The Prometheus League
Breaking News and Updates
- Abolition Of Work
- Ai
- Alt-right
- Alternative Medicine
- Antifa
- Artificial General Intelligence
- Artificial Intelligence
- Artificial Super Intelligence
- Ascension
- Astronomy
- Atheism
- Atheist
- Atlas Shrugged
- Automation
- Ayn Rand
- Bahamas
- Bankruptcy
- Basic Income Guarantee
- Big Tech
- Bitcoin
- Black Lives Matter
- Blackjack
- Boca Chica Texas
- Brexit
- Caribbean
- Casino
- Casino Affiliate
- Cbd Oil
- Censorship
- Cf
- Chess Engines
- Childfree
- Cloning
- Cloud Computing
- Conscious Evolution
- Corona Virus
- Cosmic Heaven
- Covid-19
- Cryonics
- Cryptocurrency
- Cyberpunk
- Darwinism
- Democrat
- Designer Babies
- DNA
- Donald Trump
- Eczema
- Elon Musk
- Entheogens
- Ethical Egoism
- Eugenic Concepts
- Eugenics
- Euthanasia
- Evolution
- Extropian
- Extropianism
- Extropy
- Fake News
- Federalism
- Federalist
- Fifth Amendment
- Fifth Amendment
- Financial Independence
- First Amendment
- Fiscal Freedom
- Food Supplements
- Fourth Amendment
- Fourth Amendment
- Free Speech
- Freedom
- Freedom of Speech
- Futurism
- Futurist
- Gambling
- Gene Medicine
- Genetic Engineering
- Genome
- Germ Warfare
- Golden Rule
- Government Oppression
- Hedonism
- High Seas
- History
- Hubble Telescope
- Human Genetic Engineering
- Human Genetics
- Human Immortality
- Human Longevity
- Illuminati
- Immortality
- Immortality Medicine
- Intentional Communities
- Jacinda Ardern
- Jitsi
- Jordan Peterson
- Las Vegas
- Liberal
- Libertarian
- Libertarianism
- Liberty
- Life Extension
- Macau
- Marie Byrd Land
- Mars
- Mars Colonization
- Mars Colony
- Memetics
- Micronations
- Mind Uploading
- Minerva Reefs
- Modern Satanism
- Moon Colonization
- Nanotech
- National Vanguard
- NATO
- Neo-eugenics
- Neurohacking
- Neurotechnology
- New Utopia
- New Zealand
- Nihilism
- Nootropics
- NSA
- Oceania
- Offshore
- Olympics
- Online Casino
- Online Gambling
- Pantheism
- Personal Empowerment
- Poker
- Political Correctness
- Politically Incorrect
- Polygamy
- Populism
- Post Human
- Post Humanism
- Posthuman
- Posthumanism
- Private Islands
- Progress
- Proud Boys
- Psoriasis
- Psychedelics
- Putin
- Quantum Computing
- Quantum Physics
- Rationalism
- Republican
- Resource Based Economy
- Robotics
- Rockall
- Ron Paul
- Roulette
- Russia
- Sealand
- Seasteading
- Second Amendment
- Second Amendment
- Seychelles
- Singularitarianism
- Singularity
- Socio-economic Collapse
- Space Exploration
- Space Station
- Space Travel
- Spacex
- Sports Betting
- Sportsbook
- Superintelligence
- Survivalism
- Talmud
- Technology
- Teilhard De Charden
- Terraforming Mars
- The Singularity
- Tms
- Tor Browser
- Trance
- Transhuman
- Transhuman News
- Transhumanism
- Transhumanist
- Transtopian
- Transtopianism
- Ukraine
- Uncategorized
- Vaping
- Victimless Crimes
- Virtual Reality
- Wage Slavery
- War On Drugs
- Waveland
- Ww3
- Yahoo
- Zeitgeist Movement
-
Prometheism
-
Forbidden Fruit
-
The Evolutionary Perspective
Monthly Archives: May 2020
Whole Genome Sequencing (WGS) Market Growth by Top Companies, Trends by Types and Application, Forecast to 2026 – Cole of Duty
Posted: May 14, 2020 at 5:44 pm
Psomagen
Moreover, the Whole Genome Sequencing (WGS) report offers a detailed analysis of the competitive landscape in terms of regions and the major service providers are also highlighted along with attributes of the market overview, business strategies, financials, developments pertaining as well as the product portfolio of the Whole Genome Sequencing (WGS) market. Likewise, this report comprises significant data about market segmentation on the basis of type, application, and regional landscape. The Whole Genome Sequencing (WGS) market report also provides a brief analysis of the market opportunities and challenges faced by the leading service provides. This report is specially designed to know accurate market insights and market status.
By Regions:
* North America (The US, Canada, and Mexico)
* Europe (Germany, France, the UK, and Rest of the World)
* Asia Pacific (China, Japan, India, and Rest of Asia Pacific)
* Latin America (Brazil and Rest of Latin America.)
* Middle East & Africa (Saudi Arabia, the UAE, , South Africa, and Rest of Middle East & Africa)
To get Incredible Discounts on this Premium Report, Click Here @ https://www.marketresearchintellect.com/ask-for-discount/?rid=260690&utm_source=NYH&utm_medium=888
Table of Content
1 Introduction of Whole Genome Sequencing (WGS) Market
1.1 Overview of the Market1.2 Scope of Report1.3 Assumptions
2 Executive Summary
3 Research Methodology
3.1 Data Mining3.2 Validation3.3 Primary Interviews3.4 List of Data Sources
4 Whole Genome Sequencing (WGS) Market Outlook
4.1 Overview4.2 Market Dynamics4.2.1 Drivers4.2.2 Restraints4.2.3 Opportunities4.3 Porters Five Force Model4.4 Value Chain Analysis
5 Whole Genome Sequencing (WGS) Market, By Deployment Model
5.1 Overview
6 Whole Genome Sequencing (WGS) Market, By Solution
6.1 Overview
7 Whole Genome Sequencing (WGS) Market, By Vertical
7.1 Overview
8 Whole Genome Sequencing (WGS) Market, By Geography
8.1 Overview8.2 North America8.2.1 U.S.8.2.2 Canada8.2.3 Mexico8.3 Europe8.3.1 Germany8.3.2 U.K.8.3.3 France8.3.4 Rest of Europe8.4 Asia Pacific8.4.1 China8.4.2 Japan8.4.3 India8.4.4 Rest of Asia Pacific8.5 Rest of the World8.5.1 Latin America8.5.2 Middle East
9 Whole Genome Sequencing (WGS) Market Competitive Landscape
9.1 Overview9.2 Company Market Ranking9.3 Key Development Strategies
10 Company Profiles
10.1.1 Overview10.1.2 Financial Performance10.1.3 Product Outlook10.1.4 Key Developments
11 Appendix
11.1 Related Research
Get Complete Report
@ https://www.marketresearchintellect.com/need-customization/?rid=260690&utm_source=NYH&utm_medium=888
About Us:
Market Research Intellect provides syndicated and customized research reports to clients from various industries and organizations with the aim of delivering functional expertise. We provide reports for all industries including Energy, Technology, Manufacturing and Construction, Chemicals and Materials, Food and Beverage and more. These reports deliver an in-depth study of the market with industry analysis, market value for regions and countries and trends that are pertinent to the industry.
Contact Us:
Mr. Steven Fernandes
Market Research Intellect
New Jersey ( USA )
Tel: +1-650-781-4080
Tags: Whole Genome Sequencing (WGS) Market Size, Whole Genome Sequencing (WGS) Market Trends, Whole Genome Sequencing (WGS) Market Growth, Whole Genome Sequencing (WGS) Market Forecast, Whole Genome Sequencing (WGS) Market Analysis Sarkari result, Government Jobs, Sarkari naukri, NMK, Majhi Naukri,
Our Trending Reports
Data Exfiltration Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026
Composite Insulators Market Size, Growth Analysis, Opportunities, Business Outlook and Forecast to 2026
Posted in Genome
Comments Off on Whole Genome Sequencing (WGS) Market Growth by Top Companies, Trends by Types and Application, Forecast to 2026 – Cole of Duty
Genetic origins of hybrid dysfunction | Stanford News – Stanford University News
Posted: at 5:44 pm
In a small pool nestled between two waterfalls in Hidalgo, Mexico, lives a population of hybrid fish the result of many generations of interbreeding between highland and sheepshead swordtails. The lab of Molly Schumer, assistant professor of biology at Stanford University, has been collecting these fish for years to study the evolution of hybrids.
Two hybrid male swordtail fish representing the extreme versions of the trait these researchers studied. The male on the left has melanoma and the male on the right has only a small spot. (Image credit: Daniel Powell)
Were just realizing that hybridization affects species all across the tree of life, including our own species many of us carry genes from Neanderthals and Denisovans, said Schumer, referring to two ancient human species that interbred with our ancestors. Understanding hybridization and the negative and positive effects that can come from genes that have moved between species is important in understanding our own genomes and those of other species with which we interact.
In a new paper, published May 14 in Science, the researchers pinpoint two genes responsible for a melanoma that often develops near the tails of male highland-sheepshead hybrids. The finding marks only the second time that a hybrid dysfunction has been traced to specific genes in vertebrates. (The only other case where scientists have narrowed hybrid dysfunction in vertebrates down to the single-gene level is in a longstanding hybrid population of mice in Europe and their relatives.)
People have long known that the offspring of two different species tend to have genetic flaws. For example, mules which are donkeys-horse hybrids are infertile. Ironically, in order to find the genes responsible for such dysfunctions, researchers need hybrids that are fit enough to breed for several generations after the initial hybridization. Otherwise, the pieces of their genomes that come from the parental species are so large that it is nearly impossible to trace the influence of any one gene.
Three hybrid swordtail males displaying varying degrees of melanin invasion, from a small spot like spots typically found in sheepshead swordtails (middle) to very advanced melanoma (back). (Image credit: Daniel Powell)
This is what makes the highland-sheepshead hybrids an exceptional case study. They have been interbreeding for about 45 generations, resulting in genomes that contain smaller chunks of parental DNA, which are easier to inspect at a single-gene level.
Weve known about genetic incompatibility between the genes of two species since the 1940s. Despite that, we dont know many of the genes that cause these negative interactions, said Daniel Powell, a postdoctoral fellow in the Schumer lab and lead author of the paper. Our lab has clearly defined natural hybrids and weve developed the genomic resources for both parental species. These fish represent a unique system for addressing this question.
In order to home in on the genes responsible for melanoma in hybrids, the researchers first turned their attention to the pure sheepshead swordtails and the genetic origin of a black spot some of these fish develop which is non-cancerous but found in the same location as the hybrids melanoma. Analyzing the genomes of nearly 400 individual fish, they linked the black spot with the presence of a gene called xmrk. Following that lead, the researchers concluded that xmrk was also more highly expressed in hybrids with melanoma compared to those without it altogether, it could explain 75 percent of all variation in the spotting they studied in both the pure sheepshead and hybrid fishes.
The researchers also found that another gene called cd97 which some hybrids inherit from their highland swordtail ancestors was more highly expressed in the highland swordtails and in hybrids than in sheepshead swordtails. Further genetic evidence suggests that cd97 and xmrk interact in some way to produce melanoma in the hybrids.
Interestingly, even though neither gene is associated with melanoma in the parental swordtails species, theyre both linked to cancer in other animals. In a distantly related swordtail hybrid, for example, xmrk interacts with another gene not cd97 to cause melanoma, and a gene related to cd97 has been associated with cancer in humans.
Taken together, these findings yield a puzzling picture. Weve ended up with competing but not mutually exclusive ideas about hybrid incompatibility and disease, said Powell. Weve lent credibility to the idea that some genes might be vulnerable to breaking down in different species which is surprising, given the randomness of evolution. But we also have evidence for the idea that there is a diversity of genetic causes for similar dysfunctions.
Schumer says she took a bit of a gamble when she focused her studies on hybridization, but her bet is paying off.
When I started my PhD in 2011, it was really not accepted that hybridization was common in animals. The best-known examples were mules and fruit flies. Its been such a massive shift and a fun time to be working on this question, said Schumer, who is senior author of the paper and a member of Stanford Bio-X. What weve arrived at now is the best kind of project in science: one that raises way more questions than answers and spins you off in a bunch of different directions.
Through future work, the researchers want to figure out why hybrid swordtails with melanoma are less likely to survive in the wild and in captivity. They are also curious to know why so many of these fish have the melanoma its possible that, when it comes to mate selection, females prefer males with the large black spots generated by melanoma. Already, they have lined up several ideas to further understand whether genes go wrong in a repeatable way in hybrids, or if what theyve found in xmrk and cd97 is closer to coincidence.
Stanford co-authors of this paper include Schumer lab research staff, Shreya Banerjee and Danielle Blakkan. Additional authors are from Centro de Investigaciones Cientificas de las Huastecas Aguazarca, A.C.; Texas A&M University; Northeastern University; Princeton University; University of Wurzburg; Benemerita Universidad Autonoma de Puebla; Harvard Medical School; the Howard Hughes Medical Institute; the Broad Institute of Harvard and MIT; Columbia University; and Texas State University, San Marcos.
This work was funded by the National Science Foundation, the Hagler Institute for Advanced Study, the Howard Hughes Medical Institute, LOreal for Women in Science, and the National Institutes of Health.
To read all stories about Stanford science, subscribe to the biweeklyStanford Science Digest.
Visit link:
Genetic origins of hybrid dysfunction | Stanford News - Stanford University News
Posted in Genome
Comments Off on Genetic origins of hybrid dysfunction | Stanford News – Stanford University News
Pangolins’ Genome Suggest That Pharmaceutical Suppression Of The Immune Response Could Improve Covid-19 Outcomes – IFLScience
Posted: at 5:44 pm
Recent reports have been describing how some of the worst outcomes from Covid-19 in humans is caused by an inflammatory immune response. Research published in the journal Frontiers in Immunologyhas revealed that pangolins, whichcancarry coronaviruses, may be protected from the disease as they lack two virus-sensing genes thatare known to elicit the kind of extreme immune response seen in humans.
Pangolins are scaly animals thatresemble anteaters and are the most trafficked animal in the world. Its been suggested they could potentially be the intermediary animal thatenabled Covid-19 from bats to humans, though there is noconclusive evidence for this theory. As such, the team from the Medical University of Vienna in Austria decided to study their genome to see if here lay an explanation as to how these animals can tolerate having a virus in their systemsthatis so devastating to other animals.
They analyzed the genome sequence of pangolins and compared it to other mammals, including humans, cats, dogs, and cattle. Their findings revealed that the two key genes thatsignal an immune response in other mammals are missing from pangolins, which could potentially provide some explanation as to why this disease is tolerated by these animals.
"Our work shows that pangolins have survived through millions of years of evolution without a type of antiviral defense that is used by all other mammals," says co-author Dr Leopold Eckhart in a statement. "Further studies of pangolins will uncover how they manage to survive viral infections, and this might help to devise new treatment strategies for people with viral infections."
The discovery is significant as it could suggest that gene suppression is a potential route for treatment. As the pandemic has developed, physicians across the globe have been reporting that the inflammatory immune responsetriggered by these key genes in some patients causes whats known as a cytokine storm. Cytokines are proteins in the body thatactivate immune cells. In Covid-19, these have been found to flock to the lungs, causing hyperinflammation thatcan kill the patient rather than helping them.
As the response by the immune system is sometimes whats killing infected patients, its possible that pharmaceutical suppression of gene signaling could be a route of treatment for severe cases of Covid-19. However, Eckhart cautions that reducing the bodys immune response could also make the symptoms of the disease worse.
"The main challenge is to reduce the response to the pathogen while maintaining sufficient control of the virus, he suggested. He notedthat this could be achieved by reducing the intensity or by changing the timing of the defense reaction."
The discovery still doesnt explain exactly how pangolins can tolerate coronavirus, as Eckhart suggests that another gene called RIG-I, which is also a virus sensor, could potentially play a role. However, the findings provide theintriguingpossibility of suppressing immune responses in the body as a means of securing better outcomes for Covid-19 patients.
-
Posted in Genome
Comments Off on Pangolins’ Genome Suggest That Pharmaceutical Suppression Of The Immune Response Could Improve Covid-19 Outcomes – IFLScience
Exploring the quantum field, from the sun’s core to the Big Bang – MIT News
Posted: at 5:43 pm
How do protons fuse to power the sun? What happens to neutrinos inside a collapsing star after a supernova? How did atomic nuclei form from protons and neutrons in the first few minutes after the Big Bang?
Simulating these mysterious processes requires some extremely complex calculations, sophisticated algorithms, and a vast amount of supercomputing power.
Theoretical physicist William Detmold marshals these tools to look into the quantum realm. Improved calculations of these processes enable us to learn about fundamental properties of the universe, he says. Of the visible universe, most mass is made of protons. Understanding the structure of the proton and its properties seems pretty important to me.
Researchers at the Large Hadron Collider (LHC), the worlds largest particle accelerator, investigate those properties by smashing particles together and poring over the subatomic wreckage for clues to what makes up and binds together matter.
Detmold, an associate professor in the Department of Physics and a member of the Center for Theoretical Physics and the Laboratory for Nuclear Science, starts instead from first principles namely, the theory of the Standard Model of particle physics.
The Standard Model describes three of the four fundamental forces of particle physics (with the exception of gravity) and all of the known subatomic particles.
The theory has succeeded in predicting the results of experiments time and time again, including, perhaps most famously, the 2011 confirmation by LHC researchers of the existence of the Higgs boson.
A core focus of Detmolds research is on confronting experimental data from experiments such as the LHC. After devising calculations, running them on multiple supercomputers, and sifting through the enormous quantity of statistics they crank out a process that can take from six months to several years Detmold and his team then take all that data and do a lot of analysis to extract key physics quantities for example, the mass of the proton, as a numerical value with an uncertainty range.
My driving concern in this regard is how will this analysis impact experimental results, Detmold says. In some cases, we do these calculations in order to interpret experiments done at the LHC, and ask: Is the Standard Model describing whats going on there?
Detmold has made important advances in solving the complex equations of quantum chromodynamics (QCD), a quantum field theory that describes the strong interactions inside of a proton, between quarks (the smallest known constituent of matter) and gluons (the forces that bind them together).
He has performed some of the first QCD calculations of certain particle decays reactions. They have, for the most part, aligned very closely with results from the LHC.
There are no really stark discrepancies between the Standard Model and LHC results, but there are some interesting tensions, he says. My work has been looking at some of those tensions.
Inspired to ask questions
Detmolds interest in quantum physics dates to his schoolboy days, growing up in Adelaide, Australia. I remember reading a bunch of popular science books as a young kid, he recalls, and being very intrigued about quarks, gluons, and other fundamental particles, and wanting to get into the mathematical tools to work with them.
He would go on to earn both his bachelors degree and PhD from the University of Adelaide. As an undergraduate studying mathematics, he encountered a professor who opened his eyes to the mysteries of quantum mechanics. It was probably the most exciting class Ive had. And I get to teach that now.
Hes been teaching that introductory course on quantum mechanics at MIT for a few years now, and he has become adept at spotting those students who are similarly seized by the subject. In every class there are students you can see the enthusiasm dripping off the page as they write their problem sets. Its exciting to interact with them.
While he cant always bring the full complexity of his research into those conversations, he tries to infuse them with the spirit of his enterprise: how to ask the questions that might yield new insights into the deep structures of the universe.
You can frame things in ways to inspire students to go into research and push themselves to learn more, he says. A lot of teaching is about motivating students to go and find out more themselves, not just information transmission. And hopefully I inspire my students the way my professor inspired me.
He adds: With all of us stuck at home or in remote locations, Im not sure that anyone is feeling particularly inspired right now, but this pandemic will eventually end, and sometimes getting lost in the intricacies of Maxwells equations gives a nice break from what is going on in the world.
Enhancing experiments
When he isnt teaching or analyzing supercomputer data, Detmold is often helping to plan better experiments.
The Electron-Ion Collider, a facility planned for construction over the next decade at Brookhaven National Lab on Long Island, aims to advance understanding of the internal structure of the proton. Some of Detmolds calculations are aimed at providing a qualitative picture of the structure of gluons inside the proton, to help the projects designers know what to look for, in terms of orders of magnitude for detecting certain quantities.
We can make predictions for what well be seeing if you design it in a certain way, he says.
Detmold has also become something of an expert at orchestrating complex supercomputing projects. That entails figuring out how to run a huge number of calculations in an efficient way, given the limited availability of supercomputing power and time.
He and his lab members have developed algorithms and software infrastructure to run these calculations on massive supercomputers, some of which have different types of processing units that make data management complicated. Its a research project in its own right, how to perform those calculations in a way thats efficient.
Indeed, Detmold spends time working on how improve methods for getting to the answer. New algorithms, he says, are a key to advancing computation to tackle new problems, calculating nuclear structures and reactions in the context of the Standard Model.
Lets say theres a quantity we want to compute, but with the tools we have at the moment it takes 10,000 years of running a massive supercomputer, he says. Coming up with a new way to calculate something that actually makes it possible to do thats exciting.
Inspiring interest in the unknown
But fundamental mysteries are still at the center of Detmolds work. As quarks and gluons get farther apart from each other, the strength of their interactions increases. To understand whats happening in these low-energy states, he has advanced the use of a computational technique known as lattice quantum chromodynamics (LQCD), which places the quantum fields of the quarks and gluons on a discretized grid of points to represent space-time.
In 2017, Detmold and colleagues made the first-ever LQCD calculations of the rate of proton-proton fusion the process by which two protons fuse together to form a deuteron.
This process kicks off the nuclear reactions that power the sun. Its also exceedingly difficult to study through experiments. If you try to smash together two protons, their electric charges mean they dont want to be near each other, says Detmold.
It shows where this field can go, he says of his teams breakthrough. Its one of the simplest nuclear reactions, but it opens the doorway to saying we can address these directly from the Standard Model. Were trying to build upon this work and calculate related reactions.
Another recent project involved using LQCD to study the formation of nuclei in the universe its earliest moments. As well as looking at these processes for the actual universe, hes performed computations that change certain parameters the masses of quarks and how strongly they interact in order to predict how the reactions of Big Bang nucleosynthesis might have happened and how much they might have affected the evolution of the universe.
These calculations can tell you how likely it is to end up producing universes like the one we see, Detmold says.
Go here to see the original:
Exploring the quantum field, from the sun's core to the Big Bang - MIT News
Posted in Quantum Physics
Comments Off on Exploring the quantum field, from the sun’s core to the Big Bang – MIT News
Registration Open for Inaugural IEEE International Conference on Quantum Computing and Engineering (QCE20) – thepress.net
Posted: at 5:43 pm
LOS ALAMITOS, Calif., May 14, 2020 /PRNewswire/ --Registration is now open for the inaugural IEEE International Conference on Quantum Computing and Engineering (QCE20), a multidisciplinary event focusing on quantum technology, research, development, and training. QCE20, also known as IEEE Quantum Week, will deliver a series of world-class keynotes, workforce-building tutorials, community-building workshops, and technical paper presentations and posters on October 12-16 in Denver, Colorado.
"We're thrilled to open registration for the inaugural IEEE Quantum Week, founded by the IEEE Future Directions Initiative and supported by multiple IEEE Societies and organizational units," said Hausi Mller, QCE20 general chair and co-chair of the IEEE Quantum Initiative."Our initial goal is to address the current landscape of quantum technologies, identify challenges and opportunities, and engage the quantum community. With our current Quantum Week program, we're well on track to deliver a first-rate quantum computing and engineering event."
QCE20's keynote speakersinclude the following quantum groundbreakers and leaders:
The week-long QCE20 tutorials program features 15 tutorials by leading experts aimed squarely at workforce development and training considerations. The tutorials are ideally suited to develop quantum champions for industry, academia, and government and to build expertise for emerging quantum ecosystems.
Throughout the week, 19 QCE20 workshopsprovide forums for group discussions on topics in quantum research, practice, education, and applications. The exciting workshops provide unique opportunities to share and discuss quantum computing and engineering ideas, research agendas, roadmaps, and applications.
The deadline for submitting technical papers to the eight technical paper tracks is May 22. Papers accepted by QCE20 will be submitted to the IEEE Xplore Digital Library. The best papers will be invited to the journalsIEEE Transactions on Quantum Engineering(TQE)andACM Transactions on Quantum Computing(TQC).
QCE20 provides attendees a unique opportunity to discuss challenges and opportunities with quantum researchers, scientists, engineers, entrepreneurs, developers, students, practitioners, educators, programmers, and newcomers. QCE20 is co-sponsored by the IEEE Computer Society, IEEE Communications Society, IEEE Council on Superconductivity,IEEE Electronics Packaging Society (EPS), IEEE Future Directions Quantum Initiative, IEEE Photonics Society, and IEEETechnology and Engineering Management Society (TEMS).
Register to be a part of the highly anticipated inaugural IEEE Quantum Week 2020. Visit qce.quantum.ieee.org for event news and all program details, including sponsorship and exhibitor opportunities.
About the IEEE Computer SocietyThe IEEE Computer Society is the world's home for computer science, engineering, and technology. A global leader in providing access to computer science research, analysis, and information, the IEEE Computer Society offers a comprehensive array of unmatched products, services, and opportunities for individuals at all stages of their professional career. Known as the premier organization that empowers the people who drive technology, the IEEE Computer Society offers international conferences, peer-reviewed publications, a unique digital library, and training programs. Visit http://www.computer.orgfor more information.
About the IEEE Communications Society The IEEE Communications Societypromotes technological innovation and fosters creation and sharing of information among the global technical community. The Society provides services to members for their technical and professional advancement and forums for technical exchanges among professionals in academia, industry, and public institutions.
About the IEEE Council on SuperconductivityThe IEEE Council on Superconductivityand its activities and programs cover the science and technology of superconductors and their applications, including materials and their applications for electronics, magnetics, and power systems, where the superconductor properties are central to the application.
About the IEEE Electronics Packaging SocietyThe IEEE Electronics Packaging Societyis the leading international forum for scientists and engineers engaged in the research, design, and development of revolutionary advances in microsystems packaging and manufacturing.
About the IEEE Future Directions Quantum InitiativeIEEE Quantumis an IEEE Future Directions initiative launched in 2019 that serves as IEEE's leading community for all projects and activities on quantum technologies. IEEE Quantum is supported by leadership and representation across IEEE Societies and OUs. The initiative addresses the current landscape of quantum technologies, identifies challenges and opportunities, leverages and collaborates with existing initiatives, and engages the quantum community at large.
About the IEEE Photonics SocietyTheIEEE Photonics Societyforms the hub of a vibrant technical community of more than 100,000 professionals dedicated to transforming breakthroughs in quantum physics into the devices, systems, and products to revolutionize our daily lives. From ubiquitous and inexpensive global communications via fiber optics, to lasers for medical and other applications, to flat-screen displays, to photovoltaic devices for solar energy, to LEDs for energy-efficient illumination, there are myriad examples of the Society's impact on the world around us.
About the IEEE Technology and Engineering Management SocietyIEEE TEMSencompasses the management sciences and practices required for defining, implementing, and managing engineering and technology.
Read more from the original source:
Posted in Quantum Physics
Comments Off on Registration Open for Inaugural IEEE International Conference on Quantum Computing and Engineering (QCE20) – thepress.net
3 Simple Reasons Why Wolfram’s New ‘Fundamental Theory’ Is Not Yet Science – Forbes
Posted: at 5:43 pm
From simple rules, complex structures and relationships are well-known to emerge, something that... [+] predated Stephen Wolfram by many years. The notion that all of fundamental physics can be derived from such an approach is speculative, at best, today.
Every once in a while, a revolutionary idea comes along that has the potential to supersede our best scientific ideas of the day. This happened numerous times in theoretical physics during the 20th century, as Einstein's General Relativity replaced Newtonian gravity, quantum physics replaced our classical view of the Universe, and the quantum field theory-based Standard Model superseded the early-20th century version of our quantum Universe.
Over the past half-century, many novel ideas have sought to surpass the current limitations plaguing theoretical physics, from supersymmetry to extra dimensions to grand unification to quantum gravity to string theory. The ultimate idea of many is to arrive at one unified theory of everything: where one framework elegantly encompasses the entirety of nature's laws. The latest contender is Stephen Wolfram's new approach to a theory of everything, heavily publicized last month. But not only isn't it particularly compelling, it isn't even science at this point. Here's why.
Countless scientific tests of Einstein's general theory of relativity have been performed,... [+] subjecting the idea to some of the most stringent constraints ever obtained by humanity. The presence of matter and energy in space tells spacetime how to curve, and that curved spacetime tells matter and energy how to move. But there's a free parameter as well: the zero-point energy of space, which enters General Relativity as a cosmological constant. This accurately describes the dark energy we observe, but does not explain its value.
When we use the word "theory" in a conventional sense, we talk about it the same way we'd talk about the word "idea" or "hypothesis." We mean that sure, we have our conventional way of thinking about things that we generally accept, but maybe things are actually this other way instead.
To a scientist, though, a theory is a far more powerful thing than that. It's a self-consistent framework that has the quantitative power to predict the outcomes (or sets of probable outcomes) of a large set of systems under a wide variety of conditions.
A successful, established theory goes even farther. It contains a large suite of predictions that agree with established experiments and/or observations. It's been tested in a large number of independent ways, and has passed every test thus far. It has a range of validity that's well-understood, and it's also understood that the theory may not be valid outside of that particular range.
A Universe with dark energy (red), a Universe with large inhomogeneity energy (blue), and a... [+] critical, dark-energy-free Universe (green). Note that the blue line behaves differently from dark energy. New ideas should make different, observably testable predictions from the other leading ideas. And ideas which have failed those observational tests should be abandoned once they reach the point of absurdity.
Which means, if you want to surpass that theory in a scientific sense, you have a tall order ahead of you. You have to do better than the old theory that you're seeking to replace with your new idea, and that means you have to take these three very difficult steps.
This is asking a lot, and most new ideas never make it this far.
An early photographic plate of stars (circled) identified during a solar eclipse all the way back in... [+] 1900. While it's remarkable that not only the Sun's corona but also stars can be identified, the precision of the stellar positions is insufficient to test the predictions of General Relativity.
When Einstein concocted the general theory of relativity, it took many years for him to understand how to take the weak-field limit of the theory: at large distances from point-like masses, which allowed him to recover Newton's old theory of gravity. When you got too close to a large mass, however, the predictions differed. This allowed for a successful explanation for Mercury's orbit (which Newton's theory couldn't account for), as well as a new prediction about light deflection near the limb of the Sun (confirmed years later by the 1919 solar eclipse).
Einstein's General Relativity is a standout example of a successful scientific theory on all three of these fronts, but things don't always go in order the way you'd hope they would. Still, you have to clear all three of these hurdles if your goal is to push our understanding of the Universe forward in some fundamental way.
The quantum fluctuations that occur during inflation get stretched across the Universe, and when... [+] inflation ends, they become density fluctuations. This leads, over time, to the large-scale structure in the Universe today, as well as the fluctuations in temperature observed in the CMB. New predictions like these are essential for demonstrating the validity of a proposed fine-tuning mechanism.
General Relativity succeeded everywhere that Newtonian gravity does, but also where it does not. It has a larger range of validity. Relativistic quantum mechanics superseded the version developed by Bohr, Pauli, Heisenberg and Schrodinger, only to later be superseded itself by quantum field theory and the eventual arrival of the Standard Model. The Big Bang won out because its predictions were borne out by the Universe; inflation superseded the idea of a singular origin because it cleared those three critical hurdles (despite doing so out of order).
But many great ideas haven't been met with successful predictions, and they can only be considered speculative theories at best. Supersymmetry, extra dimensions, supergravity, grand unification, and many other ideas have produced a large number of predictive ideas, but none of them have been observationally or experimentally confirmed. General Relativity and the Standard Model, wherever we've challenged them, have always emerged victorious.
The Standard Model particles and their supersymmetric counterparts. Slightly under 50% of these... [+] particles have been discovered, and just over 50% have never showed a trace that they exist. Supersymmetry is an idea that hopes to improve on the Standard Model, but it has yet to make successful predictions about the Universe in attempting to supplant the prevailing theory. If there is no supersymmetry at all energies, string theory must be wrong.
Still, many hope that we'll discover a more fundamental set of laws that encompass all the successes of General Relativity and the Standard Model, while explaining the puzzles like dark matter, dark energy, the values of the fundamental constants, quantum gravity or black hole paradoxes, etc. that they cannot yet fully account for.
The most popular candidate for such a "theory of everything" is string theory, which at least has been demonstrated to contain all of General Relativity and the Standard Model within it. Yes, it also contains much more (extra dimensions, extra free parameters, extra couplings, extra particles, etc.) that don't appear to be present in nature, as well as ambiguous-at-best predictions that have not been borne out by experiment.
For Wolfram's novel idea, however, the same cannot be said.
Although the mathematical structures one can arrive at are beautiful and intricate by many metrics,... [+] their connection with the physical laws and rules governing our Universe remains speculative at best.
There are all sorts of mathematical structures that one can develop or concoct that have interesting properties, as well as simple rules from which complex structures emerge. Wolfram takes the latter approach, something he's been toying with for decades (including in his book, A New Kind of Science), and is clearly enamored with it.
But can he get known physics out of it? The answer appears to be "not yet," as he himself points out:
"...there is much left to explore in the potential correspondence between our models and physics, and what will be said here is merely an indication and sometimes a speculative one of how this might turn out."
He does not recover all of General Relativity; he does not get the Standard Model or Quantum Field Theory out of it. He has not progressed to the point of making predictions, much less novel ones that differ from what we already have.
An example of how a series of binary but indeterminate events can lead to many possible outcomes may... [+] have shades of probabilistic quantum mechanics in it, but the correspondence between Wolfram's approach and actual, reality-reflecting quantum physics has not been established.
He's only playing a game of applying rules to make structures, then attempting to find analogies between those structures and the actual physics of our Universe. This is a popular route (one taken by Verlinde, among others) when you're in the early stages of a new idea, butnot one that's been fruitful. None of the three critical criteria have been met so far, and what's more troubling is thatWolfram does not appear to believe his idea needs to. As he publicly stated:
"In the end, if were going to have a complete fundamental theory of physics, were going to have to find the specific rule for our universe. And I dont know how hard thats going to be. I dont know if its going to take a month, a year, a decade or a century. A few months ago I would also have said that I dont even know if weve got the right framework for finding it.
But I wouldnt say that anymore. Too much has worked. Too many things have fallen into place. We dont know if the precise details of how our rules are set up are correct, or how simple or not the final rules may be. But at this point I am certain that the basic framework we have is telling us fundamentally how physics works."
A visual summary of Stephen Wolfram's new 'path to a fundamental theory' that he published in April... [+] of 2020. At this point in time, his idea has failed to meet any of the three criteria necessary for a scientific theory to supersede the pre-existing one.
These are not words that carry any legitimate scientific weight behind them. Wolfram a former physicist who's been scientifically trained is going off of what he feels. Deep in his gut, he knows that he's embarked down a road that must lead to the ultimate destination: a fundamental theory of everything. Whereas an objective observer would see ambiguous signposts with no clear indication of what lies farther down the road ahead, Wolfram unshakably believes he's on the path to Victory Road.
And that's the problem: you need to know those precise details (the ones he's glossing over) in order to evaluate your idea in a scientific manner. The only way to know the scientific value of an idea is to confront it with reality, and ask to what precision both your established and novel predictions agree and disagree with the prevailing theory it's trying to supersede. If you cannot quantify your predictions, and then (at least in principle) go out and test them, you do not yet have a scientific theory.
The idea that the forces, particles and interactions that we see today are all manifestations of a... [+] single, overarching theory is an attractive one, requiring extra dimensions and lots of new particles and interactions. The lack of even a single verified prediction in string theory, combined with its inability to even give the right answer for parameters whose value is already known, is an enormous drawback of this brilliant idea.
Which isn't to say that Wolfram's new idea is wrong, or that his approach will never bear any fruit. It's very hard to have a new idea in physics, and it's even more difficult for that new idea to actually be any good. Wolfram's general approach to physics is not new in and of itself, but his specific angle is novel and isn't obviously wrong. But what he's presented to the world isn't fully-baked or even half-baked; it's an early-stage idea that's still not ready to leave the sandbox.
Much like String Theory, we won't know whether this path is the road to a new fundamental theory of everything or whether it's a blind alley irrelevant for our reality until we get to the end. But unlike String Theory, it is not yet clear that all of General Relativity or Quantum Field Theory can even be extracted from this approach. Until this (or any) new idea can reproduce all of the successes of our pre-existing leading theories, solve problems they cannot solve, and make novel-but-testable predictions, it will not meet the necessary criteria of a scientific theory.
Go here to see the original:
3 Simple Reasons Why Wolfram's New 'Fundamental Theory' Is Not Yet Science - Forbes
Posted in Quantum Physics
Comments Off on 3 Simple Reasons Why Wolfram’s New ‘Fundamental Theory’ Is Not Yet Science – Forbes
The Era of Anomalies – Physics
Posted: at 5:43 pm
Anomalies may be regarded with skepticism, but they often open the door for theorists to play. One of the most promising sandboxes for model builders has been anomalies in B physicsinteractions involving B mesons, which are particles composed of a bottom quark or antiquark plus another type of quark. A coterie of results from LHCb at CERN, Belle in Japan, and Babar in the US, point to potential problems with the standard model predictions for some rare B meson decays.
Alone, each notable B physics result is only a few-sigma discrepancy. But taken together, the aggregate of the results isdepending on whom you aska 5- to 7-sigma deviation from the standard model estimates. Ive worked in the field for a long time, says Isidori. Weve seen a lot of anomalies here and there popping up and going back, but this time I think its different . For the first time, its not just one thing that doesnt fit with the other, but its a coherent set of things.
If the anomalies are a hint of something real, the simplest explanation is a new particle called the Z, a partner to the Z boson that differs only slightly in its interactions with other particles (see Synopsis: Closing in on the Z' Boson). Isidori is not a big fan of the Z; he prefers a leptoquark. This hypothetical particle would form a bridge between leptons (electrons, muons, and taus) and quarks (see Viewpoint: A Challenge to Lepton Universality).
Many theorists attempt to link anomalies together in models. For example, a new anomaly from KOTO, an experiment at JPARC in Japan, measuring the lifetime of neutral kaons, has piqued theorists attention. Jia Liu, a theoretical physicist at the University of Chicago, wrote a paper that proposed a light, Higgs-like particle, or scalar boson, that would interact with muons and would explain both the KOTO anomaly and the muon anomaly. While theorists like finding one explanation for multiple anomalies, its often difficult to match all the data. Attempts to find a combined explanation for both the B physics and muon anomalies have mostly fallen flat. Two anomalies to deal with is my limit, because it is not easy, Liu says jokingly.
The best models, according to theorists, are those that fit the data naturally, without too much finagling. Neutrinos have been the focus of several recent anomalies, such as unexpected oscillations in the flavors of neutrinos observed by MiniBooNE at Fermilab in 2018 (see Viewpoint: The Plot Thickens for a Fourth Neutrino). To explain neutrino anomalies, the most straightforward thing to do is to introduce one new neutrino says Mona Dentler, a neutrino physicist at the University of Gttingen, Germany. The trouble is that this addition, called a sterile neutrino, is a possible dark matter candidate, which means it must agree with cosmological data. Constraints like this can require highly tailored solutions from theorists. You normally have to kind of stand on your head and add a bunch of different epicycles to somehow make the data fit your models, says Patrick Meade, a theorist at Stony Brook University, New York.
Read the rest here:
Posted in Quantum Physics
Comments Off on The Era of Anomalies – Physics
Exploring new tools in string theory – Space.com
Posted: at 5:43 pm
String theorists are shifting focus to solve some rather sticky problems in physics.
Over the past few years, string theory has been less about trying to find a unifying description of all forces and matter in the universe, and more about exploring the AdS/CFT correspondence, a potential link between the tools and methods developed in the string community and some strange physics problems.
While it doesn't have a particularly catchy name, the AdS/CFT correspondence, it is a potentially powerful (but so for unproven) tool to solve complex riddles.
Related:Putting string theory to the test
The "AdS" in the AdS/CFT correspondence stands for "anti-de Sitter," which doesn't explain much at first glance. The name was inspired by Willem de Sitter, a physicist and mathematician who played around with Einstein's theory of general relativity shortly after it was published in 1917. De Sitter experimented with the idea of different kinds of theoretical universes, filling them up with various substances and figuring out how they would evolve.
His namesake, the "de Sitter universe," represents a theoretical cosmos completely devoid of matter but filled with a positive cosmological constant. While this isn't how our universe actually is, as the universe continues to age it will look more and more like de Sitter's vision.
The anti-de Sitter universe is the exact opposite: a completely empty cosmos with a negative cosmological constant, which is quite unlike what we see in our real universe.
But, while this strange theoretical "anti" universe isn't real, it's still a handy mathematical playground for string theory.
String theory itself requires 10 dimensions to be complete (6 of which are tiny and curled up to microscopic proportions), but versions of it can be cast into only 5 dimensions in an anti-de Sitter spacetime, and, while useful for our universe, can still function.
The other side of the AdS/CFT correspondence, CFT, stands for conformal field theory. Field theories are the bread and butter of our modern understanding of the quantum world; they are what happens when you marry quantum mechanics with special relativity and are used to explain three of the four forces of nature. For example, electromagnetism is described by the field theory called quantum electrodynamics (QED), and the strong nuclear force by the field theory called quantum chromodynamics (QCD).
But there's an extra word there: conformal. But before we get to conformal, I want to quickly talk about something else: scale invariance (trust me, this will make sense in a minute). A field theory is said to be scale invariant if the results don't change if the strength of interactions are varied. For example, you would have a scale invariant engine if you got the same efficiency no matter what kind of fuel you put in.
In strict mathematical terms, a conformal field theory is just a certain special case of scale invariant field theory, but almost all the time when physicists say conformal, they really mean scale invariant. So in your head every time you read or hear conformal field theory you can just replace it with scale invariant field theory.
Our universe is, by and large, decidedly not scale invariant. The forces of nature do change their character with different energy scales and interaction strengths some forces even merge together at high energies. Scale invariance, as beautiful as it is mathematically, simply doesn't seem to be preferred by nature.
Related:The history and structure of the universe (infographic)
So, on one side of the AdS/CFT correspondence, you have a universe that doesn't look like ours, and on the other, you have mathematical theory that doesn't apply to most situations. So what's the big deal?
The big deal is that over twenty years ago, physicists and mathematicians found a surprising link between string theories written in a five-dimensional anti-de Sitter spacetime and conformal field theories written on the four-dimensional boundary of that spacetime. This correspondence so far unproven, but if there is a connection, it could have far-reaching consequences.
There are a lot of tools and tricks in the language of string theory, so if you're facing a thorny physics problem that can be written in terms of a conformal field theory (it's not common, but it does happen occasionally), you can cast it in terms of the 5d string theory and apply those tools to try to crack it.
Additionally, if you're trying to solve string theory problems (like, for example, the unification of gravity with other forces of nature), you can translate your problem into terms of a conformal field theory and use the tried-and-true techniques in that language to try to crack it.
Most work in this arena has been with trying to use the methods of string theory to solve real-world problems, like what happens to the information that's fallen into a black hole and the nature of high-energy states of matter.
Paul M. Sutteris an astrophysicist at SUNY Stony Brook and the Flatiron Institute, host of Ask a Spaceman and Space Radio, and author of Your Place in the Universe.
Learn more by listening to the episode "Is String Theory Worth It? (Part 7: A Correspondence from a Dear Friend)" on the Ask A Spaceman podcast, available oniTunesand on the Web athttp://www.askaspaceman.com. Thanks to John C., Zachary H., @edit_room, Matthew Y., Christopher L., Krizna W., Sayan P., Neha S., Zachary H., Joyce S., Mauricio M., @shrenicshah, Panos T., Dhruv R., Maria A., Ter B., oiSnowy, Evan T., Dan M., Jon T., @twblanchard, Aurie, Christopher M., @unplugged_wire, Giacomo S., Gully F. for the questions that led to this piece! Ask your own question on Twitter using #AskASpaceman or by following Paul @PaulMattSutter and facebook.com/PaulMattSutter.
Here is the original post:
Posted in Quantum Physics
Comments Off on Exploring new tools in string theory – Space.com
Probing reality through physics, philosophy, and writing – MIT News
Posted: at 5:43 pm
A day in the life of Michelle Xu might include attending a quantum gravity seminar over Zoom, followed by some reading on the philosophy of time, capped off by a couple hours of writing fiction.
If these activities seem wildly diverse, for Xu they all emerge from the same place: this desire to understand how the universe works, she says. I was just never particularly picky about which way to figure it out.
Xu is a senior majoring in physics and mathematics, with an added focus on philosophy. Her studies have centered on large questions in cosmology, including looking at the earliest days of the expanding universe through their impact on primordial black holes with Professor Alan Guth in the MIT Center for Theoretical Physics. Lately Xu has been studying high energy theory and quantum gravity under the guidance of Professor Daniel Harlow, both topics which she hopes to continue studying in graduate school at Stanford University next fall. Throughout her time in the physics department, professors Robert Jaffe, Tracy Slatyer, and David Kaiser have been strong role models and mentors as well, she says. My path in physics has been shaped and encouraged by all of these people, and without them, I wouldnt be where I am today.
Although she was interested in physics when she first came to MIT, it was the research experience that confirmed for her that she was on the right career path. My biggest doubt was, OK, so I can do [problem sets], and I enjoy thinking about these concepts, but if I were tossed a bunch of equations and had to create something myself, could I actually do this? Xu recalls. Each summer as I worked on a different research project, I became more and more convinced that this was something I could do.
At home in Pennsylvania during the coronavirus pandemic, Xu is continuing her research with Guth and hopes to meet virtually with Harlow as well. She is staying touch with friends through social media, even starting a book club while they are scattered throughout the country. Ive been stripped of some of my usual responsibilities, like running clubs, so Im focusing more on personal interests like writing and some puzzling topics in physics and philosophy, she says.
Xus parents are scientists, and she was raised in a household where everything was approached from a scientific perspective, she says. They watched a lot of science documentaries, like Brian Greenes The Elegant Universe, that raised early questions about the nature of reality.
It was the class 24.02 (Moral Problems and the Good Life) that inspired Xu to delve deeper into philosophy as another way to probe reality. She later discovered that most of her philosophical interests lie in metaphysics and not ethics, but the problems were nevertheless interesting enough to get her hooked initially. She recalls one class discussion centered around morality and meaning in ones life, in relation to ideas like motivation and duty, that sparked an intense discussion with the classs teaching assistant. I got nerd sniped, Xu jokes. When someone poses such an interesting question or argument, you have to just drop everything to reply to it.
The TA invited her to sit in on a graduate philosophy reading group, and Xu also joined the MIT Undergraduate Philosophy Club and became a member of its executive board. She spent the spring 2019 semester at Oxford University studying philosophy and physics and in the summer participated in a weeklong summer school on mathematical philosophy for female students at Ludwig Maximilian University.
The jargon of academic philosophy can be as dense as physics terminology, Xu admits, but I think everyone could use a little philosophy in their lives. I think questions about life and the world around us can be structured in fascinating ways through the different modes of thinking in philosophy.
Thoughts about morality and responsibility came into focus for Xu during the Independent Activities Period in 2018, when she worked with the volunteer group Cross Cultural Solutions at the Ritsona refugee camp in Greece, through the Priscilla King Gray Public Service Center. People have asked her how the volunteer work fits in with her other academic interests, and she says the short answer is that it doesnt.
I may not make a career out of public service, but I am a human being, and just like any other human being, helping the world is important to me, Xu explains. Out there, I can do what any human can do do laundry or distribute food, and help people through an incredibly difficult time of their lives.
Xu shared her experiences at the refugee camp in writing, another long-time interest of hers. Inspired by the interdisciplinary science magazine Nautilus and looking for writing partners, Xu founded Chroma, MITs student-run science and humanities magazine. As editor-in-chief, she has been proud to encourage new writers, artists, and designers on campus to cross-pollinate ideas.
I think MIT is one of the few places where something like this can blossom, because everyone here is interested in the sciences in some way, she says.
Xu mostly writes fiction these days, which she calls variably OK, but hopefully improving. Last fall she took the class 21W.755 (Writing and Reading Short Stories) to sharpen her skills, because I have these things that I want to express in my writing but feel like I lack the technique to do. But especially now that Im quarantined, Im trying to write more just getting the reps in.
Writing also helps her grapple with the nature of reality in a different way, she says. To write is to build another reality. And to build something, you have to understand it.
Despite her consistent interest in the fundamental nature of reality, Xu says she does sometimes worry that perhaps she is spread across too many departments. If I want to do something significant and contribute to this world, does that mean I am lacking focus to do that correctly?
But I think you have to stay true to doing the things that pull you in, and thats the only way you can make a significant contribution to the world.
Continue reading here:
Probing reality through physics, philosophy, and writing - MIT News
Posted in Quantum Physics
Comments Off on Probing reality through physics, philosophy, and writing – MIT News
Why 14.7% unemployment doesnt tell the whole story: Yahoo U – Yahoo Finance
Posted: at 5:42 pm
The U.S. unemployment rate soared to 14.7% in April, but the headline unemployment number might not tell the whole story for how deeply the novel coronavirus has hurt the labor market.
On Friday, the Bureau of Labor Statistics reported that the unemployment rate rose to the highest level on record since the monthly data collection began in 1948.
The 14.7% figure comes from the BLSs measurement known as U-3 unemployment, which presents the total amount of unemployed people as a percent of the civilian labor force.
[See also: What is a recession: Yahoo U]
The BLS defines unemployed people as people who do not have a job but are currently looking for one. That definition presents unique challenges in capturing job loss among the millions of Americans who lost their jobs and still want one but are not actively searching.
The BLS has other classifications of labor underutilization not counted in U-3 unemployment:
Marginally attached: People who are not working and not looking for work, but indicate that they want and are available for a job
Part-time: People who want full-time work but have had to settle for a part-time schedule of less than 35 hours a week
These two groups likely constitute a large amount of workers pushed to the sidelines in the pandemic. People who had been abruptly laid off are likely to want a job when the recovery comes, but in the meantime are not actively searching for a job (for safety reasons or because there are no jobs available).
People walk past empty stores and restaurants closed due to impact of the Coronavirus (Covid-19) in Beverly Hills, California on May 8, 2020. - An unprecedented 20.5 million jobs were destroyed in April in the world's largest economy, the biggest amount ever recorded, the Labor Department said in a report released Friday, the first to capture the impact of a full month of the lockdowns. (Photo by Mark RALSTON / AFP) (Photo by MARK RALSTON/AFP via Getty Images)
Many others may have been former full-time employees who were forced to take on reduced work schedules, in which case they would not have been counted as an unemployed person under U-3 unemployment.
The BLS has an alternate unemployment measure called U-6 unemployment, which adds marginally attached people and part-time workers to the base of unemployed workers.
For April, the U-6 unemployment rate was 22.8%, an eight percentage point difference from the U-3 and U-6 rate.
Both the U-3 and the U-6 unemployment rate could still understate the true unemployment rate because of a measurement error that may have defined furloughed workers as employed.
Economists have warned that the April unemployment rate is unlikely to be the peak. St. Louis Fed President James Bullard told Yahoo Finance May 11 that the unemployment rate will likely rise further.
Brian Cheung is a reporter at Yahoo Finance and Valentina Caval is a producer.
Read the latest financial and business news from Yahoo Finance
Follow Yahoo Finance onTwitter,Facebook,Instagram,Flipboard,SmartNews,LinkedIn,YouTube, andreddit.ollow Yahoo Finance onTwitter,Facebook,Instagram,Flipboard,SmartNews,LinkedIn,YouTube, andreddit.
See the rest here:
Why 14.7% unemployment doesnt tell the whole story: Yahoo U - Yahoo Finance
Posted in Yahoo
Comments Off on Why 14.7% unemployment doesnt tell the whole story: Yahoo U – Yahoo Finance







