Spectroscopic sizing of interstellar icy grains with JWST – Nature.com

Posted: January 10, 2024 at 6:55 am

Mathis, J. S., Rumpl, W. & Nordsieck, K. H. The size distribution of interstellar grains. Astrophys. J. 217, 425433 (1977).

Article ADS Google Scholar

McClure, M. Observational 5-20 m interstellar extinction curves toward star-forming regions derived from Spitzer IRS spectra. Astrophys. J. 693, L81L85 (2009).

Article ADS Google Scholar

Flaherty, K. M. et al. Infrared extinction toward nearby star-forming regions. Astrophys. J. 663, 10691082 (2007).

Article ADS Google Scholar

Chapman, N. L., Mundy, L. G., Lai, S.-P., Evans, I. & Neal, J. The mid-infrared extinction law in the Ophiuchus, Perseus, and Serpens molecular clouds. Astrophys. J. 690, 496511 (2009).

Article ADS Google Scholar

Jones, A. P. et al. Mantle formation, coagulation, and the origin of cloud/core shine. I. Modelling dust scattering and absorption in the infrared. Astron. Astrophys. 588, A43 (2016).

Article Google Scholar

Weingartner, J. C. & Draine, B. T. Dust grain-size distributions and extinction in the Milky Way, Large Magellanic Cloud, and Small Magellanic Cloud. Astrophys. J. 548, 296309 (2001).

Article ADS Google Scholar

Madden, M. C. L. et al. Infrared spectroscopic survey of the quiescent medium of nearby clouds. II. Ice formation and grain growth in Perseus and Serpens. Astrophys. J. 930, 2 (2022).

Article ADS Google Scholar

Ysard, N., Koehler, M., Jimenez-Serra, I., Jones, A. P. & Verstraete, L. From grains to pebbles: The influence of size distribution and chemical composition on dust emission properties. Astron. Astrophys. 631, A88 (2019).

Article ADS Google Scholar

Boogert, A. C. A. et al. Infrared spectroscopic survey of the quiescent medium of nearby clouds. I. Ice formation and grain growth in Lupus. Astrophys. J. 777, 73 (2013).

Article ADS Google Scholar

van Breemen, J. M. et al. The 9.7 and 18 m silicate absorption profiles towards diffuse and molecular cloud lines-of-sight. Astron. Astrophys. 526, A152 (2011).

Article Google Scholar

Chiar, J. E. et al. The relationship between the optical depth of the 9.7 m silicate absorption feature and infrared differential extinction in dense clouds. Astrophys. J. Lett. 666, L73L76 (2007).

Article ADS Google Scholar

Ysard, N. et al. Mantle formation, coagulation, and the origin of cloud/core shine. II. Comparison with observations. Astron. Astrophys. 588, A44 (2016).

Article Google Scholar

Saajasto, M., Juvela, M. & Malinen, J. Near-infrared scattering as a dust diagnostic. Astron. Astrophys. 614, A95 (2018).

Article ADS Google Scholar

Steinacker, J. et al. Grain size limits derived from 3.6 m and 4.5 m coreshine. Astron. Astrophys. 582, A70 (2015).

Article Google Scholar

Marchand, P., Guillet, V., Lebreuilly, U. & Mac Low, M. M. Fast methods for tracking grain coagulation and ionization. II. Extension to thermal ionization. Astron. Astrophys. 666, A27 (2022).

Article ADS Google Scholar

Silsbee, K., Ivlev, A. V., Sipil, O., Caselli, P. & Zhao, B. Rapid elimination of small dust grains in molecular clouds. Astron. Astrophys. 641, A39 (2020).

Article ADS Google Scholar

Lebreuilly, U., Commeron, B. & Laibe, G. Small dust grain dynamics on adaptive mesh refinement grids. I. Methods. Astron. Astrophys. 626, A96 (2019).

Article ADS Google Scholar

Paruta, P., Hendrix, T. & Keppens, R. Dust grain coagulation modelling: From discrete to continuous. Astronomy and Computing 16, 155165 (2016).

Article ADS Google Scholar

Ormel, C. W. An atmospheric structure equation for grain growth. Astrophys. J. Lett. 789, L18 (2014).

Article ADS Google Scholar

Smith, R. G., Sellgren, K. & Tokunaga, A. T. Absorption features in the 3 micron spectra of protostars. Astrophys. J. 344, 413 (1989).

Article ADS Google Scholar

Dartois, E., dHendecourt, L., Thi, W., Pontoppidan, K. M. & van Dishoeck, E. F. Combined VLT ISAAC/ISO SWS spectroscopy of two protostellar sources. The importance of minor solid state features. Astron. Astrophys. 394, 10571068 (2002).

Article ADS Google Scholar

Noble, J. A., Fraser, H. J., Aikawa, Y., Pontoppidan, K. M. & Sakon, I. A survey of H2O, CO2, and CO ice features toward background stars and low-mass young stellar objects using Akari. Astrophys. J. 775, 85 (2013).

Article ADS Google Scholar

McClure, M. K. et al. An Ice Age JWST inventory of dense molecular cloud ices. Nat. Astron. 7, 431443 (2023).

Article ADS Google Scholar

Gibb, E. L., Whittet, D. C. B., Boogert, A. C. A. & Tielens, A. G. G. M. Interstellar ice: The infrared space observatory legacy. Astrophys. J. Suppl. Ser. 151, 3573 (2004).

Article ADS Google Scholar

Dartois, E. The ice survey opportunity of ISO. Space Sci. Rev. 119, 293310 (2005).

Article ADS Google Scholar

Boogert, A. C. A., Gerakines, P. A. & Whittet, D. C. B. Observations of the icy universe. Annu. Rev. Astron. Astrophys. 53, 541581 (2015).

Article ADS Google Scholar

Dartois, E., Noble, J. A., Ysard, N., Demyk, K. & Chabot, M. Influence of grain growth on CO2 ice spectroscopic profiles. Modelling for dense cores and disks. Astron. Astrophys. 666, A153 (2022).

Article ADS Google Scholar

Ehrenfreund, P., Boogert, A., Gerakines, P. & Tielens, A. Apolar ices. Faraday Discussions 109, 463 (1998).

Article ADS Google Scholar

Dartois, E. & Bauerecker, S. Infrared analysis of CO ice particles in the aerosol phase. J. Chem. Phys. 128, 154715 (2008).

Article ADS Google Scholar

Dartois, E. Spectroscopic evidence of grain ice mantle growth in YSOs. I. CO ice modeling and limiting cases. Astron. Astrophys. 445, 959970 (2006).

Article ADS Google Scholar

Dartois, E. & dHendecourt, L. Search for NH3 ice in cold dust envelopes around YSOs. Astron. Astrophys. 365, 144156 (2001).

Article ADS Google Scholar

van Broekhuizen, F. A., Pontoppidan, K. M., Fraser, H. J. & van Dishoeck, E. F. A 35 m VLT spectroscopic survey of embedded young low mass stars II: Solid OCN. Astron. Astrophys. 441, 249260 (2005).

Article ADS Google Scholar

Boogert, A. C. A., Brewer, K., Brittain, A. & Emerson, K. S. Survey of ices toward massive young stellar objects. I. OCS, CO, OCN, and CH3OH. Astrophys. J. 941, 32 (2022).

Article ADS Google Scholar

Ormel, C. W., Paszun, D., Dominik, C. & Tielens, A. G. G. M. Dust coagulation and fragmentation in molecular clouds. I. How collisions between dust aggregates alter the dust size distribution. Astron. Astrophys. 502, 845869 (2009).

Article ADS Google Scholar

Husser, T. O. et al. A new extensive library of PHOENIX stellar atmospheres and synthetic spectra. Astron. Astrophys. 553, A6 (2013).

Article Google Scholar

Palacios, A. et al. POLLUX: a database of synthetic stellar spectra. Astron. Astrophys. 516, A13 (2010).

Article Google Scholar

Draine, B. T. & Flatau, P. J. User guide for the discrete dipole approximation code DDSCAT 7.3. Preprint at https://arxiv.org/abs/1305.6497 (2013).

Khler, M., Jones, A. & Ysard, N. A hidden reservoir of Fe/FeS in interstellar silicates? Astron. Astrophys. 565, L9 (2014).

Article ADS Google Scholar

Jones, A. P. Variations on a themethe evolution of hydrocarbon solids. II. Optical property modellingthe optEC(s) model. Astron. Astrophys. 540, A2 (2012).

Article ADS Google Scholar

Godard, M., Geballe, T. R., Dartois, E. & Muoz Caro, G. M. The deep 3.4 m interstellar absorption feature toward the IRAS 18511+0146 cluster. Astron. Astrophys. 537, A27 (2012).

Article ADS Google Scholar

Pendleton, Y. J., Sandford, S. A., Allamandola, L. J., Tielens, A. G. G. M. & Sellgren, K. Near-infrared absorption spectroscopy of interstellar hydrocarbon grains. Astrophys. J. 437, 683 (1994).

Article ADS Google Scholar

Zhu, H., Tian, W., Li, A. & Zhang, M. The gas-to-extinction ratio and the gas distribution in the Galaxy. Mon. Not. R. Astron. Soc. 471, 34943528 (2017).

Article ADS Google Scholar

Palumbo, M. E., Baratta, G. A., Collings, M. P. & McCoustra, M. R. S. The profile of the 2140 cm-1 solid CO band on different substrates. Phys. Chem. Chem. Phys. 8, 279284 (2006).

Article Google Scholar

Dartois, E. et al. Cosmic ray sputtering yield of interstellar ice mantles. CO and CO2 ice thickness dependence. Astron. Astrophys. 647, A177 (2021).

Article Google Scholar

Rocha, W. R. M. et al. LIDA: The Leiden Ice Database for Astrochemistry. Astron. Astrophys. 668, A63 (2022).

Article Google Scholar

Ehrenfreund, P. et al. Laboratory studies of thermally processed H2O-CH3OH-CO2 ice mixtures and their astrophysical implications. Astron. Astrophys. 350, 240253 (1999).

ADS Google Scholar

Dartois, E. Les glaces interstellaires: interpretation par simulations en laboratoire des observations du satellite ISO. PhD thesis, Paris-VI (1998).

Dullemond, C. P. et al. RADMC-3D: A multi-purpose radiative transfer tool. Astrophysics Source Code Library, record ascl 1202, 015 (2012).

Google Scholar

Bouilloud, M. et al. Bibliographic review and new measurements of the infrared band strengths of pure molecules at 25 K: H2O, CO2, CO, CH4, NH3, CH3OH, HCOOH and H2CO. Mon. Not. R. Astron. Soc. 451, 21452160 (2015).

Article ADS Google Scholar

Luna, R. et al. Densities, infrared band strengths, and optical constants of solid methanol. Astron. Astrophys. 617, A116 (2018).

Article Google Scholar

Bottinelli, S. et al. The c2d Spitzer spectroscopic survey of ices around low-mass young stellar objects. IV. NH3 and CH3OH. Astrophys. J. 718, 11001117 (2010).

Article ADS Google Scholar

Continue reading here:

Spectroscopic sizing of interstellar icy grains with JWST - Nature.com

Related Posts