A blood-based miRNA signature for early non-invasive diagnosis of preeclampsia – BMC Medicine – BMC Medicine

Posted: September 14, 2022 at 1:08 am

Kaaja R, Laivuori H, Laakso M, Tikkanen M, Ylikorkala O. Evidence of a state of increased insulin resistance in preeclampsia. Metabolism. 1999;48(7):8926.

CAS PubMed Article Google Scholar

Bramham K, Villa P, Joslin J, Laivuori H, Hmlinen E, Kajantie E, et al. Predisposition to superimposed preeclampsia in women with chronic hypertension: endothelial, renal, cardiac, and placental factors in a prospective longitudinal cohort. Hypertens Pregnancy. 2020;39(3):32635.

CAS PubMed Article Google Scholar

Leach R, Romero R, Kim Y, Chaiworapongsa T, Kilburn B, Das S, et al. Pre-eclampsia and expression of heparin-binding EGF-like growth factor. Lancet (London). 2002;360(9341):12159.

CAS Article Google Scholar

Ness R, Sibai B. Shared and disparate components of the pathophysiologies of fetal growth restriction and preeclampsia. Am J Obstet Gynecol. 2006;195(1):409.

PubMed Article Google Scholar

Mol BWJ, Roberts CT, Thangaratinam S, Magee LA, de Groot CJM, Hofmeyr GJ. Pre-eclampsia. Lancet. 2016;387(10022):9991011.

PubMed Article Google Scholar

Kolkova Z, Holubekova V, Grendar M, Nachajova M, Zubor P, Pribulova T, et al. Association of circulating miRNA expression with preeclampsia, its onset, and severity. Diagnostics (Basel). 2021;11(3):476.

CAS Article Google Scholar

Poon L, Shennan A, Hyett J, Kapur A, Hadar E, Divakar H, et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: a pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet. 2019;145(S1):133.

PubMed PubMed Central Article Google Scholar

Karumanchi SA. Angiogenic factors in preeclampsia: from diagnosis to therapy. Hypertension. 2016;67(6):10729.

CAS PubMed Article Google Scholar

Dechend R, Luft FC. Angiogenesis factors and preeclampsia. Nat Med. 2008;14(11):11878.

CAS PubMed Article Google Scholar

Cim N, Kurdoglu M, Ege S, Yoruk I, Yaman G, Yildizhan R. An analysis on the roles of angiogenesis-related factors including serum vitamin D, soluble endoglin (sEng), soluble fms-like tyrosine kinase 1 (sFlt1), and vascular endothelial growth factor (VEGF) in the diagnosis and severity of late-onset preeclampsia. J Matern Fetal Neonatal Med. 2017;30(13):16027.

CAS PubMed Article Google Scholar

Sung KU, Roh JA, Eoh KJ, Kim EH. Maternal serum placental growth factor and pregnancy-associated plasma protein A measured in the first trimester as parameters of subsequent pre-eclampsia and small-for-gestational-age infants: a prospective observational study. Obstet Gynecol Sci. 2017;60(2):15462.

PubMed PubMed Central Article Google Scholar

Saleh L, Tahitu SIM, Danser AHJ, van den Meiracker AH, Visser W. The predictive value of the sFlt-1/PlGF ratio on short-term absence of preeclampsia and maternal and fetal or neonatal complications in twin pregnancies. Pregnancy Hypertens. 2018;14:2227.

PubMed Article Google Scholar

Lou WZ, Jiang F, Hu J, Chen XX, Song YN, Zhou XY, et al. Maternal serum angiogenic factor sFlt-1 to PlGF ratio in preeclampsia: a useful marker for differential diagnosis and prognosis evaluation in Chinese women. Dis Markers. 2019;2019:6270187.

PubMed PubMed Central Article CAS Google Scholar

Bartel D. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):21533.

CAS PubMed PubMed Central Article Google Scholar

Wang X, Qian T, Bao S, Zhao H, Chen H, Xing Z, et al. Circulating exosomal miR-363-5p inhibits lymph node metastasis by downregulating PDGFB and serves as a potential noninvasive biomarker for breast cancer. Mol Oncol. 2021;15(9):246679.

PubMed PubMed Central Article CAS Google Scholar

Bao S, Hu T, Liu J, Su J, Sun J, Ming Y, et al. Genomic instability-derived plasma extracellular vesicle-microRNA signature as a minimally invasive predictor of risk and unfavorable prognosis in breast cancer. J Nanobiotechnology. 2021;19(1):22.

CAS PubMed PubMed Central Article Google Scholar

Gebert LFR, MacRae IJ. Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 2019;20(1):2137.

CAS PubMed PubMed Central Article Google Scholar

Gantier MP, McCoy CE, Rusinova I, Saulep D, Wang D, Xu D, et al. Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic Acids Res. 2011;39(13):5692703.

CAS PubMed PubMed Central Article Google Scholar

Sayed AS, Xia K, Salma U, Yang T, Peng J. Diagnosis, prognosis and therapeutic role of circulating miRNAs in cardiovascular diseases. Heart Lung Circ. 2014;23(6):50310.

PubMed Article Google Scholar

Xu P, Zhao Y, Liu M, Wang Y, Wang H, Li Y, et al. Variations of microRNAs in human placentas and plasma from preeclamptic pregnancy. Hypertension (Dallas, Tex: 1979). 2014;63(6):127684.

CAS Article Google Scholar

Murphy M, Casselman R, Tayade C, Smith G. Differential expression of plasma microRNA in preeclamptic patients at delivery and 1 year postpartum. Am J Obstet Gynecol. 2015;213(3):367.e1-9.

CAS Article Google Scholar

Zheng W, Chen A, Yang H, Hong L. MicroRNA-27a inhibits trophoblast cell migration and invasion by targeting SMAD2: potential role in preeclampsia. Exp Ther Med. 2020;20(3):22629.

CAS PubMed PubMed Central Google Scholar

Cui J, Chen X, Lin S, Li L, Fan J, Hou H, et al. MiR-101-containing extracellular vesicles bind to BRD4 and enhance proliferation and migration of trophoblasts in preeclampsia. Stem Cell Res Ther. 2020;11(1):231.

CAS PubMed PubMed Central Article Google Scholar

Licini C, Avellini C, Picchiassi E, Mensa E, Fantone S, Ramini D, et al. Pre-eclampsia predictive ability of maternal miR-125b: a clinical and experimental study. Transl Res. 2021;228:1327.

CAS PubMed Article Google Scholar

Wang D, Na Q, Song GY, Wang L. Human umbilical cord mesenchymal stem cell-derived exosome-mediated transfer of microRNA-133b boosts trophoblast cell proliferation, migration and invasion in preeclampsia by restricting SGK1. Cell Cycle. 2020;19(15):186983.

CAS PubMed PubMed Central Article Google Scholar

Zhou W, She G, Yang K, Zhang B, Liu J, Yu B. MiR-384 inhibits proliferation and migration of trophoblast cells via targeting PTBP3. Pregnancy Hypertens. 2020;21:1328.

PubMed Article Google Scholar

Awamleh Z, Gloor GB, Han VKM. Placental microRNAs in pregnancies with early onset intrauterine growth restriction and preeclampsia: potential impact on gene expression and pathophysiology. BMC Med Genomics. 2019;12(1):91 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE114349).

PubMed PubMed Central Article CAS Google Scholar

Brookes S, Martin E, Smeester L, Boggess K, Grace M, Fry R. GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE84260. 2016.

Wyatt S, Kraus F, Roh C, Elchalal U, Nelson D, Sadovsky Y. The correlation between sampling site and gene expression in the term human placenta. Placenta. 2005;26(5):3729.

CAS PubMed Article Google Scholar

Huang HY, Lin YC, Li J, Huang KY, Shrestha S, Hong HC, et al. miRTarBase 2020: updates to the experimentally validated microRNA-target interaction database. Nucleic Acids Res. 2020;48(D1):D14854.

CAS PubMed Google Scholar

Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.

PubMed PubMed Central Article CAS Google Scholar

Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin. Obstet Gynecol.2020;135(6):e23760.

Magee LA, Nicolaides KH, von Dadelszen P. Preeclampsia. N Engl J Med. 2022;386(19):181732.

CAS PubMed Article Google Scholar

Phipps EA, Thadhani R, Benzing T, Karumanchi SA. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol. 2019;15(5):27589.

PubMed PubMed Central Article Google Scholar

Roberge S, Bujold E, Nicolaides KH. Aspirin for the prevention of preterm and term preeclampsia: systematic review and metaanalysis. Am J Obstet Gynecol. 2018;218(3):28793 (e1).

CAS PubMed Article Google Scholar

Fox R, Kitt J, Leeson P, Aye CYL, Lewandowski AJ. Preeclampsia: risk factors, diagnosis, management, and the cardiovascular impact on the offspring. J Clin Med. 2019;8(10):1625.

CAS PubMed Central Article Google Scholar

Rasmussen M, Reddy M, Nolan R, Camunas-Soler J, Khodursky A, Scheller NM, et al. RNA profiles reveal signatures of future health and disease in pregnancy. Nature. 2022;601(7893):4227.

CAS PubMed PubMed Central Article Google Scholar

Rudov A, Balduini W, Carloni S, Perrone S, Buonocore G, Albertini MC. Involvement of miRNAs in placental alterations mediated by oxidative stress. Oxid Med Cell Longev. 2014;2014:103068.

PubMed PubMed Central Article CAS Google Scholar

Mouillet JF, Ouyang Y, Coyne CB, Sadovsky Y. MicroRNAs in placental health and disease. Am J Obstet Gynecol. 2015;213(4 Suppl):S16372.

CAS PubMed PubMed Central Article Google Scholar

Gong S, Gaccioli F, Dopierala J, Sovio U, Cook E, Volders PJ, et al. The RNA landscape of the human placenta in health and disease. Nat Commun. 2021;12(1):2639.

CAS PubMed PubMed Central Article Google Scholar

Fu G, Brkic J, Hayder H, Peng C. MicroRNAs in human placental development and pregnancy complications. Int J Mol Sci. 2013;14(3):551944.

CAS PubMed PubMed Central Article Google Scholar

Luo SS, Ishibashi O, Ishikawa G, Ishikawa T, Katayama A, Mishima T, et al. Human villous trophoblasts express and secrete placenta-specific microRNAs into maternal circulation via exosomes. Biol Reprod. 2009;81(4):71729.

CAS PubMed Article Google Scholar

Makarova JA, Shkurnikov MU, Wicklein D, Lange T, Samatov TR, Turchinovich AA, et al. Intracellular and extracellular microRNA: an update on localization and biological role. Prog Histochem Cytochem. 2016;51(34):3349.

PubMed Article Google Scholar

Hromadnikova I, Dvorakova L, Kotlabova K, Krofta L. The prediction of gestational hypertension, preeclampsia and fetal growth restriction via the first trimester screening of plasma exosomal C19MC microRNAs. Int J Mol Sci. 2019;20(12):2972.

CAS PubMed Central Article Google Scholar

Luizon MR, Conceicao I, Viana-Mattioli S, Caldeira-Dias M, Cavalli RC, Sandrim VC. Circulating microRNAs in the second trimester from pregnant women who subsequently developed preeclampsia: potential candidates as predictive biomarkers and pathway analysis for target genes of miR-204-5p. Front Physiol. 2021;12:678184.

PubMed PubMed Central Article Google Scholar

Niu ZR, Han T, Sun XL, Luan LX, Gou WL, Zhu XM. MicroRNA-30a-3p is overexpressed in the placentas of patients with preeclampsia and affects trophoblast invasion and apoptosis by its effects on IGF-1. Am J Obstet Gynecol. 2018;218(2):249 e1-e12.

Article CAS Google Scholar

Hromadnikova I, Kotlabova K, Ivankova K, Krofta L. First trimester screening of circulating C19MC microRNAs and the evaluation of their potential to predict the onset of preeclampsia and IUGR. PLoS ONE. 2017;12(2):e0171756.

PubMed PubMed Central Article CAS Google Scholar

Mi C, Ye B, Gao Z, Du J, Li R, Huang D. BHLHE40 plays a pathological role in pre-eclampsia through upregulating SNX16 by transcriptional inhibition of miR-196a-5p. Mol Hum Reprod. 2020;26(7):53248.

CAS PubMed Article Google Scholar

Enquobahrie DA, Abetew DF, Sorensen TK, Willoughby D, Chidambaram K, Williams MA. Placental microRNA expression in pregnancies complicated by preeclampsia. Am J Obstet Gynecol. 2011;204(2):178 e12-21.

Article CAS Google Scholar

Bao S, Zhou T, Yan C, Bao J, Yang F, Chao S, et al. GEO https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE206988. 2022.

Read the original here:
A blood-based miRNA signature for early non-invasive diagnosis of preeclampsia - BMC Medicine - BMC Medicine

Related Posts