems to vastly accelerated research on curing diseases, are virtually endless.

U.S. officials are cognizant of the ramifications of quantum computing, to the point that Washington has allocated $1.2 billion to support research during the next five years.

If that is not enough to ensure the United States stays in the lead in the quantum computing race, more should be provided. This is a competition we cannot afford to lose.

Read this article:

Editorial: Quantum computing is a competition we can't afford to lose - The Winchester Star

Posted in Quantum Computing | Comments Off on Editorial: Quantum computing is a competition we can’t afford to lose – The Winchester Star

Quantum investment soars in the UK to more than 1bn – Management Today

Posted: at 2:46 pm

Whats very small but set to be very big? Quantum technology, according to the UK government, which took the decision in June to reinvest in a scheme designed to move the science beyond academia and research laboratories and into commercial and practical use.

Some 1bn has already been invested in the UKs National Quantum Technologies Programme, which was set up in 2013. The government recently announced a further 153m of funding through the Industrial Strategy Challenge Fund (which aims to ensure that 2.4 per cent of GDP is invested in R&D by 2027) plus 200m of investment from the private sector.

This means spending by industry is outstripping government investment for the first time, a good indication that the technology has stepped beyond an initial, broadly speculative stage. "Quantum is no longer an experimental science for the UK," says former science minister Chris Skidmore. "Investment by government and businesses is paying off as we become one of the worlds leading nations for quantum science and technologies."

Whereas "classical" computers are based on a structure of binary choices yes or no; on or off quantum computing is a lot more complicated. Classical chips rely on whether or not an electron is conducted from one atom to another around a circuit, but super-cooled quantum chips allow us to interface with the world at a much deeper level, taking into account properties such as superposition, entanglement or interference.

Confused? Think of a simple coin toss. Rather than being able to simply call heads or tails, superposition allows us to take into account when a coin spins, while entanglement is whether its properties are intrinsically linked with those of another coin.

To help harness this new potential in different areas, the governments programme works across four hubs: sensing and timing; imaging; computing and simulation; and communications.

One of the key advances that quantum computing is expected to bring is not just substantially greater processing speed but the ability to mimic and, therefore, understand and predict the ways that nature works.

For example, this could allow us to look directly inside the human body, see through smoke or mist, develop new drugs much more quickly and reliably by reviewing the effect on many molecules at the same time, or even make our traffic run smoothly. Meanwhile, the Met Office has already invested in this technology to improve weather forecasting.

Image: IBM Q System One quantum computer, photo by Misha Friedman/Getty Images

See the rest here:

Quantum investment soars in the UK to more than 1bn - Management Today

Posted in Quantum Computing | Comments Off on Quantum investment soars in the UK to more than 1bn – Management Today

Quantum computers: why Google, NASA and others are putting their chips on these dream machines – World Economic Forum

Posted: October 31, 2019 at 5:45 am

In 1936, Alan Turing proposed the Turing machine, which became the foundational reference point for theories about computing and computers. Around the same time, Konrad Zuse invented the Z1 computer, considered to be the first electromagnetic binary computer.

What happened next is history, and in our world today, computers are everywhere. Our lives are dramatically different from how they were even at the end of the 20th century, and our mobile phones have far more powerful CPUs than desktop computers did only few years ago. The advent of the Internet of Things brings computer power into every minute detail of our lives. The world wide web has had such a transformative effect on society that many people can't even remember a life before they were online.

The major catalyst behind this transformation was the discovery of silicon, and its use in the production of good transistors. This occurred over a period of more than 100 years, dating from when Michael Faraday first recorded the semiconductor effect in 1833, via Morris Tanenbaum, who built the first silicon transistor at Bell Labs in 1954, to the first integrated circuit in 1960.

We are about to embark on a similar journey in our quest for building the next-generation computer. Quantum physics, which emerged in the early 20th century, is so powerful and yet so unlike anything known before that even the inventors had a hard time understanding it in detail.

In the early 1980s, Richard Feynman, Paul Benioff and Yuri Manin provided the groundwork for a completely new paradigm of quantum computing, introducing the idea that quantum computing had the potential to solve problems that classical computing could not. And so quantum computing came into its own.

Peter Shor published an algorithm in 1994 capable of efficiently solving problems in cryptography that are hard to solve for classical computers that is, the vast majority of computers used today. In fact, Shor's algorithm continues to threaten the fundaments of most encryption deployed across the globe.

The problem was that, in 1994, there was no quantum computer in sight. In 1997, the first tiny quantum computer was built, but the field really took off only when the Canadian startup D-Wave revealed its 28-qubit quantum computer in 2007.

Similar to the trajectory of non-quantum communication, which took more than 100 years from discovery to mass use, quantum computers are now maturing very quickly. Today, many players are engaged in a battle over who can build the first powerful quantum computer. These include commercial entities such as IonQ, Rigetti, IBM, Google, Alibaba, Microsoft and Intel, while virtually all major nation states are spending billions of dollars on quantum computing development and research.

Quantum computers are powerful yet so difficult to build that whoever can crack the code will have a lasting powerful advantage. This cannot be understated. Heres a striking example of the power of quantum computing.

Quantum leaps: growth over the years

Image: Statista

To break a widely used RSA 2048-bit encryption, a classical computer with one trillion operations per second would need around 300 trillion years. This is such a long time that we all feel very safe.

A quantum computer using Shor's algorithm could achieve the same feat in just 10 seconds, with a modest 1 million operations per second. That's the power of quantum computers: 300 trillion years versus 10 seconds.

Another reason why nation states pour so much money into the field is precisely because, with it being so difficult, any achievement will directly yield a lasting advantage.

So where are quantum computers today, and where are they headed?

Considering the immense challenges to building quantum computers, I'd say we are roughly where we were in around 1970 with classical computers. We have some quantum computers, but they are still pretty unreliable compared to today's standard. We call them NISQ devices - Noisy Intermediate-Scale Quantum devices. Noisy because they are pretty bad, and intermediate-scale because of their small qubit number. But they work. There are a few public quantum computers available for anyone to programme on. IBM, Rigetti, Google and IonQ all provide public access with open-source tools to real quantum computing hardware. IBM even sells a quantum computer that you can put in your own data centre (the IBM Q System One).

But these are not yet powerful enough to break RSA 2048-bit keys, and probably won't be for another 10 to 20 years.

The comparison date of 1970 works from another angle, too. In October 1969, researchers sent the first message over the internet (it was called ARPANET then). When they tried to send the one word "login", the system crashed after sending "l" and "o". It later recovered and the message was successfully sent.

Today, we are also building a quantum communication system that doesn't communicate bits and bytes, but quantum states that quantum computers can understand. This is important so that we can build up a quantum version of the internet.

D-Wave, NASA, Google and the Universities Space Research Association created the D-Wave 1,097-qubit quantum computer.

Image: Reuters/Stephen Lam

It is also important as a way of encrypting communication, since the quantum channel provides some inherent physical guarantees about a transmission. Without going into too much detail, there is a fundamental property whereby the simple act of wiretapping or listening into a communication will be made detectable to the parties communicating. Not because they have a fancy system setup, but because of fundamental properties of the quantum channel.

But quantum computers are not just useful for cryptography applications and communication. One of the most immediate applications is in machine-learning, where we are already today on the cusp of a quantum advantage meaning that the quantum algorithm will outperform any classical algorithm. It is believed that quantum advantage for machine-learning can be achieved within the next 6-12 months. The near-term applications for quantum computing are endless: cryptography, machine-learning, chemistry, optimization, communication and many more. And this is just the start, with research increasingly extending to other areas.

Google and NASA have just announced that they have achieved 'quantum supremacy'. That is the ability of quantum computers to perform certain tasks that a classical computer simply cannot do in a reasonable timeframe. Their quantum computer solved a problem in 200 seconds that would take the worlds fastest supercomputer 10,000 years.

The problem that was solved is without any practical merits or implications, yet it demonstrates the huge potential quantum computers have and the ability to unlock that potential in the coming years.

This opens up a completely new era where we can now focus on building quantum computers with practical benefits and while this will still be many years away, it will be the new frontier in computation.

License and Republishing

World Economic Forum articles may be republished in accordance with our Terms of Use.

Written by

Andreas Baumhof, Vice President Quantum Technologies, QuintessenceLabs

The views expressed in this article are those of the author alone and not the World Economic Forum.

Go here to see the original:

Quantum computers: why Google, NASA and others are putting their chips on these dream machines - World Economic Forum

Posted in Quantum Computing | Comments Off on Quantum computers: why Google, NASA and others are putting their chips on these dream machines – World Economic Forum

Other voices: Welcome to the age of Quantum computing – St. Paul Pioneer Press

Posted: at 5:45 am

Has the era of quantum computing finally dawned? In a field long plagued by hype and hubris, theres reason for some cautious optimism.

A team of scientists at Googles research lab announced last week in the journal Nature that they had built a quantum computer that could perform calculations in about 200 seconds that would take a classical supercomputer some 10,000 years to do. An age of quantum supremacy was duly declared.

Rather uncharitably, IBM researchers were quick to point out that the feat was less than advertised. They estimated that by using all of the hard disk space at the worlds most powerful classical computer, the Summit OLCF-4 at Oak Ridge National Laboratory, they could do the same calculation in 2.5 days, not 10,000 years. Googles claim to have achieved quantum supremacy that is, to have accomplished a task that traditional computers cant was premature.

This was to miss the bigger picture: A rudimentary quantum machine has improved on the fastest supercomputer ever built by a factor of 1,080 an immense achievement by any measure. Although the specific problem that Googles computer solved wont have much practical significance, simply getting the technology to work was a triumph; comparisons to the Wright brothers early flights arent far off the mark.

So is the world prepared for what comes next?

Quantum computers, to put it mildly, defy human intuition. They take advantage of the strange ways that matter behaves at the subatomic level to make calculations at extraordinary speed. In theory, they could one day lead to substantial advances in materials science, artificial intelligence, medicine, finance, communications, logistics and more. In all likelihood, no one has thought up the best uses for them yet.

They also pose some risks worth paying attention to. One is that the global race to master quantum computing is heating up, with unpredictable consequences. Last year, President Donald Trumps administration signed a $1.1 billion bill to prioritize the technology, which is a decent start. But the U.S. will need to do more to retain its global leadership. Congress should fund basic research at labs and universities, ensure the U.S. welcomes immigrants with relevant skills, invest in cutting-edge infrastructure, and use the governments vast leverage as a consumer to support promising quantum technologies.

A more distant worry is that advanced quantum computers could one day threaten the public-key cryptography that protects information across the digital world. Those systems are based on hard math problems that quantum computers might theoretically be able to crack with ease. Security researchers are well aware of the problem, and at work on creating post-quantum systems and standards. But vigilance and serious investment is nonetheless called for.

No doubt, the quantum-computing era will have its share of false starts, dashed hopes and fiendishly difficult problems to overcome. As Google is showing, though, thats how technology advances: bit by bit, into a very strange future.

Bloomberg Opinion

Read the original post:

Other voices: Welcome to the age of Quantum computing - St. Paul Pioneer Press

Posted in Quantum Computing | Comments Off on Other voices: Welcome to the age of Quantum computing – St. Paul Pioneer Press

Volkswagen : optimizing traffic flow with quantum computers – Quantaneo, the Quantum Computing Source

Posted: at 5:45 am

Volkswagen is launching in Lisbon the world's first pilot project for traffic optimization using a quantum computer. For this purpose, the Group is equipping MAN buses of the city of Lisbon with a traffic management system developed in-house. This system uses a D-Wave quantum computer and calculates the fastest route for each of the nine participating buses individually and almost in real-time. This way, passengers' travel times will be significantly reduced, even during peak traffic periods, and traffic flow will be improved. Volkswagen is testing its traffic optimization system during the WebSummit technology conference in Lisbon from November 4 to 8 - during the conference, buses will carry thousands of passengers through the city traffic in Lisbon.

Martin Hofmann, Volkswagen Group CIO, says: 'At Volkswagen, we want to further expand our expert knowledge in the field of quantum computing and to develop an in-depth understanding of the way this technology can be put to meaningful use within the company. Traffic optimization is one of the potential applications. Smart traffic management based on the performance capabilities of a quantum computer can provide effective support for cities and commuters.'

Vern Brownell, CEO of D-Wave, says: 'Volkswagen's use of quantum computing to tackle pervasive global problems like smart traffic management is an example of the real-world impact quantum applications will soon have on our cities, communities, and everyday lives. Since we built the first commercial quantum computer, D-Wave has been focused on designing systems that enable quantum application development and deliver business value. Volkswagen's pilot project is among the first that we know of to make production use of a quantum computer, and their ongoing innovation brings us closer than ever to realizing true, practical quantum computing.'

System includes two components: passenger number prediction and route optimization

The Volkswagen traffic management system includes two components - passenger number prediction and route optimization by quantum computing. For predictions, the development team from Volkswagen is using data analytics tools to identify stops with especially high passenger numbers at certain times. For this purpose, anonymized geo-coordinates and passenger flow data are used. The objective is to offer as many people as possible tailor-made transport possibilities and to ensure optimum utilization of the bus fleet.

For the pilot project in Lisbon, 26 stops were selected and connected to form four bus links. For example, one of these runs from the WebSummit conference facility to the Marqus de Pombal traffic node in the city center.

The Volkswagen team intends to continue the development of this prediction component. The idea is that bus operators should add temporary links to their scheduled services to serve stops with the largest passenger numbers. This would be a meaningful approach for major events in the city area, for example.

The Volkswagen experts have developed a quantum algorithm for route optimization between the stops. This algorithm calculates the fastest route for each individual bus in the fleet and optimizes it almost on a real-time basis. In contrast to conventional navigation services, the quantum algorithm assigns each bus an individual route. This way, each bus can drive around traffic bottlenecks along the route at an early stage and avoid traffic jams before they even arise.

The experts from Volkswagen expect this development to have a further positive effect. As the buses travel along individually optimized routes which are calculated to ensure that they can never cause congestion themselves, there will be a general improvement in traffic flow within the city.

Volkswagen intends to develop the system to market maturity

In the future, Volkswagen plans to develop its traffic optimization system to market maturity. For this reason, the Volkswagen developers have designed the system so that it can generally be applied to any city and to vehicle fleets of any size. Further pilot projects for cities in Germany and other European countries are already being considered. Volkswagen believes that such a traffic optimization system could be offered to public transport companies, taxi companies or fleet operators.

Volkswagen and quantum computing

Volkswagen is cooperating with its technology partners D-Wave and Google, who provide the experts with access to their computer systems. In 2016, the Volkswagen team already successfully demonstrated congestion-free route optimization for taxis in the Chinese capital Beijing. Since then, the development of the algorithm has been steadily continued and it has been protected by patents in the USA.

Read more:

Volkswagen : optimizing traffic flow with quantum computers - Quantaneo, the Quantum Computing Source

Posted in Quantum Computing | Comments Off on Volkswagen : optimizing traffic flow with quantum computers – Quantaneo, the Quantum Computing Source

The US just moved ahead of China in quantum computing – 10News

Posted: at 5:45 am

Sometimes being first isn't all it's cracked up to be.

Google raced past China this week in the quest for "quantum supremacy" with its claim that a machine developed by the company can solve a problem in 200 seconds that would take the world's fastest supercomputer 10,000 years.

But just as the Soviet Union was the first to put both a satellite and a human being into orbit, before going on to lose the space race, China may be poised to outstrip any American achievements in a specific field of quantum technology communication.

Beijing's gains in this area which could make its communications unhackable may leave US spies in the dark just as the US-China rivalry is heating up, a prospect that has led to great alarm in Washington.

Quantum supremacy

While Google's announcement has drawn skepticism from some of its rivals, and this would not be the first time a claim of "quantum supremacy" has been rebuffed , it nevertheless represents a clear step towards the rise of quantum computers.

"This is a hugely important milestone for the field," said Joe Fitzsimons, chief executive of Horizon Quantum Computing . "The Google result shows that for the first time there is a quantum processor that can do something that a conventional computer cannot do, or at least that a conventional computer cannot do without enormous effort."

In normal computers, data being processed exists in one state at a time a one, or a zero. Quantum computers , on the other hand, manipulate qubits, which can simultaneously be both a one and a zero, or any combination of the two. The difference means much faster processing speeds, and potentially solving problems and processing data that would take traditional machines millennia.

This will have applications well beyond physics and mathematics. Quantum computers could lead to breakthroughs in self-learning artificial intelligence (AI), provide medical insights by simulating incredibly complex biological molecules, and simultaneously break all existing cryptographic keys while setting the stage for uncrackable quantum encryption.

The last point is why many nation states led by the US and China have taken a strong interest in quantum computing. The first country to achieve quantum encryption could theoretically go completely "dark" to its rivals, hiding all its information from traditional digital surveillance methods. On the flip side, major gains in quantum computing could undo existing means of keeping data secret.

Quantum computers refer to supercomputers, like that built by Google, which use qubits to process huge amounts of data that would be beyond the capabilities of traditional machines. Quantum communication uses the nature of quantum particles to encrypt data in a way that it cannot be put under surveillance without warning the people being watched.

"Quantum computers are coming, and if it's going to be five, 10 or 15 years before we can decrypt any messages sent in the past, that definitely sends a chill down the spine of any security agency around the world," said Dimitris Angelakis , principal investigator at Singapore's Center for Quantum Technologies.

But while Google may have made an important step this week, the company is by no means alone in investing in quantum computing research, and the next major milestone an unambiguous demonstration of quantum advantage remains out of reach.

"Quantum advantage means demonstrating computational supremacy for a meaningful problem, showing that a quantum processor has been built which is more useful than a conventional computer for at least one problem," said Fitzsimons. "The path to large-scale quantum computing is more of a marathon than a sprint. The current result certainly places Google at the front of the pack, but there is still a long way to the finish line."

If Google is leading the pack, most of the runners clustered behind it are not fellow Silicon Valley companies, but their Chinese competitors and the country's well-funded research institutes.

Chinese qubits

In an influential paper last year for the Center for a New American Security, authors Elsa Kania and John Costello wrote that "China is positioning itself as a powerhouse in quantum science."

"At the highest levels, China's leaders recognize the strategic potential of quantum science and technology to enhance economic and military dimensions of national power," they argued. "These quantum ambitions are intertwined with China's national strategic objective to become a science and technology superpower."

For years now, China has been pouring billions of dollars into funding quantum research, with a particular focus on uncrackable encrypted communication, enabling it to dodge US surveillance.

The leading institution in this field is the University of Science and Technology of China (USTC), one of the country's most prestigious schools, based in Hefei near Shanghai. Chinese President Xi Jinping visited USTC in 2016, where he met with Pan Jianwei, the schools' vice president and China's " father of quantum ."

Pan is widely recognized as one of the foremost experts in this field, and was named as one of Nature's top ten people who mattered in science for 2017 , for having "lit a fire under the country's efforts in quantum technology."

UTSC has led efforts to build a China-wide quantum communications network , which would link Beijing, Shanghai, Guangzhou and five other cities via satellites and fiber-optic cables. In a presentation at a conference in Shanghai in August co-organized by the International Telecommunications Union (ITU), a United Nations body, Pan explained how quantum satellites could be used to provide "unconditional security" in transmitting data that would be unhackable and impervious to surveillance.

He also led the research team behind Micius, the world's first quantum satellite, launched by China in 2016 . Named for the ancient Chinese philosopher Mozi, the satellite successfully managed a video call in 2017 between Beijing and Vienna using quantum encryption, making it impossible to eavesdrop upon.

Pan is currently building a new quantum research lab in Hefei, into which the government has already pumped more than a billion dollars.

"We were only the follower and the learner at the birth of modern information science," he told MIT Technology Review last year . "Now we have a chance ... to be a leader."

Fitzsimons, the Horizon CEO, said that while China "has had tremendous accomplishments in the field of quantum communication," it lags behind the United States and Europe in terms of quantum computation.

"The focus on quantum computation in China came after quantum communication, and so is later in bearing fruit," he said. "In recent years, there has been a dramatic increase in efforts both at universities in China and at technology companies, such as Alibaba, Baidu, Tencent and Huawei, focused on computation, which have begun to yield results."

Quantum arms race

The potential benefits of quantum computing to China have been recognized at the highest levels. Quantum technologies were highlighted in the country's 13th Five Year Plan , introduced in 2016, and that same year were mentioned by President Xi himself in a speech announcing the Belt and Road Initiative, his vast trade and infrastructure program.

As well as government funding, private Chinese companies like their Silicon Valley rivals are also getting into the quantum research game: Alibaba alone has pumped around $15 billion into labs focused on future technologies, including quantum computing.

According to Patinformatics , an analysis firm, Chinese organizations filed nearly twice as many patents related to quantum information technology (QIT) as the United States in 2017, and more than 70% of academic QIT patents since 2012 have been awarded to Chinese universities, with US institutions a distant second at 12%.

Beijing's massive funding, and the advances by Chinese scientists, have not gone unnoticed in Washington.

"China's advances in quantum science could impact the future military and strategic balance, perhaps even leapfrogging traditional US military-technological advantages," Kania and Costello wrote in their report, adding that the US "should build upon and redouble existing efforts to remain a leader, or at least a major contender, in the development of quantum technologies."

Their recommendations, and similar warnings from other experts, have borne fruit.

In August, President Donald Trump signed into law the National Quantum Initiative Act. The law authorized an extra $1.2 billion in research funding over five years, as well as establishing a national quantum committee to coordinate research and public funding for the field.

In the statement enacting the law, the White House said it would "ensure continued American leadership in quantum information science and technology applications."

While the United States is starting to match China for funding, Angelakis, the Singapore-based expert, said that "the biggest challenge in the field in the next few years is not money."

As the field grows, competition for talent is also growing -- a factor that is affected by geopolitics and security concerns over quantum technologies. Angelakis compared the situation to early research into nuclear energy, which rapidly got overtaken and co-opted by governments, with research classified and sharing of discoveries limited, though he was quick to point out that quantum technology does not have as devastating a military use.

"There's definitely a race going on and the current geopolitical situation is not helping the real science to progress," Angelakis said. "There are cases of people being denied visas ... it could be something that is very negative in the short term because we are still evolving this technology."

Go here to read the rest:

The US just moved ahead of China in quantum computing - 10News

Posted in Quantum Computing | Comments Off on The US just moved ahead of China in quantum computing – 10News

Massive Analytic and the National Physical Laboratory collaborate in quantum with successful first project – Quantaneo, the Quantum Computing Source

Posted: at 5:45 am

Massive Analytic, a London based artificial intelligence pioneer, and the National Physical Laboratory (NPL), the UK's National Measurement Institute, have now completed their joint InnovateUK Analysis for Innovators project, the Metrological comparison between a generalised N-dimensional classical and quantum point cloud. The results of this project have opened avenues for both further R&D into quantum as well as ways to enhance Massive Analytics AI platforms.

The project set out to break new ground in quantum by proving that point clouds, created by fusing multi-modal sensor data, could be represented and processed on quantum computers as quantum point clouds. As a result of the project, teams at NPL and Massive Analytic have been successful in simulating transposing point cloud sensor data from an autonomous car onto quantum computers.

Ivan Rungger, senior research scientist at NPL said, Autonomous cars and other advancing technologies rely on the fast acquisition and analysis of sensor data, combining visual data with information such as temperature or humidity distributions. Using Massive Analytics data, we have produced a new method to represent these multi-modal inputs as general point cloud data on quantum computers. Our method simulates how the data can be ported to near term noisy intermediate-scale quantum (NISQ) computers opening the doors for the commercialisation of these technologies in future.

Thanks to the collaboration Massive Analytic has developed a classical-quantum computing hybrid approach, where outputs from classical sensor technologies are modified to enable early applications on current state-of-the-art quantum computers of the order of tens of qubits. Massive Analytic intends to augment its patented AI, Artificial Precognition, with outputs from a quantum processor to further improve prediction accuracy across all its product lines to deliver even more value to its customers. This breakthrough also creates a host of new possibilities for processing IoT data and applying AI and machine learning to it.

The company was supported to participate in the Analysis for Innovators (A4I) scheme by Innovate UK. Funding from the Department of Business, Energy and Industrial Strategy enabled Massive Analytic to access the cutting-edge R&D, expertise and facilities at the National Physical Laboratory, to help overcome the companys unique measurement challenges.

Jonathan Mitchener, from Innovate UK said, Its great that our A4I programme can support key UK technology areas such as Quantum, and in conjunction with world class scientific partners, such as NPL, that A4I brings companies together with, support a growing and ambitious company to be more competitive in the new quantum computing space.

Following the success of the A4I project, NPL and Massive Analytic are in discussion to establish a long term collaboration to develop quantum technologies for data science applications, ranging from sensing to cyber security to precision medicine.

George Frangou, CEO and Founder of Massive Analytic said, Massive Analytic and the National Physical Laboratory in partnership are realising the benefits signposted by the Fourth Industrial revolution; linking Tech City to world class laboratories. With the Government now committed to being the leading European economy in Artificial Intelligence and Quantum Computing, we have the opportunity to create a partnership, which will be regarded as pre-eminent in our chosen domains.

Follow this link:

Massive Analytic and the National Physical Laboratory collaborate in quantum with successful first project - Quantaneo, the Quantum Computing Source

Posted in Quantum Computing | Comments Off on Massive Analytic and the National Physical Laboratory collaborate in quantum with successful first project – Quantaneo, the Quantum Computing Source

Page 11234..10..»