Bifurcation drives the evolution of assembly-line biosynthesis – Nature.com

Posted: June 22, 2022 at 12:38 pm

Nivina, A., Yuet, K. P., Hsu, J. & Khosla, C. Evolution and diversity of assembly-line polyketide synthases. Chem. Rev. 119, 1252412547 (2019).

CAS PubMed PubMed Central Article Google Scholar

Sssmuth, R. D. & Mainz, A. Nonribosomal peptide synthesis-principles and prospects. Angew. Chem. Int. Ed. 56, 37703821 (2017).

Article CAS Google Scholar

Kirst, H. A. The spinosyn family of insecticides: realizing the potential of natural products research. J. Antibiotics 63, 101111 (2010).

CAS Article Google Scholar

Fierro, F. et al. Transcriptional and bioinformatic analysis of the 56.8 kb DNA region amplified in tandem repeats containing the penicillin gene cluster in Penicillium chrysogenum. Fungal Genet. Biol. 43, 618629 (2006).

CAS PubMed Article Google Scholar

Ray, L. & Moore, B. S. Recent advances in the biosynthesis of unusual polyketide synthase substrates. Nat. Prod. Rep. 33, 150161 (2016).

CAS PubMed PubMed Central Article Google Scholar

Caboche, S., Leclre, V., Pupin, M., Kucherov, G. & Jacques, P. Diversity of monomers in nonribosomal peptides: towards the prediction of origin and biological activity. J. Bacteriol. 192, 51435150 (2010).

CAS PubMed PubMed Central Article Google Scholar

Walsh, C. T., OBrien, R. V. & Khosla, C. Nonproteinogenic amino acid building blocks for nonribosomal peptide and hybrid polyketide scaffolds. Angew. Chem. Int. Ed. 52, 70987124 (2013).

CAS Article Google Scholar

Blin, K. et al. antiSMASH 4.0improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res. 45, W36W41 (2017).

CAS PubMed PubMed Central Article Google Scholar

Skinnider, M. A., Merwin, N. J., Johnston, C. W. & Magarvey, N. A. PRISM 3: expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Res. 45, W49W54 (2017).

CAS PubMed PubMed Central Article Google Scholar

Dutta, S. et al. Structure of a modular polyketide synthase. Nature 510, 512517 (2014).

ADS CAS PubMed PubMed Central Article Google Scholar

Whicher, J. R. et al. Structural rearrangements of a polyketide synthase module during its catalytic cycle. Nature 510, 560564 (2014).

ADS CAS PubMed PubMed Central Article Google Scholar

Drake, E. J. et al. Structures of two distinct conformations of holo-non-ribosomal peptide synthetases. Nature 529, 235238 (2016).

ADS CAS PubMed PubMed Central Article Google Scholar

Miller, B. R., Drake, E. J., Shi, C., Aldrich, C. C. & Gulick, A. M. Structures of a nonribosomal peptide synthetase module bound to MbtH-like proteins support a highly dynamic domain architecture. J. Biol. Chem. 291, 2255922571 (2016).

CAS PubMed PubMed Central Article Google Scholar

Bozhyk, K. A., Micklefield, J. & Wilkinson, B. Engineering enzymatic assembly lines to produce new antibiotics. Curr. Opin. Microbiol. 51, 8896 (2019).

PubMed PubMed Central Article CAS Google Scholar

Jenke-Kodama, H. & Dittmann, E. Evolution of metabolic diversity: insights from microbial polyketide synthases. Phytochemistry 70, 18581866 (2009).

CAS PubMed Article Google Scholar

Zhang, L. et al. Characterization of giant modular PKSs provides insight into genetic mechanism for structural diversification of aminopolyol polyketides. Angew. Chem. Int. Ed. 56, 17401745 (2017).

CAS Article Google Scholar

Wlodek, A. et al. Diversity oriented biosynthesis via accelerated evolution of modular gene clusters. Nat. Commun. 8, 1206 (2017).

ADS PubMed PubMed Central Article CAS Google Scholar

Baunach, M., Chowdhury, S., Stallforth, P. & Dittmann, E. The landscape of recombination events that create nonribosomal peptide diversity. Mol. Biol. Evol. 38, 21162130 (2021).

CAS PubMed PubMed Central Article Google Scholar

Khalil, Z. G., Salim, A. A., Lacey, E., Blumenthal, A. & Capon, R. J. Wollamides: antimycobacterial cyclic hexapeptides from an Australian soil Streptomyces. Org. Lett. 16, 51205123 (2014).

CAS PubMed Article Google Scholar

Asfaw, H. et al. Design, synthesis and structure-activity relationship study of wollamide B; a new potential anti TB agent. PLoS ONE 12, e0176088 https://doi.org/10.1371/journal.pone.0176088 (2017).

Tsutsumi, L. S. et al. Solid-phase synthesis and antibacterial activity of cyclohexapeptide wollamide B analogs. ACS Combin. Sci. 20, 172185 (2018).

CAS Article Google Scholar

Khalil, Z. G. et al. Structure-activity relationships of wollamide cyclic hexapeptides with activity against drug-resistant and intracellular mycobacterium tuberculosis. Antimicrob. Agents Chemother. 63, e01773-18 (2019).

Prior, A. M. & Sun, D. in Methods in Molecular Biology, vol. 2103, 175187 (Humana Press Inc., 2020).

Song, Y. et al. Cyclic hexapeptides from the deep South China sea-derived Streptomyces scopuliridis SCSIO ZJ46 active against pathogenic Gram-Positive bacteria. J. Nat. Products 77, 19371941 (2014).

CAS Article Google Scholar

Li, Q. et al. Identification of the biosynthetic gene cluster for the anti-infective desotamides and production of a new analogue in a heterologous host. J. Nat. Products 78, 944948 (2015).

CAS Article Google Scholar

Eid, J. et al. Real-time DNA sequencing from single polymerase molecules. Science 323, 133138 (2009).

ADS CAS PubMed Article Google Scholar

Chin, C.-S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563569 (2013).

CAS PubMed Article Google Scholar

Felnagle, E. A. et al. MbtH-like proteins as integral components of bacterial nonribosomal peptide synthetases. Biochemistry 49, 88158817 (2010).

CAS PubMed Article Google Scholar

Baltz, R. H. Function of MbtH homologs in nonribosomal peptide biosynthesis and applications in secondary metabolite discovery. J. Ind. Microbiol. Biotechnol. 38, 17471760 (2011).

CAS PubMed Article Google Scholar

Stachelhaus, T., Mootz, H. D. & Marahiel, M. A. The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases. Chem. Biol. 6, 493505 (1999).

CAS PubMed Article Google Scholar

Blin, K. et al. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res. 47, W81W87 (2019).

CAS PubMed PubMed Central Article Google Scholar

Kouprina, N. & Larionov, V. TAR cloning: insights into gene function, long-range haplotypes and genome structure and evolution. Nat. Rev. Genet. 7, 805812 (2006).

CAS PubMed Article Google Scholar

Nijkamp, J. F. et al. De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb. Cell Factor. 11, 36 (2012).

Kieser, T. et al. Practical Streptomyces Genetics. (John Innes Foundation, 2000).

Hahn, M. & Stachelhaus, T. Harnessing the potential of communication-mediating domains for the biocombinatorial synthesis of nonribosomal peptides. Proc. Natl Acad. Sci. USA 103, 275280 (2006).

ADS CAS PubMed PubMed Central Article Google Scholar

Hacker, C. et al. Structure-based redesign of docking domain interactions modulates the product spectrum of a rhabdopeptide-synthesizing NRPS. Nat. Commun. 9, 111 (2018).

ADS CAS Article Google Scholar

Watzel, J., Hacker, C., Duchardt-Ferner, E., Bode, H. B. & Whnert, J. A new docking domain type in the peptide-antimicrobial-xenorhabdus peptide producing nonribosomal peptide synthetase from Xenorhabdus bovienii. ACS Chem. Biol. 15, 982989 (2020).

CAS PubMed Article Google Scholar

Innan, H. & Kondrashov, F. The evolution of gene duplications: classifying and distinguishing between models. Nat. Rev. Genet. 11, 97108 (2010).

CAS PubMed Article Google Scholar

Crsemann, M., Kohlhaas, C. & Piel, J. Evolution-guided engineering of nonribosomal peptide synthetase adenylation domains. Chem. Sci. 4, 10411045 (2013).

Article Google Scholar

Kries, H., Niquille, D. L. & Hilvert, D. A subdomain swap strategy for reengineering nonribosomal peptides. Chem. Biol. 22, 640648 (2015).

CAS PubMed Article Google Scholar

Calcott, M. J., Owen, J. G. & Ackerley, D. F. Efficient rational modification of non-ribosomal peptides by adenylation domain substitution. Nat. Commun. 11, https://doi.org/10.1038/s41467-020-18365-0 (2020).

Lynch, M. Streamlining and simplification of microbial genome architecture. Annu. Rev. Microbiol. 60, 327349 (2006).

CAS PubMed Article Google Scholar

McDonald, B. R. & Currie, C. R. Lateral gene transfer dynamics in the ancient bacterialgenus Streptomyces. mBio 8, e00644-17 (2017).

Martin, D. P., Murrell, B., Golden, M., Khoosal, A. & Muhire, B. RDP4: detection and analysis of recombination patterns in virus genomes. Virus Evol. 1, vev003 (2015).

Medema, M. H. et al. Minimum information about a biosynthetic gene cluster. Nat. Chem. Biol. 11, 625631 (2015).

CAS PubMed PubMed Central Article Google Scholar

Gilchrist, C. L. M. et al. cblaster: a remote search tool for rapid identification and visualisation of homologous gene clusters. Bioinforma. Adv. 1, 110 (2021).

Article Google Scholar

McClure, R. A. et al. Elucidating the rimosamide-detoxin natural product families and their biosynthesis using metabolite/gene cluster correlations. ACS Chem. Biol. 11, 34523460 (2016).

CAS PubMed PubMed Central Article Google Scholar

Kadi, N. & Challis, G. L. Chapter 17 siderophore biosynthesis. Methods Enzymol. 458, 431457 (2009).

CAS PubMed Article Google Scholar

Jenke-Kodama, H., Sandmann, A., Mller, R. & Dittmann, E. Evolutionary implications of bacterial polyketide synthases. Mol. Biol. Evol. 22, 20272039 (2005).

CAS PubMed Article Google Scholar

Cimermancic, P. et al. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 158, 412421 (2014).

CAS PubMed PubMed Central Article Google Scholar

Zhou, Y. et al. Investigation of Penicillin binding protein (PBP)-like peptide cyclase and hydrolase in surugamide non-ribosomal peptide biosynthesis. Cell Chem. Biol. 26, 737744 (2019).

CAS PubMed Article Google Scholar

Fazal, A., Webb, M. E. & Seipke, R. F. The desotamide family of antibiotics. Antibiotics 9, 114 (2020).

Article CAS Google Scholar

Conrad, B. & Antonarakis, S. E. Gene duplication: a drive for phenotypic diversity and cause of human disease. Annu. Rev. Genomics Hum. Genet. 8, 1735 (2007).

CAS PubMed Article Google Scholar

Qian, W. & Zhang, J. Genomic evidence for adaptation by gene duplication. Genome Res. 24, 13561362 (2014).

CAS PubMed PubMed Central Article Google Scholar

Here is the original post:

Bifurcation drives the evolution of assembly-line biosynthesis - Nature.com

Related Posts