Dietary regulation in health and disease | Signal Transduction and Targeted Therapy – Nature.com

Posted: July 27, 2022 at 11:53 am

Pontzer, H., Wood, B. M. & Raichlen, D. A. Hunter-gatherers as models in public health. Obes. Rev. 19, 2435 (2018).

PubMed Article Google Scholar

Sonnenburg, J. L. & Sonnenburg, E. D. Vulnerability of the industrialized microbiota. Science 366, eaaw9255 (2019).

CAS PubMed Article Google Scholar

Kenyon, C. J. The genetics of ageing. Nature 464, 504512 (2010).

CAS PubMed Article Google Scholar

Lpez-Otn, C., Blasco, M. A., Partridge, L., Serrano, M. & Kroemer, G. The hallmarks of aging. Cell 153, 11941217 (2013).

PubMed PubMed Central Article CAS Google Scholar

Wilson, K. A. et al. Evaluating the beneficial effects of dietary restrictions: a framework for precision nutrigeroscience. Cell Metab. 33, 21422173 (2021).

CAS PubMed PubMed Central Article Google Scholar

Rodgers, G. P. & Collins, F. S. Precision nutrition-the answer to what to eat to stay healthy. JAMA 324, 735736 (2020).

PubMed Article Google Scholar

Liu, G. Y. & Sabatini, D. M. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 21, 183203 (2020).

CAS PubMed PubMed Central Article Google Scholar

Szwed, A., Kim, E. & Jacinto, E. Regulation and metabolic functions of mTORC1 and mTORC2. Physiol. Rev. 101, 13711426 (2021).

CAS PubMed PubMed Central Article Google Scholar

Harrison, D. E. et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392395 (2009).

CAS PubMed PubMed Central Article Google Scholar

Dorling, J. L., Martin, C. K. & Redman, L. M. Calorie restriction for enhanced longevity: the role of novel dietary strategies in the present obesogenic environment. Ageing Res. Rev. 64, 101038 (2020).

PubMed PubMed Central Article Google Scholar

Sowah, S. A. et al. Calorie restriction improves metabolic state independently of gut microbiome composition: a randomized dietary intervention trial. Genome Med. 14, 30 (2022).

CAS PubMed PubMed Central Article Google Scholar

O'Flanagan, C. H., Smith, L. A., McDonell, S. B. & Hursting, S. D. When less may be more: calorie restriction and response to cancer therapy. BMC Med. 15, 106 (2017).

PubMed PubMed Central Article CAS Google Scholar

Madeo, F., Carmona-Gutierrez, D., Hofer, S. J. & Kroemer, G. Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell Metab. 29, 592610 (2019).

CAS PubMed Article Google Scholar

Chong, C. R., Sallustio, B. & Horowitz, J. D. Drugs that affect cardiac metabolism: focus on perhexiline. Cardiovasc Drugs Ther. 30, 399405 (2016).

CAS PubMed Article Google Scholar

Schreiber, K. H. et al. A novel rapamycin analog is highly selective for mTORC1 in vivo. Nat. Commun. 10, 3194 (2019).

PubMed PubMed Central Article CAS Google Scholar

Lamming, D. W. et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335, 16381643 (2012).

CAS PubMed PubMed Central Article Google Scholar

Sarbassov, D. D. et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22, 159168 (2006).

CAS PubMed Article Google Scholar

Gonzlez, A., Hall, M. N., Lin, S. C. & Hardie, D. G. AMPK and TOR: the yin and yang of cellular nutrient sensing and growth control. Cell Metab. 31, 472492 (2020).

PubMed Article CAS Google Scholar

Lin, S. C. & Hardie, D. G. AMPK: sensing glucose as well as cellular energy status. Cell Metab. 27, 299313 (2018).

CAS PubMed Article Google Scholar

Fontana, L. & Partridge, L. Promoting health and longevity through diet: from model organisms to humans. Cell 161, 106118 (2015).

CAS PubMed PubMed Central Article Google Scholar

Kapahi, P., Kaeberlein, M. & Hansen, M. Dietary restriction and lifespan: lessons from invertebrate models. Ageing Res. Rev. 39, 314 (2017).

PubMed Article Google Scholar

Schulz, T. J. et al. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress. Cell Metab. 6, 280293 (2007).

CAS PubMed Article Google Scholar

Ristow, M. & Zarse, K. How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis). Exp. Gerontol. 45, 410418 (2010).

CAS PubMed Article Google Scholar

Weir, H. J. et al. Dietary restriction and AMPK increase lifespan via mitochondrial network and peroxisome remodeling. Cell Metab. 26, 884896.e5 (2017).

CAS PubMed PubMed Central Article Google Scholar

Boccardi, V., Murasecco, I. & Mecocci, P. Diabetes drugs in the fight against Alzheimer's disease. Ageing Res. Rev. 54, 100936 (2019).

CAS PubMed Article Google Scholar

Calissi, G., Lam, E. W. & Link, W. Therapeutic strategies targeting FOXO transcription factors. Nat. Rev. Drug Disco. 20, 2138 (2021).

CAS Article Google Scholar

Greer, E. L. & Brunet, A. Different dietary restriction regimens extend lifespan by both independent and overlapping genetic pathways in C. elegans. Aging Cell 8, 113127 (2009).

CAS PubMed Article Google Scholar

Giannakou, M. E., Goss, M. & Partridge, L. Role of dFOXO in lifespan extension by dietary restriction in Drosophila melanogaster: not required, but its activity modulates the response. Aging Cell 7, 187198 (2008).

CAS PubMed Article Google Scholar

Miyauchi, T. et al. Up-regulation of FOXO1 and reduced inflammation by -hydroxybutyric acid are essential diet restriction benefits against liver injury. Proc. Natl Acad. Sci. USA 116, 1353313542 (2019).

CAS PubMed PubMed Central Article Google Scholar

Furuyama, T. et al. Effects of aging and caloric restriction on the gene expression of Foxo1, 3, and 4 (FKHR, FKHRL1, and AFX) in the rat skeletal muscles. Microsc. Res. Tech. 59, 331334 (2002).

CAS PubMed Article Google Scholar

Shimokawa, I. et al. The life-extending effect of dietary restriction requires Foxo3 in mice. Aging Cell 14, 707709 (2015).

CAS PubMed PubMed Central Article Google Scholar

Xia, Y. et al. Neuronal C/EBP/AEP pathway shortens life span via selective GABAnergic neuronal degeneration by FOXO repression. Sci. Adv. 8, eabj8658 (2022).

CAS PubMed PubMed Central Article Google Scholar

Zhu, S. et al. The roles of sirtuins family in cell metabolism during tumor development. Semin. Cancer Biol. 57, 5971 (2019).

CAS PubMed Article Google Scholar

Xie, N. et al. NAD(+) metabolism: pathophysiologic mechanisms and therapeutic potential. Signal Transduct. Target Ther. 5, 227 (2020).

CAS PubMed PubMed Central Article Google Scholar

Covarrubias, A. J., Perrone, R., Grozio, A. & Verdin, E. NAD(+) metabolism and its roles in cellular processes during ageing. Nat. Rev. Mol. Cell Biol. 22, 119141 (2021).

CAS PubMed Article Google Scholar

Lin, S. J., Defossez, P. A. & Guarente, L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289, 21262128 (2000).

CAS PubMed Article Google Scholar

Houtkooper, R. H., Pirinen, E. & Auwerx, J. Sirtuins as regulators of metabolism and healthspan. Nat. Rev. Mol. Cell Biol. 13, 225238 (2012).

CAS PubMed PubMed Central Article Google Scholar

Cohen, H. Y. et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase. Science 305, 390392 (2004).

CAS PubMed Article Google Scholar

Han, X. et al. Targeting Sirtuin1 to treat aging-related tissue fibrosis: From prevention to therapy. Pharm. Ther. 229, 107983 (2022).

CAS Article Google Scholar

Civitarese, A. E. et al. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans. PLoS Med. 4, e76 (2007).

PubMed PubMed Central Article CAS Google Scholar

Gomes, P. et al. The yin and yang faces of the mitochondrial deacetylase sirtuin 3 in age-related disorders. Ageing Res. Rev. 57, 100983 (2020).

CAS PubMed Article Google Scholar

Nakagawa, T., Lomb, D. J., Haigis, M. C. & Guarente, L. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137, 560570 (2009).

CAS PubMed PubMed Central Article Google Scholar

Bordone, L. et al. SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6, 759767 (2007).

CAS PubMed Article Google Scholar

Herranz, D. et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 1, 3 (2010).

PubMed Article CAS Google Scholar

North, B. J. et al. SIRT2 induces the checkpoint kinase BubR1 to increase lifespan. EMBO J. 33, 14381453 (2014).

CAS PubMed PubMed Central Article Google Scholar

Benigni, A. et al. Sirt3 deficiency shortens life span and impairs cardiac mitochondrial function rescued by Opa1 gene transfer. Antioxid. Redox Signal 31, 12551271 (2019).

CAS PubMed Article Google Scholar

Brown, K. et al. SIRT3 reverses aging-associated degeneration. Cell Rep. 3, 319327 (2013).

CAS PubMed PubMed Central Article Google Scholar

Kawahara, T. L. et al. SIRT6 links histone H3 lysine 9 deacetylation to NF-kappaB-dependent gene expression and organismal life span. Cell 136, 6274 (2009).

CAS PubMed PubMed Central Article Google Scholar

Vakhrusheva, O. et al. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice. Circ. Res. 102, 703710 (2008).

CAS PubMed Article Google Scholar

Korotkov, A., Seluanov, A. & Gorbunova, V. Sirtuin 6: linking longevity with genome and epigenome stability. Trends Cell Biol. 31, 9941006 (2021).

CAS PubMed Article Google Scholar

Read the original here:
Dietary regulation in health and disease | Signal Transduction and Targeted Therapy - Nature.com

Related Posts