Bone-marrow-homing lipid nanoparticles for genome editing in diseased and malignant haematopoietic stem cells – Nature.com

Posted: May 23, 2024 at 7:53 am

Laurenti, E. & Gottgens, B. From haematopoietic stem cells to complex differentiation landscapes. Nature 553, 418426 (2018).

Article CAS PubMed PubMed Central Google Scholar

Bauer, T. R. Jr. et al. Correction of the disease phenotype in canine leukocyte adhesion deficiency using ex vivo hematopoietic stem cell gene therapy. Blood 108, 33133320 (2006).

Article CAS PubMed PubMed Central Google Scholar

Blaese, R. M. et al. T lymphocyte-directed gene therapy for ADA-SCID: initial trial results after 4years. Science 270, 475480 (1995).

Article CAS PubMed Google Scholar

Boztug, K. et al. Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N. Engl. J. Med. 363, 19181927 (2010).

Article CAS PubMed PubMed Central Google Scholar

Cowan, M. J. et al. Early outcome of a phase I/II clinical trial (NCT03538899) of gene-corrected autologous CD34+ hematopoietic cells and low-exposure busulfan in newly diagnosed patients with Artemis-deficient severe combined immunodeficiency (ART-SCID). Biol. Blood Marrow Transpl. 26, S88S89 (2020).

Article Google Scholar

Gaspar, H. B. et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 364, 21812187 (2004).

Article CAS PubMed Google Scholar

Kanter, J. et al. Biologic and clinical efficacy of LentiGlobin for sickle cell disease. N. Engl. J. Med. 386, 617628 (2022).

Article CAS PubMed Google Scholar

Kohn, L. A. & Kohn, D. B. Gene therapies for primary immune deficiencies. Front. Immunol. 12, 648951 (2021).

Article CAS PubMed PubMed Central Google Scholar

Kondo, M. et al. Biology of hematopoietic stem cells and progenitors: implications for clinical application. Annu Rev. Immunol. 21, 759806 (2003).

Article CAS PubMed Google Scholar

Locatelli, F. et al. Betibeglogene autotemcel gene therapy for non-0/0 genotype -thalassemia. N. Engl. J. Med. 386, 415427 (2022).

Article CAS PubMed Google Scholar

Malech, H. L. et al. Prolonged production of NADPH oxidase-corrected granulocytes after gene therapy of chronic granulomatous disease. Proc. Natl Acad. Sci. USA 94, 1213312138 (1997).

Article CAS PubMed PubMed Central Google Scholar

Morgan, R. A., Gray, D., Lomova, A. & Kohn, D. B. Hematopoietic stem cell gene therapy: progress and lessons learned. Cell Stem Cell 21, 574590 (2017).

Article CAS PubMed PubMed Central Google Scholar

Sago, C. D. et al. Nanoparticles that deliver RNA to bone marrow identified by in vivo directed evolution. J. Am. Chem. Soc. 140, 1709517105 (2018).

Article CAS PubMed PubMed Central Google Scholar

Shi, D., Toyonaga, S. & Anderson, D. G. In vivo RNA delivery to hematopoietic stem and progenitor cells via targeted lipid nanoparticles. Nano Lett. 23, 29382944 (2023).

Article CAS PubMed PubMed Central Google Scholar

Sou, K., Goins, B., Oyajobi, B. O., Travi, B. L. & Phillips, W. T. Bone marrow-targeted liposomal carriers. Expert Opin. Drug Deliv. 8, 317328 (2011).

Article CAS PubMed PubMed Central Google Scholar

Sou, K., Klipper, R., Goins, B., Tsuchida, E. & Phillips, W. T. Circulation kinetics and organ distribution of Hb-vesicles developed as a red blood cell substitute. J. Pharmacol. Exp. Ther. 312, 702709 (2005).

Article CAS PubMed Google Scholar

Xue, L. et al. Rational design of bisphosphonate lipid-like materials for mRNA delivery to the bone microenvironment. J. Am. Chem. Soc. 144, 99269937 (2022).

Article CAS PubMed Google Scholar

Boulais, P. E. & Frenette, P. S. Making sense of hematopoietic stem cell niches. Blood 125, 26212629 (2015).

Article CAS PubMed PubMed Central Google Scholar

Ikonomi, N., Kuhlwein, S. D., Schwab, J. D. & Kestler, H. A. Awakening the HSC: dynamic modeling of HSC maintenance unravels regulation of the TP53 pathway and quiescence. Front. Physiol. 11, 848 (2020).

Article PubMed PubMed Central Google Scholar

Li, J. Quiescence regulators for hematopoietic stem cell. Exp. Hematol. 39, 511520 (2011).

Article PubMed Google Scholar

Man, Y., Yao, X., Yang, T. & Wang, Y. Hematopoietic stem cell niche during homeostasis, malignancy, and bone marrow transplantation. Front. Cell Dev. Biol. 9, 621214 (2021).

Article PubMed PubMed Central Google Scholar

Nakamura-Ishizu, A., Takizawa, H. & Suda, T. The analysis, roles and regulation of quiescence in hematopoietic stem cells. Development 141, 46564666 (2014).

Article CAS PubMed Google Scholar

Eppert, K. et al. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat. Med. 17, 10861093 (2011).

Article CAS PubMed Google Scholar

Lapidot, T. et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645648 (1994).

Article CAS PubMed Google Scholar

Mandal, T., Beck, M., Kirsten, N., Linden, M. & Buske, C. Targeting murine leukemic stem cells by antibody functionalized mesoporous silica nanoparticles. Sci. Rep. 8, 989 (2018).

Article PubMed PubMed Central Google Scholar

Pei, S. & Jordan, C. T. How close are we to targeting the leukemia stem cell? Best Pract. Res. Clin. Haematol. 25, 415418 (2012).

Article CAS PubMed Google Scholar

Li, C. et al. Prophylactic in vivo hematopoietic stem cell gene therapy with an immune checkpoint inhibitor reverses tumor growth in syngeneic mouse tumor models. Cancer Res. 80, 549560 (2020).

Article CAS PubMed Google Scholar

Li, C. et al. In vivo HSPC gene therapy with base editors allows for efficient reactivation of fetal globin in beta-YAC mice. Blood Adv. 5, 11221135 (2021).

Article CAS PubMed PubMed Central Google Scholar

Li, C. et al. In vivo HSC gene therapy using a bi-modular HDAd5/35++ vector cures sickle cell disease in a mouse model. Mol. Ther. 29, 822837 (2021).

Article CAS PubMed Google Scholar

Li, C. et al. Safe and efficient in vivo hematopoietic stem cell transduction in nonhuman primates using HDAd5/35++ vectors. Mol. Ther. Methods Clin. Dev. 24, 127141 (2022).

Article PubMed Google Scholar

Psatha, N. et al. Enhanced HbF reactivation by multiplex mutagenesis of thalassemic CD34+ cells in vitro and in vivo. Blood 138, 15401553 (2021).

Article CAS PubMed PubMed Central Google Scholar

Muruve, D. A., Barnes, M. J., Stillman, I. E. & Libermann, T. A. Adenoviral gene therapy leads to rapid induction of multiple chemokines and acute neutrophil-dependent hepatic injury in vivo. Hum. Gene Ther. 10, 965976 (1999).

Article CAS PubMed Google Scholar

Sweeney, C. L. & De Ravin, S. S. The promise of in vivo HSC prime editing. Blood 141, 20392040 (2023).

Article CAS PubMed Google Scholar

Worgall, S., Wolff, G., Falck-Pedersen, E. & Crystal, R. G. Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum. Gene Ther. 8, 3744 (1997).

Article CAS PubMed Google Scholar

Lek, A. et al. Death after high-dose rAAV9 gene therapy in a patient with Duchennes muscular dystrophy. N. Engl. J. Med. 389, 12031210 (2023).

Article CAS PubMed Google Scholar

Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 10781094 (2021).

Article CAS PubMed PubMed Central Google Scholar

Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR-Cas gene editing. Nat. Nanotechnol. 15, 313320 (2020).

Article CAS PubMed PubMed Central Google Scholar

Dilliard, S. A., Cheng, Q. & Siegwart, D. J. On the mechanism of tissue-specific mRNA delivery by selective organ targeting nanoparticles. Proc. Natl Acad. Sci. USA 118, e2109256118 (2021).

Article CAS PubMed PubMed Central Google Scholar

Dilliard, S. A. & Siegwart, D. J. Passive, active and endogenous organ-targeted lipid and polymer nanoparticles for delivery of genetic drugs. Nat. Rev. Mater. 8, 282300 (2023).

Article CAS PubMed PubMed Central Google Scholar

Farbiak, L. et al. All-in-one dendrimer-based lipid nanoparticles enable precise HDR-mediated gene editing in vivo. Adv. Mater. 33, e2006619 (2021).

Article PubMed PubMed Central Google Scholar

Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR-Cas gene editing. Nat. Mater. 20, 701710 (2021).

Article CAS PubMed PubMed Central Google Scholar

Liu, S. et al. Zwitterionic phospholipidation of cationic polymers facilitates systemic mRNA delivery to spleen and lymph nodes. J. Am. Chem. Soc. 143, 2132121330 (2021).

Article CAS PubMed PubMed Central Google Scholar

Wang, X. et al. Preparation of selective organ-targeting (SORT) lipid nanoparticles (LNPs) using multiple technical methods for tissue-specific mRNA delivery. Nat. Protoc. 18, 265291 (2023).

Article CAS PubMed Google Scholar

Wei, T., Cheng, Q., Min, Y. L., Olson, E. N. & Siegwart, D. J. Systemic nanoparticle delivery of CRISPR-Cas9 ribonucleoproteins for effective tissue specific genome editing. Nat. Commun. 11, 3232 (2020).

Article CAS PubMed PubMed Central Google Scholar

Zhang, D. et al. Enhancing CRISPR/Cas gene editing through modulating cellular mechanical properties for cancer therapy. Nat. Nanotechnol. 17, 777787 (2022).

Article CAS PubMed PubMed Central Google Scholar

Wu, L. C. et al. Correction of sickle cell disease by homologous recombination in embryonic stem cells. Blood 108, 11831188 (2006).

Article CAS PubMed PubMed Central Google Scholar

Metais, J. Y. et al. Genome editing of HBG1 and HBG2 to induce fetal hemoglobin. Blood Adv. 3, 33793392 (2019).

Article PubMed PubMed Central Google Scholar

Newby, G. A. et al. Base editing of haematopoietic stem cells rescues sickle cell disease in mice. Nature 595, 295302 (2021).

Article CAS PubMed PubMed Central Google Scholar

Stavropoulou, V., Peters, A. & Schwaller, J. Aggressive leukemia driven by MLL-AF9. Mol. Cell Oncol. 5, e1241854 (2018).

Article PubMed Google Scholar

Hou, X. et al. Vitamin lipid nanoparticles enable adoptive macrophage transfer for the treatment of multidrug-resistant bacterial sepsis. Nat. Nanotechnol. 15, 4146 (2020).

Article CAS PubMed PubMed Central Google Scholar

Read more:
Bone-marrow-homing lipid nanoparticles for genome editing in diseased and malignant haematopoietic stem cells - Nature.com

Related Posts