Global topographic uplift has elevated speciation in mammals and birds over the last 3 million years – Nature.com

Posted: September 4, 2021 at 6:13 am

von Humboldt, A. Ansichten der Natur mit Wissenschaftlichen Erlauterungen (J.G. Cotta, 1808).

Perrigo, A., Hoorn, C. & Antonelli, A. Why mountains matter for biodiversity. J. Biogeogr. 47, 315325 (2020).

Article Google Scholar

Badgley, C. et al. Biodiversity and topographic complexity: modern and geohistorical perspectives. Trends Ecol. Evol. 32, 211226 (2017).

PubMed PubMed Central Article Google Scholar

Rahbek, C. et al. Building mountain biodiversity: geological and evolutionary processes. Science 365, 11141119 (2019).

CAS PubMed PubMed Central Article Google Scholar

Steinbauer, M. J. et al. Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob. Ecol. Biogeogr. 25, 10971107 (2016).

Article Google Scholar

Fjelds, J., Bowie, R. C. K. & Rahbek, C. The role of mountain ranges in the diversification of birds. Annu. Rev. Ecol. Evol. Syst. 43, 249265 (2012).

Article Google Scholar

Hughes, C. & Eastwood, R. Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes. Proc. Natl Acad. Sci. USA 103, 1033410339 (2006).

CAS PubMed PubMed Central Article Google Scholar

Antonelli, A. et al. Geological and climatic influences on mountain biodiversity. Nat. Geosci. 11, 718725 (2018).

CAS Article Google Scholar

Quintero, I. & Jetz, W. Global elevational diversity and diversification of birds. Nature 555, 246250 (2018).

CAS PubMed PubMed Central Article Google Scholar

Gillooly, J. F., Allen, A. P., West, G. B. & Brown, J. H. The rate of DNA evolution: effects of body size and temperature on the molecular clock. Proc. Natl Acad. Sci. USA 102, 140145 (2005).

CAS PubMed Article PubMed Central Google Scholar

Martin, A. P. & Palumbi, S. R. Body size, metabolic rate, generation time, and the molecular clock. Proc. Natl Acad. Sci. USA 90, 40874091 (1993).

CAS PubMed PubMed Central Article Google Scholar

Rohde, K. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65, 514527 (1992).

Article Google Scholar

Allen, A. P., Gillooly, J. F., Savage, V. M. & Brown, J. H. Kinetic effects of temperature on rates of genetic divergence and speciation. Proc. Natl Acad. Sci. USA 103, 91309135 (2006).

CAS PubMed PubMed Central Article Google Scholar

Rabosky, D. L. et al. An inverse latitudinal gradient in speciation rate for marine fishes. Nature 559, 392395 (2018).

CAS PubMed Article PubMed Central Google Scholar

Igea, J. & Tanentzap, A. J. Angiosperm speciation cools down in the tropics. Ecol. Lett. 23, 692700 (2020).

PubMed PubMed Central Article Google Scholar

Schluter, D. Speciation, ecological opportunity, and latitude (American Society of Naturalists address). Am. Nat. 187, 118 (2016).

PubMed Article PubMed Central Google Scholar

Anderson, K. J. & Jetz, W. The broad-scale ecology of energy expenditure of endotherms. Ecol. Lett. 8, 310318 (2005).

Article Google Scholar

Clarke, A. & Gaston, K. J. Climate, energy and diversity. Proc. R. Soc. B 273, 22572266 (2006).

PubMed PubMed Central Article Google Scholar

Dowle, E. J., Morgan-Richards, M. & Trewick, S. A. Molecular evolution and the latitudinal biodiversity gradient. Heredity 110, 501510 (2013).

CAS PubMed PubMed Central Article Google Scholar

Brown, J. H. Why are there so many species in the tropics? J. Biogeogr. 41, 822 (2014).

PubMed Article Google Scholar

Stevens, G. C. The latitudinal gradient in geographical range: how so many species coexist in the tropics. Am. Nat. 133, 240256 (1989).

Article Google Scholar

Boucher-Lalonde, V. & Currie, D. J. Spatial autocorrelation can generate stronger correlations between range size and climatic niches than the biological signal a demonstration using bird and mammal range maps. PLoS One 11, e0166243 (2016).

PubMed PubMed Central Article CAS Google Scholar

Cutter, A. D. & Gray, J. C. Ephemeral ecological speciation and the latitudinal biodiversity gradient. Evolution 70, 21712185 (2016).

PubMed Article PubMed Central Google Scholar

MoralesBarbero, J., Martinez, P. A., FerrerCastn, D. & OlallaTrraga, M. . Quaternary refugia are associated with higher speciation rates in mammalian faunas of the Western Palaearctic. Ecography 41, 607621 (2018).

Article Google Scholar

Xing, Y. & Ree, R. H. Uplift-driven diversification in the Hengduan Mountains, a temperate biodiversity hotspot. Proc. Natl Acad. Sci. USA 114, E3444E3451 (2017).

CAS PubMed PubMed Central Article Google Scholar

Lagomarsino, L. P., Condamine, F. L., Antonelli, A., Mulch, A. & Davis, C. C. The abiotic and biotic drivers of rapid diversification in Andean bellflowers (Campanulaceae). New Phytol. 210, 14301442 (2016).

PubMed PubMed Central Article Google Scholar

Testo, W. L., Sessa, E. & Barrington, D. S. The rise of the Andes promoted rapid diversification in Neotropical Phlegmariurus (Lycopodiaceae). New Phytol. 222, 604613 (2019).

PubMed Article PubMed Central Google Scholar

Dowsett, H. et al. The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction. Climate 12, 15191538 (2016).

Google Scholar

Hartley, A. J. Andean uplift and climate change. J. Geol. Soc. 160, 710 (2003).

Article Google Scholar

Aron, P. G. & Poulsen, C. J. in Mountains, Climate and Biodiversity (eds Hoorn, C., Perrugi, A. & Antonelli, A.) Ch. 8 (2018).

Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907913 (2000).

CAS PubMed Article PubMed Central Google Scholar

Wallis, G. P., Waters, J. M., Upton, P. & Craw, D. Transverse Alpine speciation driven by glaciation. Trends Ecol. Evol. 31, 916926 (2016).

PubMed Article PubMed Central Google Scholar

Luebert, F. & Muller, L. A. H. Effects of mountain formation and uplift on biological diversity. Front. Genet. 6, 54 (2015).

Huang, S., Meijers, M. J. M., Eyres, A., Mulch, A. & Fritz, S. A. Unravelling the history of biodiversity in mountain ranges through integrating geology and biogeography. J. Biogeogr. 46, 17771791 (2019).

Article Google Scholar

Whittaker, R. J., Triantis, K. A. & Ladle, R. J. A general dynamic theory of oceanic island biogeography. J. Biogeogr. 35, 977994 (2008).

Article Google Scholar

Li, Y. et al. Climate and topography explain range sizes of terrestrial vertebrates. Nat. Clim. Change 6, 498502 (2016).

Article Google Scholar

Kisel, Y. & Barraclough, T. G. Speciation has a spatial scale that depends on levels of gene flow. Am. Nat. 175, 316334 (2010).

PubMed Article Google Scholar

Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 45214531 (2018).

Article Google Scholar

Rowley, D. B. & Garzione, C. N. Stable isotope-based paleoaltimetry. Annu. Rev. Earth Planet. Sci. 35, 463508 (2007).

CAS Article Google Scholar

Mulch, A. Stable isotope paleoaltimetry and the evolution of landscapes and life. Earth Planet. Sci. Lett. 433, 180191 (2016).

CAS Article Google Scholar

Kuhn, T. S., Mooers, A. . & Thomas, G. H. A simple polytomy resolver for dated phylogenies. Methods Ecol. Evol. 2, 427436 (2011).

Article Google Scholar

Rolland, J., Condamine, F. L., Jiguet, F. & Morlon, H. Faster speciation and reduced extinction in the tropics contribute to the mammalian latitudinal diversity gradient. PLoS Biol. 12, e1001775 (2014).

Meredith, R. W. et al. Impacts of the Cretaceous Terrestrial Revolution and KPg Extinction on mammal diversification. Science 334, 521524 (2011).

CAS PubMed Article PubMed Central Google Scholar

Britton, T., Anderson, C. L., Jacquet, D., Lundqvist, S. & Bremer, K. Estimating divergence times in large phylogenetic trees. Syst. Biol. 56, 741752 (2007).

PubMed Article PubMed Central Google Scholar

Drummond, A. J. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214 (2007).

PubMed PubMed Central Article CAS Google Scholar

Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592593 (2011).

CAS PubMed Article PubMed Central Google Scholar

Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444448 (2012).

CAS PubMed PubMed Central Article Google Scholar

Redding, D. W. & Mooers, A. . Incorporating evolutionary measures into conservation prioritization. Conserv. Biol. 20, 16701678 (2006).

PubMed Article PubMed Central Google Scholar

Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS One 9, e89543 (2014).

PubMed PubMed Central Article CAS Google Scholar

Moore, B. R., Hhna, S., May, M. R., Rannala, B. & Huelsenbeck, J. P. Critically evaluating the theory and performance of Bayesian analysis of macroevolutionary mixtures. Proc. Natl Acad. Sci. USA 113, 95699574 (2016).

CAS PubMed PubMed Central Article Google Scholar

Meyer, A. L. S., Romn-Palacios, C. & Wiens, J. J. BAMM gives misleading rate estimates in simulated and empirical datasets. Evolution 72, 22572266 (2018).

PubMed Article PubMed Central Google Scholar

Rabosky, D. L., Mitchell, J. S. & Chang, J. Is BAMM flawed? Theoretical and practical concerns in the analysis of multi-rate diversification models. Syst. Biol. 66, 477498 (2017).

PubMed PubMed Central Article Google Scholar

Original post:

Global topographic uplift has elevated speciation in mammals and birds over the last 3 million years - Nature.com

Related Posts