Evolution and dispersal of snakes across the Cretaceous-Paleogene mass extinction – Nature.com

Posted: September 20, 2021 at 9:39 am

Barnosky, A. D. et al. Has the Earths sixth mass extinction already arrived? Nature 471, 5157 (2011).

ADS CAS PubMed Article Google Scholar

Longrich, N. R., Scriberas, J. & Wills, M. A. Severe extinction and rapid recovery of mammals across the CretaceousPalaeogene boundary, and the effects of rarity on patterns of extinction and recovery. J. Evol. Biol. 29, 14951512 (2016).

CAS PubMed Article Google Scholar

Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 10951108 (1980).

ADS CAS PubMed Article Google Scholar

Schulte, P. et al. The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327, 12141218 (2010).

ADS CAS PubMed Article Google Scholar

Robertson, D. S., McKenna, M. C., Toon, O. B., Hope, S. & Lillegraven, J. A. Survival in the first hours of the Cenozoic. GSA Bull. 116, 760768 (2004).

Article Google Scholar

Brusatte, S. L. et al. The extinction of the dinosaurs. Biol. Rev. 90, 628642 (2015).

PubMed Article Google Scholar

Longrich, N. R., Martill, D. M. & Andres, B. Late Maastrichtian pterosaurs from North Africa and mass extinction of Pterosauria at the Cretaceous-Paleogene boundary. PLoS Biol. 16, e2001663 (2018).

PubMed PubMed Central Article CAS Google Scholar

Polcyn, M. J., Jacobs, L. L., Arajo, R., Schulp, A. S. & Mateus, O. Physical drivers of mosasaur evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 400, 1727 (2014).

Article Google Scholar

Longrich, N. R., Tokaryk, T. & Field, D. J. Mass extinction of birds at the Cretaceous Paleogene (KPg) boundary. Proc. Natl Acad. Sci. USA 108, 1525315257 (2011).

ADS CAS PubMed PubMed Central Article Google Scholar

Longrich, N. R., Bhullar, B.-A. S. & Gauthier, J. A. Mass extinction of lizards and snakes at the Cretaceous-Paleogene boundary. Proc. Natl Acad. Sci. USA 109, 2139621401 (2012).

ADS CAS PubMed PubMed Central Article Google Scholar

Labandeira, C. C., Johnson, K. R. & Wilf, P. Impact of the terminal Cretaceous event on plant insect associations. Proc. Natl Acad. Sci. USA 99, 20612066 (2001).

ADS Article CAS Google Scholar

Wilf, P. & Johnson, K. R. Land plant extinction at the end of the Cretaceous: a quantitative analysis of the North Dakota megafloral record. Paleobiology 30, 347368 (2004).

Article Google Scholar

Wolfe, J. A. & Upchurch, G. R. Jr Vegetation, climatic and floral changes at the Cretaceous-Tertiary boundary. Nature 324, 148152 (1986).

ADS Article Google Scholar

Nichols, D. J. & Johnson, K. R. Plants and the K-T Boundary (Cambridge Univ. Press, 2008).

Alroy, J. The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Syst. Biol. 48, 107118 (1999).

CAS PubMed Article Google Scholar

dos Reis, M. et al. Phylogenomic datasets provide both precision and accuracy in estimating the timescale of placental mammal phylogeny. Proc. R. Soc. B Biol. Sci. 279, 34913500 (2012).

Article Google Scholar

Ksepka, D. T., Stidham, T. A. & Williamson, T. E. Early Paleocene landbird supports rapid phylogenetic and morphological diversification of crown birds after the KPg mass extinction. Proc. Natl Acad. Sci. USA 114, 80478052 (2017).

ADS CAS PubMed PubMed Central Article Google Scholar

Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569573 (2015).

ADS CAS PubMed Article Google Scholar

Berv, J. S. & Field, D. J. Genomic signature of an avian Lilliput Effect across the K-Pg extinction. Syst. Biol. 67, 113 (2018).

PubMed Article Google Scholar

Feng, Y. et al. Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous Paleogene boundary. Proc. Natl Acad. Sci. USA 114, E5864E5870 (2017).

CAS PubMed PubMed Central Article Google Scholar

Friedman, M. Explosive morphological diversification of spiny-finned teleost fishes in the aftermath of the end-Cretaceous extinction. Proc. Biol. Sci. 277, 16751683 (2010).

PubMed PubMed Central Google Scholar

Alfaro, M. E. et al. Explosive diversification of marine fishes at the Cretaceous-Palaeogene boundary. Nat. Ecol. Evol. 2, 688696 (2018).

PubMed Article Google Scholar

Evans, S. E. At the feet of the dinosaurs: the early history and radiation of lizards. Biol. Rev. Camb. Philos. Soc. 78, 513551 (2003).

PubMed Article Google Scholar

Rage, J.-C. & Escuilli, F. The Cenomanian: Stage of Hindlimbed Snakes. Carnets de Gologie 111 (2003).

Mounce, R. C. P., Sansom, R. & Wills, M. A. Sampling diverse characters improves phylogenies: Craniodental and postcranial characters of vertebrates often imply different trees. Evolution 70, 666668 (2016).

PubMed Article Google Scholar

Sansom, R. S., Wills, M. A. & Williams, T. Dental data perform relatively poorly in reconstructing mammal phylogenies: morphological partitions evaluated with molecular benchmarks. Syst. Biol. 66, 813822 (2017).

PubMed PubMed Central Google Scholar

Li, Y., Ruta, M. & Wills, M. A. Craniodental and postcranial characters of non-avian Dinosauria often imply different trees. Syst. Biol. 69, 638659 (2020).

Sansom, R. S. & Wills, M. A. Differences between hard and soft phylogenetic data. Proc. R. Soc. B 284, 20172150 (2017).

PubMed PubMed Central Article Google Scholar

Hipsley, C. A., Himmelmann, L., Metzler, D. & Mller, J. Integration of Bayesian molecular clock methods and fossil-based soft bounds reveals early Cenozoic origin of African lacertid lizards. BMC Evol. Biol. 9, 151 (2009).

PubMed PubMed Central Article CAS Google Scholar

Longrich, N. R., Vinther, J., Pyron, R. A., Pisani, D. & Gauthier, J. A. Biogeography of worm lizards (Amphisbaenia) driven by end-Cretaceous mass extinction. Proc. R. Soc. Lond. B Biol. Sci. 282, 20143034 (2015).

Google Scholar

Vidal, N. & Hedges, S. B. The molecular evolutionary tree of lizards, snakes, and amphisbaenians. C. R. Biol. 332, 129139 (2009).

CAS PubMed Article Google Scholar

Zheng, Y. & Wiens, J. J. Combining phylogenomic and supermatrix approaches, and a time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and 4162 species. Mol. Phylogenet. Evol. 94, 537547 (2016).

PubMed Article Google Scholar

Harrington, S. M. & Reeder, T. W. Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: new insights into convergent evolution of feeding morphology and limb reduction. Biol. J. Linn. Soc. 121, 379394 (2017).

Article Google Scholar

Hsiang, A. Y. et al. The origin of snakes: revealing the ecology, behavior, and evolutionary history of early snakes using genomics, phenomics, and the fossil record. BMC Evol. Biol. 15, 87 (2015).

PubMed PubMed Central Article Google Scholar

Jones, M. E. H. et al. Integration of molecules and new fossils supports a Triassic origin for Lepidosauria (lizards, snakes, and tuatara). BMC Evol. Biol. 13, 208 (2013).

PubMed PubMed Central Article CAS Google Scholar

Pyron, R. A. Novel approaches for phylogenetic inference from morphological data and total-evidence dating in squamate reptiles (lizards, snakes, and amphisbaenians). Syst. Biol. 66, 3856 (2017).

PubMed Google Scholar

Head, J. J., Mahlow, K. & Mller, J. Fossil calibration dates for molecular phylogenetic analysis of snakes 2: Caenophidia, Colubroidea, Elapoidea, Colubridae. Palaeontol. Electron. 19, 121 (2016).

Article Google Scholar

Head, J. J. Fossil calibration dates for molecular phylogenetic analysis of snakes 1: Serpentes, Alethinophidia, Boidae, Pythonidae. Palaeontol. Electron. 18, 117 (2015).

Google Scholar

Butler, R. J., Brusatte, S. L., Andres, B. & Benson, R. B. J. How do geological sampling biases affect studies of morphological evolution in deep time? A case study of pterosaur (Reptilia: Archosauria) disparity. Evolution 66, 147162 (2011).

PubMed Article Google Scholar

Head, J. J. et al. Giant boid snake from the Palaeocene neotropics reveals hotter past equatorial temperatures. Nature 457, 715717 (2009).

ADS CAS PubMed Article Google Scholar

Kristensen, H. V., Cuny, G., Rasmussen, A. R. & Madsen, H. Earliest record of the fossil snake Palaeophis from the Paleocene/Eocene boundary in Denmark. Bull. Soc. Gol. Fr. 183, 621625 (2012).

Article Google Scholar

Aug, M. & Rage, J.-C. Herpetofaunas from the Upper Paleocene and Lower Eocene of Morocco. Ann. Palontologie 92, 235253 (2006).

Article Google Scholar

Field, D. J. et al. Timing the extant avian radiation: The rise of modern birds, and the importance of modeling molecular rate variation. Bull. Am. Mus. Nat. Hist. 440, 1590191 (2020).

Korn, D., Hopkins, M. J. & Walton, S. A. Extinction space - a method for the quantification and classification of changes in morphospace across extinction boundaries. Evolution 67, 27952810 (2013).

PubMed Google Scholar

Puttick, M. N., Guillerme, T. & Wills, M. A. The complex effects of mass extinctions on morphological disparity. Evolution 74, 22072220 (2020).

PubMed Article Google Scholar

Rio, J. P. & Mannion, P. D. The osteology of the giant snake Gigantophis garstini from the upper Eocene of North Africa and its bearing on the phylogenetic relationships and biogeography of Madtsoiidae. J. Vertebr. Paleontol. 37, e1347179 (2017).

Article Google Scholar

Matzke, N. Founder-event speciation in BioGeoBEARS package dramatically improves likelihoods and alters parameter inference in Dispersal-Extinction-Cladogenesis (DEC) analyses. Front. Biogeogr. 4, 210 (2012).

Google Scholar

Matzke, N. Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing. Front. Biogeogr. 5, 242248 (2013).

Article Google Scholar

Klein, C. G., Longrich, N. R., Ibrahim, N., Zouhri, S. & Martill, D. M. A new basal snake from the mid-Cretaceous of Morocco. Cretac. Res. 72, 134141 (2017).

Article Google Scholar

Rage, J.-C. & Dutheil, D. B. Amphibians and squamates from the Cretaceous (Cenomanian) of Morocco. A preliminary study, with description of a new genus of pipid frog. Palaeontogr. Palaozool. Stratigraph. 285, 122 (2008).

Google Scholar

Vullo, R. A new species of Lapparentophis from the mid-Cretaceous Kem Kem beds, Morocco, with remarks on the distribution of lapparentophiid snakes. C. R. Palevol. 1132, 611 (2019).

Google Scholar

Rage, J.-C. in Handbuch der Paloherpetologie (ed. Wellnhofer, P.) 180 (Gustav Fischer, 1984).

Rage, J.-C. Fossil snakes from the Palaeocene of So Jos de Itabora, Brazil. Part I. Madtsoiidae, Aniliidae. Palaeovertebrata 27, 1091144 (1998).

Read the original here:

Evolution and dispersal of snakes across the Cretaceous-Paleogene mass extinction - Nature.com

Related Posts