Measurement of lipid flux to advance translational research: evolution of classic methods to the future of precision health | Experimental &…

Posted: September 14, 2022 at 1:04 am

DeFronzo, R. A., Ferrannini, E. & Simonson, D. C. Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism 38, 387395 (1989).

CAS PubMed Article Google Scholar

Lambert, J. E., Ramos-Roman, M. A., Browning, J. D. & Parks, E. J. Increased de novo lipogenesis is a distinct characteristic of individuals with nonalcoholic fatty liver disease. Gastroenterology 146, 726735 (2014).

CAS PubMed Article Google Scholar

Ginsberg, H. N. et al. Triglyceride-rich lipoproteins and their remnants: metabolic insights, role in atherosclerotic cardiovascular disease, and emerging therapeutic strategies-a consensus statement from the European Atherosclerosis Society. Eur. Heart J. 42, 47914806 (2021).

CAS PubMed PubMed Central Article Google Scholar

Wolfe, R. R. Radioactive and stable isotope tracers in biomedicine. (Wiley and Sons, 1992).

Berman, M., Grundy, S. M. & Howard, B. V. Lipoprotein kinetics and modeling. (Academic Press, 1982).

Berman, M. et al. Metabolism of apoB and apoC lipoproteins in man: kinetic studies in normal and hyperlipoproteinemic subjects. J. Lipid Res. 19, 3856 (1978).

CAS PubMed Article Google Scholar

Beltz, W. F., Kesaniemi, Y. A., Howard, B. V. & Grundy, S. M. Development of an integrated model for analysis of the kinetics of apolipoprotein B in plasma very low density lipoproteins, intermediate density lipoproteins, and low density lipoproteins. J. Clin. Invest. 76, 575585 (1985).

CAS PubMed PubMed Central Article Google Scholar

Barrett, P. H., Chan, D. C. & Watts, G. F. Thematic review series: patient-oriented research. Design and analysis of lipoprotein tracer kinetics studies in humans. J. Lipid Res. 47, 16071619 (2006).

CAS PubMed Article Google Scholar

Ying, Q., Chan, D. C., Barrett, P. H. R. & Watts, G. F. Unravelling lipoprotein metabolism with stable isotopes: tracing the flow. Metabolism 124, 154887 (2021).

CAS PubMed Article Google Scholar

Beylot, M. Use of stable isotopes to evaluate the functional effects of nutrients. Curr. Opin. Clin. Nutr. Metab. Care 9, 734739 (2006).

CAS PubMed Article Google Scholar

Bier, D. M. Stable isotopes in biosciences, their measurement and models for amino acid metabolism. Eur. J. Pediatr. 156, S2S8 (1997).

CAS PubMed Article Google Scholar

Demant, T. & Packard, C. J. Studies of apolipoprotein B-100 metabolism using radiotracers and stable isotopes. Eur. J. Pediatr. 156, S75S77 (1997).

CAS PubMed Article Google Scholar

Packard, C. J. The role of stable isotopes in the investigation of plasma lipoprotein metabolism. Baillieres Clin. Endocrinol. Metab. 9, 755772 (1995).

CAS PubMed Article Google Scholar

Patterson, B. W., Mittendorfer, B., Elias, N., Satyanarayana, R. & Klein, S. Use of stable isotopically labeled tracers to measure very low density lipoprotein-triglyceride turnover. J. Lipid Res. 43, 223233 (2002).

CAS PubMed Article Google Scholar

DeLany, J. P., Windhauser, M. M., Champagne, C. M. & Bray, G. A. Differential oxidation of individual dietary fatty acids in humans. Am. J. Clin. Nutr. 72, 905911 (2000).

CAS PubMed Article Google Scholar

Raman, A., Blanc, S., Adams, A. & Schoeller, D. A. Validation of deuterium-labeled fatty acids for the measurement of dietary fat oxidation during physical activity. J. Lipid Res. 45, 23392344 (2004).

CAS PubMed Article Google Scholar

Hibi, M. et al. Fat utilization in healthy subjects consuming diacylglycerol oil diet: dietary and whole body fat oxidation. Lipids 43, 517524 (2008).

CAS PubMed Article Google Scholar

Jones, P. J., Pencharz, P. B. & Clandinin, M. T. Whole body oxidation of dietary fatty acids: implications for energy utilization. Am. J. Clin. Nutr. 42, 769777 (1985).

CAS PubMed Article Google Scholar

Hodson, L., McQuaid, S. E., Karpe, F., Frayn, K. N. & Fielding, B. A. Differences in partitioning of meal fatty acids into blood lipid fractions: a comparison of linoleate, oleate, and palmitate. Am. J. Physiol. Endocrinol. Metab. 296, E64E71 (2009).

CAS PubMed Article Google Scholar

Heiling, V. J., Miles, J. M. & Jensen, M. D. How valid are isotopic measurements of fatty acid oxidation? Am. J. Physiol. 261, E572E577 (1991).

CAS PubMed Google Scholar

Timlin, M. T., Barrows, B. R. & Parks, E. J. Increased dietary substrate delivery alters hepatic fatty acid recycling in healthy men. Diabetes 54, 26942701 (2005).

CAS PubMed Article Google Scholar

Jacome-Sosa, M. M. & Parks, E. J. Fatty acid sources and their fluxes as they contribute to plasma triglyceride concentrations and fatty liver in humans. Curr. Opin. Lipidol. 25, 213220 (2014).

CAS PubMed Article Google Scholar

Mucinski, J. M. et al. High throughput LCMS method to investigate postprandial lipemia: considerations for future precision nutrition research. Am. J. Physiol. Endocrinol. Metab. 320, E702E715 (2021).

CAS PubMed Article Google Scholar

Knuth, N. D. & Horowitz, J. F. The elevation of ingested lipids within plasma chylomicrons is prolonged in men compared with women. J. Nutr. 136, 14981503 (2006).

CAS PubMed Article Google Scholar

Gil-Snchez, A. et al. Maternal-fetal in vivo transfer of [13C]docosahexaenoic and other fatty acids across the human placenta 12 h after maternal oral intake. Am. J. Clin. Nutr. 92, 115122 (2010).

PubMed Article CAS Google Scholar

Jackson, K. G., Robertson, M. D., Fielding, B. A., Frayn, K. N. & Williams, C. M. Second meal effect: modified sham feeding does not provoke the release of stored triacylglycerol from a previous high-fat meal. Br. J. Nutr. 85, 149156 (2001).

CAS PubMed Article Google Scholar

Jacome-Sosa, M., Hu, Q., Manrique-Acevedo, C. M., Phair, R. D. & Parks, E. J. Human intestinal lipid storage through sequential meals reveals faster dinner appearance is associated with hyperlipidemia. JCI Insight 6, e148378 (2021).

PubMed Central Article Google Scholar

Nelson, R. H., Basu, R., Johnson, C. M., Rizza, R. A. & Miles, J. M. Splanchnic spillover of extracellular lipase-generated fatty acids in overweight and obese humans. Diabetes 56, 28782884 (2007).

CAS PubMed Article Google Scholar

Barrows, B. R., Timlin, M. T. & Parks, E. J. Spillover of dietary fatty acids and use of serum nonesterified fatty acids for the synthesis of VLDL-triacylglycerol under two different feeding regimens. Diabetes 54, 26682673 (2005).

CAS PubMed Article Google Scholar

Parks, E. J., Schneider, T. L. & Baar, R. A. Meal-feeding studies in mice: effects of different diets on blood lipids and energy expenditure. Comp. Med. 55, 2429 (2005).

CAS PubMed Google Scholar

Barrows, B. R. & Parks, E. J. Contributions of different fatty acid sources to very low-density lipoprotein-triacylglycerol in the fasted and fed states. J. Clin. Endocrinol. Metab. 91, 14461452 (2006).

CAS PubMed Article Google Scholar

Parks, E. J. & Hellerstein, M. K. Thematic review series: patient-oriented research. Recent advances in liver triacylglycerol and fatty acid metabolism using stable isotope labeling techniques. J. Lipid Res. 47, 16511660 (2006).

CAS PubMed Article Google Scholar

Baar, R. A. et al. Investigation of in vivo fatty acid metabolism in AFABP/aP2-/- mice. Am. J. Physiol. Endocrinol. Metab. 288, E187E193 (2004).

PubMed Article CAS Google Scholar

Donnelly, K. L., Margosian, M. R., Sheth, S. S., Lusis, A. J. & Parks, E. J. Increased lipogenesis and fatty acid reesterification contribute to hepatic triacylglycerol stores in hyperlipidemic Txnip-/- mice. J. Nutr. 134, 14751480 (2004).

CAS PubMed Article Google Scholar

Bastarrachea, R. A. et al. Protocol for the measurement of fatty acid and glycerol turnover in vivo in baboons. J. Lipid Res. 52, 12721280 (2011).

CAS PubMed PubMed Central Article Google Scholar

Erkin-Cakmak, A. et al. Isocaloric fructose testriction reduces serum d-lactate concentration in children with obesity and metabolic syndrome. J. Clin. Endocrinol. Metab. 104, 30033011 (2019).

PubMed PubMed Central Article Google Scholar

Turner, S. M. et al. Measurement of TG synthesis and turnover in vivo by 2H2O incorporation into the glycerol moiety and application of MIDA. Am. J. Physiol. Endocrinol. Metab. 285, E790E803 (2003).

CAS PubMed Article Google Scholar

Schoenheimer, R. & Rittenberg, D. Deuterium as an indicator in the study of intermediary metabolism. Science 82, 156157 (1935).

CAS PubMed Article Google Scholar

Castro-Perez, J. et al. In vivo D2O labeling to quantify static and dynamic changes in cholesterol and cholesterol esters by high resolution LC/MS. J. Lipid Res. 52, 159169 (2011).

CAS PubMed PubMed Central Article Google Scholar

Chen, Y. et al. Quantifying ceramide kinetics in vivo using stable isotope tracers and LCMS/MS. Am. J. Physiol. Endocrinol. Metab. 315, E416e424 (2018).

CAS PubMed Article Google Scholar

White, U., Fitch, M. D., Beyl, R. A., Hellerstein, M. K. & Ravussin, E. Adipose depot-specific effects of 16 weeks of pioglitazone on in vivo adipogenesis in women with obesity: a randomised controlled trial. Diabetologia 64, 159167 (2021).

CAS PubMed Article Google Scholar

Zhou, H. et al. Quantifying apoprotein synthesis in rodents: coupling LC-MS/MS analyses with the administration of labeled water. J. Lipid Res. 53, 12231231 (2012).

CAS PubMed PubMed Central Article Google Scholar

Puchalska, P. et al. Isotope tracing untargeted metabolomics reveals macrophage polarization-state-specific metabolic coordination across intracellular compartments. iScience 9, 298313 (2018).

CAS PubMed PubMed Central Article Google Scholar

Downes, D. P. et al. Isotope fractionation during gas chromatography can enhance mass spectrometry-based measures of (2)H-labeling of small molecules. Metabolites 10, 474 (2020).

CAS PubMed Central Article Google Scholar

Trtzmller, M. et al. Determination of the isotopic enrichment of (13)C- and (2)H-labeled tracers of glucose using high-resolution mass spectrometry: application to dual- and triple-tracer studies. Anal. Chem. 89, 1225212260 (2017).

PubMed Article CAS Google Scholar

Schuhmann, K. et al. Monitoring membrane lipidome turnover by metabolic (15)N labeling and shotgun ultra-high-resolution orbitrap fourier transform mass spectrometry. Anal. Chem. 89, 1285712865 (2017).

CAS PubMed Article Google Scholar

Triebl, A. & Wenk, M. R. Analytical considerations of stable isotope labelling in lipidomics. Biomolecules 8, 151 (2018).

PubMed Central Article CAS Google Scholar

Wang, M., Wang, C. & Han, X. Selection of internal standards for accurate quantification of complex lipid species in biological extracts by electrospray ionization mass spectrometry-What, how and why? Mass. Spectrom. Rev. 36, 693714 (2017).

PubMed Article CAS Google Scholar

Rampler, E. et al. LILY-lipidome isotope labeling of yeast: in vivo synthesis of (13)C labeled reference lipids for quantification by mass spectrometry. Analyst 142, 18911899 (2017).

CAS PubMed Article Google Scholar

Han, X. & Gross, R. W. The foundations and development of lipidomics. J. Lipid Res. 63, 100164 (2022).

CAS PubMed Article Google Scholar

Satapati, S. et al. Using measures of metabolic flux to align screening and clinical development: Avoiding pitfalls to enable translational studies. SLAS Disco. 27, 2028 (2022).

Article Google Scholar

Excerpt from:
Measurement of lipid flux to advance translational research: evolution of classic methods to the future of precision health | Experimental &...

Related Posts