Mars Colony-Scale Rockets ‘Could Be Ready In 10 Years …

Posted: February 7, 2014 at 5:45 pm

Dusty Space Cloud

This image shows the Large Magellanic Cloud galaxy in infrared light as seen by the Herschel Space Observatory, a European Space Agency-led mission with important NASA contributions, and NASA's Spitzer Space Telescope. In the instruments' combined data, this nearby dwarf galaxy looks like a fiery, circular explosion. Rather than fire, however, those ribbons are actually giant ripples of dust spanning tens or hundreds of light-years. Significant fields of star formation are noticeable in the center, just left of center and at right. The brightest center-left region is called 30 Doradus, or the Tarantula Nebula, for its appearance in visible light.

This enhanced-color image shows sand dunes trapped in an impact crater in Noachis Terra, Mars. Dunes and sand ripples of various shapes and sizes display the natural beauty created by physical processes. The area covered in the image is about six-tenths of a mile (1 kilometer) across. Sand dunes are among the most widespread wind-formed features on Mars. Their distribution and shapes are affected by changes in wind direction and wind strength. Patterns of dune erosion and deposition provide insight into the sedimentary history of the surrounding terrain.

This image obtained by the framing camera on NASA's Dawn spacecraft shows the south pole of the giant asteroid Vesta. Scientists are discussing whether the circular structure that covers most of this image originated by a collision with another asteroid, or by internal processes early in the asteroid's history. Images in higher resolution from Dawn's lowered orbit might help answer that question. The image was recorded with the framing camera aboard NASA's Dawn spacecraft from a distance of about 1,700 miles (2,700 kilometers). The image resolution is about 260 meters per pixel.

This undated photo shows a classic type 1a supernova remnant. Researchers Saul Perlmutter and Adam Riess of the United States and US-Australian Brian Schmidt won the 2011 Nobel Physics Prize on October 4, 2011 for their research on supernovae.

A quartet of Saturn's moons, from tiny to huge, surround and are embedded within the planet's rings in this Cassini composition. Saturn's largest moon, Titan, is in the background of the image, and the moon's north polar hood is clearly visible. See PIA08137 to learn more about that feature on Titan (3,200 miles, or 5,150 kilometers across). Next, the wispy terrain on the trailing hemisphere of Dione (698 miles, or 1,123 kilometers across) can be seen on that moon which appears just above the rings at the center of the image. See PIA10560 and PIA06163 to learn more about Dione's wisps. Saturn's small moon Pandora (50 miles, or 81 kilometers across) orbits beyond the rings on the right of the image. Finally, Pan (17 miles, or 28 kilometers across) can be seen in the Encke Gap of the A ring on the left of the image. The image was taken in visible blue light with the Cassini spacecraft narrow-angle camera on Sept. 17, 2011. The view was obtained at a distance of approximately 1.3 million miles (2.1 million kilometers) from Dione and at a Sun-Dione-spacecraft, or phase, angle of 27 degrees. Image scale is 8 miles (13 kilometers) per pixel on Dione.

Combining almost opposite ends of the electromagnetic spectrum, this composite image of the Herschel in far-infrared and XMM-Newton's X-ray images obtained January 20, 2012, shows how the hot young stars detected by the X-ray observations are sculpting and interacting with the surrounding ultra-cool gas and dust, which, at only a few degrees above absolute zero, is the critical material for star formation itself. Both wavelengths would be blocked by Earth's atmosphere, so are critical to our understanding of the lifecycle of stars . (AFP / Getty Images)

Resembling looming rain clouds on a stormy day, dark lanes of dust crisscross the giant elliptical galaxy Centaurus A. Hubble's panchromatic vision, stretching from ultraviolet through near-infrared wavelengths, reveals the vibrant glow of young, blue star clusters and a glimpse into regions normally obscured by the dust. (NASA / ESA / Hubble Heritage)

A bubbling cauldron of star birth is highlighted in this image from NASA's Spitzer Space Telescope. Infrared light that we can't see with our eyes has been color-coded, such that the shortest wavelengths are shown in blue and the longest in red. The middle wavelength range is green. Massive stars have blown bubbles, or cavities, in the dust and gas--a violent process that triggers both the death and birth of stars. The brightest, yellow-white regions are warm centers of star formation. The green shows tendrils of dust, and red indicates other types of dust that may be cooler, in addition to ionized gas from nearby massive stars.

This composite image shows the central region of the spiral galaxy NGC 4151. X-rays (blue) from the Chandra X-ray Observatory are combined with optical data (yellow) showing positively charged hydrogen (H II) from observations with the 1-meter Jacobus Kapteyn Telescope on La Palma. The red ring shows neutral hydrogen detected by radio observations with the NSF's Very Large Array. This neutral hydrogen is part of a structure near the center of NGC 4151 that has been distorted by gravitational interactions with the rest of the galaxy, and includes material falling towards the center of the galaxy. The yellow blobs around the red ellipse are regions where star formation has recently occurred. (NASA / CXC / CfA / J. Wang)

Follow this link:
Mars Colony-Scale Rockets 'Could Be Ready In 10 Years ...

Related Posts