Daily Archives: December 9, 2019

Op-ed | Envisioning the next 50 years in space – SpaceNews

Posted: December 9, 2019 at 8:46 pm

Fifty years ago, the Apollo 11 moon landing changed how the world viewed space exploration. For the millions of people who watched Neil Armstrong take his first step on the moons surface, it inspired new horizons for the human spirit and imagination and even offered the possibility of life beyond our pale blue dot.

Its that same imagination that has led experts in the space industry to create increasingly sophisticated innovations like the International Space Station and the Mars Curiosity rover, which have led to further research and exploration in the past half-century.

Even so, since the 1969 moon landing, space exploration has largely stagnated. Humans havent revisited the moon since Apollo 17 in 1972 and a mere 571 people have been in Earths orbit.

Fortunately, a new Space Age is upon us that will rocket us past the stagnation. New technologies, decreasing costs, foreign interests and the emergence of the private sector have heralded the forthcoming of the second space race and with it a hopeful future on the horizon.

Over the next 50 years, at least a few key developments will transform our idea of space more than ever before.

Without a thriving and entrepreneurial spaceflight sector, deep-space exploration with people wont be sustainable. The private sector for now is focusing on how to reduce costs through assembly-line production techniques, which is critical to sustainable space tourism and exploration in the future.

While space exploration was popularized by the worlds government space programs, innovative events and breakthroughs wont come through the incremental funding of government space agencies, but instead through pioneering private space companies.

According to Scott Hubbard, a Stanford University professor who ran NASAs Ames Research Center, 75% of the global space enterprise is already commercial, including satellites belonging to the likes of SiriusXM radio and DirecTV. Its the human component that will take precedence in the nearest decades first, through the likes of space tourism and observation.

Similar to the economic forces that explored the American West, they will open up space to the many, even if they start with just the few.

Virgin Galactic and Blue Origin anticipate flying their first crewed suborbital space missions in 2020 with commercial flights to follow. Many would-be passengers are lining up to pay up to $250,000 to fly Virgin Galactics SpaceShipTwo or Blue Origins New Shepard to the edge of space for an out of this world view and several minutes of weightlessness.

As private companies seek to decrease the price of suborbital flight to as little as $50,000, it will provide increased access and interest in space tourism and observation. While the private sector adjusts for cost-efficiency, a 2019 USB report expects that high-speed travel via outer space will be fully functional in a decade and represent an annual market of at least $20 billion while competing with long-distance airline flights. Space tourism, in general, will be a $3 billion market by 2030.

Space settlement has been a hot topic even before robotic rovers started exploring Mars surface. As more people feel comfortable flying to space, an increase in space tourism will lay the foundations for people who want to start building lives there as well. However, space settlement offers major barriers including dangerous radiation, energy supply and simply getting life-sustaining supplies to these alien worlds.

However, settlements on the moon and Mars are shaping up to be a reality and not just the stuff of science fiction. NASAs Artemis program is pushing for humanitys return to the moon in 2024 and has already awarded contracts to Northrop Grumman for a lunar habitat, to Maxar Technologies for the lunar Gateways cornerstone Power and Propulsion Module and is just accepted proposals from industry for an Artemis lander it intends to contract as a service.

The European Space Agency, under the leadership of Jan Woerner, continues to push the Moon Village concept of open, collaborative exploration and utilization of the moon, is looking to this months ministerial conference to firm up Europes contribution to Artemis and the lunar Gateway.

Meanwhile, architect and design firms like Foster + Partners have unveiled plans for lunar habitats. The structures consist of modules shrouded in lunar soil that are then molded into an exterior shell to protect the dwellings from radiation, asteroid strikes and extreme temperatures.

This space architecture is also envisioned for Mars colonies, too. Both lunar and Martian habitats could feature inflatable pods that will serve as the base of these settlement while robot-operated 3D printers cement together regolith loose soil and rocks to form a protective shield around the pods.

Peter Diamandis, the chairman of X Prize Foundation, says that human lunar research outposts, one-way missions to Mars and the first births in space are what we can expect in the next 50 years.

While the timeline depends on the progress of space manufacturing and the ability to preserve human life on extraterrestrial planets, some experts predict that by 2061, millions of humans will have gone to space and thousands may live there.

Industry leaders have become more serious about mining for space resources, partially because Earths own resources are facing dire depletion due to climate change. Over the past several years, the U.S. Geological Survey (USGS) has experimented with how to mine space for resources.

The space-resources community is actively working with the USGS to see how they can mine minerals, water and energy from the moon, Mars and asteroids. USGS expertise in mapping terrestrial resources should inform further research initiatives in the next several years so that space miners can rely on much needed geological maps for precise landing sites and resource-deposit selection.

According to Lazslo Kestay, a USGS research geologist, the organization has completed enough research to feel confident that the criteria they use to assess mineral, water and energy quality on Earth can be used to assess these same resources in space. Kestay says that nearby asteroids hold enough water and metal resources to support humans if they become completely spacefaring.

Lunar ice may be one of the last resources to be mined by humans because of its cost to mine and find it, but with NASAs follow the water mentality on Mars, it could become a reality and already companies like Blue Origin and Japans ispace have plans to mine for resources there, meaning past 2024 it could become a reality.

While humans likely wont become fully spacefaring in 50 years, the amount of activity in private and public sectors will force movement in utilizing space resources to benefit space settlements and even Earths population.

Although these plans are still developing, the next 50 years of space exploration will transform global societies as humans become more active between the Red Planet, the moon and Earth. While there are many political, economic and moral considerations to achieving these goals, innovations from the most forward-thinking private and commercial NewSpace companies are necessary to revolutionize how we learn about and explore space.

While the original moon landing gave humans a giant leap of hope toward space exploration, the next half century in advancements will allow us to more deeply consider our own place in the universe and the way we interact with each other and our environment inside and outside of our home planet.

Dylan Taylor is chairman & CEO of Voyager Space Holdings, founder of the global non-profit Space for Humanity and co-founding patron of the Commercial Spaceflight Federation.

This article originally appeared in the Nov. 11, 2019 issue of SpaceNews magazine.

View post:

Op-ed | Envisioning the next 50 years in space - SpaceNews

Posted in Space Exploration | Comments Off on Op-ed | Envisioning the next 50 years in space – SpaceNews

Leading in space exploration – Opinion – The Register-Guard

Posted: at 8:46 pm

MondayDec9,2019at12:01AM

Raymond Moreno (Letters, Dec. 4) is upset that we spend money on space exploration. A friend of mine from England castigated the United States for using 24% of the worlds energy. I then asked him if the United States produces 24% of the scientific, medical and technological advances used all around the world.

Of course we do, and a lot of that has come from defense and space projects. What we know today as the World Wide Web came out of a Department of Defense contract, along with all kinds of things from NASA research.

Every functional society gives the brightest boys and girls a wide variety of professions they can use their talents, abilities and interests in. Why would we want to deprive some of our brightest kids of the chance to work in a field they are interested in? If others want to cure the common cold, they can work on that if they like.

Greg Williams, Noti

Read more:

Leading in space exploration - Opinion - The Register-Guard

Posted in Space Exploration | Comments Off on Leading in space exploration – Opinion – The Register-Guard

Blue Origin Will Launch (and Land) a Reusable Spacecraft Tuesday. How to Watch – Space.com

Posted: at 8:46 pm

Blue Origin, the private spaceflight company founded by billionaire Jeff Bezos, will launch a spacecraft filled with science experiments and thousands of postcards from kids on Tuesday (Dec. 10), but only if Mother Nature allows.

The company's reusable New Shepard spacecraft is scheduled to launch on the suborbital NS-12 mission at 9:30 a.m. EST (1430 GMT) from Blue Origin's West Texas proving grounds.

You can watch Blue Origin's launch here and on Space.com's homepage, courtesy of the company's webcast, beginning at 9 a.m. EST (1400 GMT). You can also watch the launch directly from Blue Origin's website here.

Related: How Blue Origin's New Shepard Rocket Ride Works (Infographic)

Blue Origin is watching the weather, however, which may not be the best for a launch.

"Current weather conditions aren't as favorable as wed like, but we're continuing to keep an eye on the forecast," Blue Origin wrote in a mission update.

The NS-12 mission will mark Blue Origin's twelfth New Shepard launch and sixth using this particular New Shepard spacecraft. The vehicle made its first flight in December 2017, with two more in 2018 and two more flights this year in January and May, respectively.NS-12 will be Blue Origin's ninth commercial mission using a New Shepard vehicle.

For this flight, New Shepard is carrying a series of science experiments for NASA and other customers, including Blue Origin's 100th payload for customer, the company reported. Some of the science experiments include:

Related: Art in Space Contest: A Conversation with OK Go's Damian Kulash

Packed among the experiments are thousands of postcards with handwritten messages and artwork from children from Blue Origin's nonprofit Club for the Future. Blue Origin launched the club in May to inspire children in space exploration. Its first project is to launch 10,000 postcards from kids containing their visions of humanity's future in space.

The NS-12 launch will be New Shepard's first flight in seven months, during which time Blue Origin has unveiled plans for a crewed lunar lander for NASA and has been working on a passenger version of New Shepard.

"As we move towards verifying New Shepard for human spaceflight we are continuing to mature the safety and reliability of the vehicle," Blue Origin wrote in its mission update.

Email Tariq Malik attmalik@space.comor follow him@tariqjmalik. Follow us@Spacedotcom, Facebook and Instagram.

Original post:

Blue Origin Will Launch (and Land) a Reusable Spacecraft Tuesday. How to Watch - Space.com

Posted in Space Exploration | Comments Off on Blue Origin Will Launch (and Land) a Reusable Spacecraft Tuesday. How to Watch – Space.com

Doug Loverro’s job is to restore American spaceflight to the ISS and the moon | TheHill – The Hill

Posted: at 8:46 pm

Doug Loverro, whose space experience has been primarily military, has taken his place as the NASA Associate Administrator for the Human Exploration and Operations Mission Directorate or HEOMD. Loverro is in charge of sending human beings to the International Space Station as well as the moon and, eventually, to Mars. He has a difficult job ahead of him.

Rocket science has become a byword for complexity for a reason. NASA programs, especially those that involve sending people to destinations in the heavens, have often taken longer than expected and cost more than estimated. Loverros job is to take control of NASAs two human spaceflight programs, Commercial Crew and Artemis, and get them to proceed on time and on budget. The goal is imperative because NASA programs that cost more and take more time become vulnerable to cancellation.

A strange exception to that rule is the Space Launch System, the rocket that is still the center of NASAs plan to return to the moon by 2024. It has proven to be billions over budget and years late. The SLS is now due to launch for the first time in 2021 maybe. The heavy rocket maintains support because it is being built in Alabama, the home state of Sen. Richard ShelbyRichard Craig ShelbyDemocrats open door to repealing ObamaCare tax in spending talks On The Money: Economy adds 266K jobs in strong November | Lawmakers sprint to avoid shutdown | Appropriators to hold crucial talks this weekend | Trump asks Supreme Court to halt Deutsche Bank subpoenas Appropriators face crucial weekend to reach deal MORE, chairman of the Senate Appropriations Committee. Otherwise, NASA might opt to use commercial rockets, such as the Falcon Heavy or the upcoming Starship, to get people back to the moon, saving a lot of money. Loverros toughestjob is to get control of the SLS and make it work, cutting its estimated $2 billion a launch cost.

NASAs workforce is clearly worried about the fate of the Artemis program, astwo of the questions askedduring the town hall in which NASA Administrator Jim BridenstineJames (Jim) Frederick BridenstineWhy Voyager 2's discoveries from interstellar space have scientists excited NASA planned expedition to orbit Pluto won't settle whether it's a planet NASA Administrator: 'I believe Pluto is a planet' MORE introduced Loverro to employees at the space agency suggest.

With new funding stalled, how does Moon2024 differ from the other times Lucy has pulled the football from the workforce?

Lucy and the football is the analogy that Bridenstine has used for the other two times NASA embarked on a human deep space exploration program only to have them cancelled.

Artemis lacks the congressional support required to make it a reality. For how long will NASA pretend otherwise?

Bridenstine took on those two questions by noting that a NASA funding bill has passed out of the Senate. It includes money for a lunar lander, key to getting humans back to the moon by 2024. ButOMB has sent a letterto Shelby arguing that funding for the lunar lander and related technology in the Senate bill is insufficient to achieve the 2024 goal. The House version of the NASA bill has none of the extra funding at all.

The problem is that NASA, like many other parts of the government, has been funded by a continuing resolution since the current fiscal year started. Congress has not been doing its job of getting funding bills passed in a timely manner. If a NASA appropriations bill that contains sufficient money for lunar landers fails to pass by December 20, the goal of landing the first woman and the next man on the moon by 2024 becomes problematic. Bridenstine hassent a letterto Congress imploring it to pass an appropriations bill for NASA that includes lunar lander money.

If Congress does as Bridenstine asks, then the part of NASA that handles human space flight, under Loverros leadership, has to perform. The whole point of sending the first crewed expedition to the moon since 1972 in five years is to concentrate the minds of the people working to make that happen with a deadline. No more delays. Artemis must put people on the moon by 2024.

The strategy is fraught with some degree of risk. One disaster, either during a test or, worse, during an actual mission, would set back the Artemis program by months or even years. A mishap could kill the third effort to send explorers out into deep space entirely.

But the rewards for success will be sweeter than any effort undertaken since the Apollo program. Artemis would prove that the United States and her international and commercial partners can achieve something wonderful, uniting much of the world in not just the exploration of space, but the expansion of human civilization beyond the Earth, to the moon, Mars and beyond.

Mark R. Whittington, who writes frequently about space and politics, has published a political study of space exploration entitledWhy is It So Hard to Go Back to the Moon? as well asThe Moon, Mars and Beyond. He blogs atCurmudgeons Corner.

See original here:

Doug Loverro's job is to restore American spaceflight to the ISS and the moon | TheHill - The Hill

Posted in Space Exploration | Comments Off on Doug Loverro’s job is to restore American spaceflight to the ISS and the moon | TheHill – The Hill

Universities must break interdisciplinary boundaries to help advance space-based technologies (opinion) – Inside Higher Ed

Posted: at 8:46 pm

Space research and space exploration are vital to the future of humankind. The Earth may be resilient -- it's still here long after the dinosaurs, and it shows no scars from the Carrington solar storm that fried telegraph lines in 1859. But society on this planet is facing some unprecedented challenges.

Our dependence on technological systems such as power grids and satellite communication makes us more vulnerable than ever to solar storms. We should not forget that another significant asteroid collision is a matter of when, not if. And planetwide shifts such as climate change, ocean acidification and deforestation raise vital questions about how the Earth can continue to support the growing population.

These are just a few reasons why this is a pivotal time to take major steps in space-based technologies that can help us predict, adapt to, mitigate and protect ourselves from catastrophes or slower-occurring changes. Theyre also good reasons to boost space exploration. To ensure that our species endures, we have a responsibility to develop our society to become a spacefaring one.

Technologically, we're making exciting progress. For example, through the Artemis program, NASA is partnering with private industry and universities to take people back to the moon by 2024 and to Mars by the 2030s. Chinas uncrewed Chang'e program just landed a rover on the far side of the moon, where the Chinese space agency is laying the groundwork for a lunar research station. University, industry and government programs around the world are conducting promising research on ion thrusters for faster interplanetary travel and on small low-cost satellites to explore our solar system and beyond for signs of habitable worlds.

Many of us who work in these areas will be gathering next week for the American Geophysical Union fall meeting. Its the worlds largest Earth and space science conference, and this happens to be its centennial year. As we consider the next hundred years, we must embrace the notion that technology alone wont carry us forward.

We need to design this spacefaring future in context, and universities can play an important leadership role. Thats why, on our campus, weve recently launched the University of Michigan Space Institute. Its purpose is to bring together a strong multidisciplinary community and facilitate entirely new types of collaborations that might not have emerged organically solely within science and engineering communities. Here are some key areas where we believe this approach can pay dividends.

Zoning on the moon. Who owns the moon? How do we determine where we can build a station or mine for water or minerals? While the Outer Space Treaty of 1967 prohibits nations from claiming celestial bodies, it didn't anticipate the privatization of space exploration. Technological advancement and economic shifts have opened many new questions about how nations and companies should operate on outposts beyond the Earth. Researchers in engineering, policy and law will need to work together to develop processes for establishing sustainable settlements.

Tracking and reducing space junk. Artificial satellite explosions and collisions have left behind more than 23,000 pieces of orbital debris that are larger than 10centimeters, as well as more than 100million that are smaller in size. Traveling at more than 15,000 miles per hour, the debris poses threats to the International Space Station and to the future crewed and uncrewed spacecraft crossing their orbits as space travel becomes increasingly commonplace. Today, the international Inter-Agency Space Debris Coordination Committee works to limit the accumulation, and other entities are aiming to improve tracking, but it will take both engineers and space policy makers to solve the problem.

Astronaut health. While we have some knowledge of how long-term weightlessness and living in a space environment affects the human body and mind, theres still so much we dont know about how to stay safe and healthy beyond Earth. To ward off physical and mental health problems, present-day astronauts spend two hours of every eight-hour workday exercising. Kinesiologists, biomedical engineers and other health and space environment experts are needed to develop better and more effective exercise hardware and regimens.

Beyond our brains, muscles and bones are our microbiomes. Trillions of micro-organisms help us digest food and fight disease. Microbiologists, gastroenterologists and environmental engineers will need to determine how the human microbiome will react to environments beyond Earth, and how we can ensure that it thrives.

The list goes on in this area. We need better understandings of radiation exposure, immune function, nutrition and medication stability. Only multidisciplinary teams can tackle such challenges.

Building the space workforce. As we move forward in space research and exploration -- whether were focused on understanding, protecting and improving life on Earth, or expanding human civilization beyond its cradle -- we must inspire and prepare tomorrows workforce to collaborate across traditional boundaries. Were already witnessing the space industry outgrowing dependence on government funds and creating new kinds of jobs. We have a responsibility to introduce students in majors not typically associated with space to the opportunities in the new space economy. And the space industry will benefit from the types of creativity that are new to the sector.

In one step toward building a more diverse future space workforce, several universities, including the University of Michigan, are working with NASA to explore ways to increase the number of women who are principal investigators of large missions. We know that more diverse teams, and more diverse leadership, lead to more innovative ideas.

These and other emerging areas are already demanding collaborations not only between engineers and planetary scientists, who have driven much of space exploration to date, but also among scholars from a wide variety of other disciplines. As we become more ambitious, moving toward self-sustaining colonies and human exploration beyond our home planet, the need for a space research community that represents all areas of human knowledge will only grow.

Originally posted here:

Universities must break interdisciplinary boundaries to help advance space-based technologies (opinion) - Inside Higher Ed

Posted in Space Exploration | Comments Off on Universities must break interdisciplinary boundaries to help advance space-based technologies (opinion) – Inside Higher Ed

A Billion Pixels and the Search for Indias Crashed Moon Lander – The New York Times

Posted: at 8:46 pm

On Nov. 19, Mark S. Robinson opened an email with the subject line, Vikram Landers final resting place (Images with Proof).

Dr. Robinson is the principal investigator for the sharp-eyed camera aboard Lunar Reconnaissance Orbiter, a NASA spacecraft that has been mapping the moon for a decade, and he had received a lot of these emails since an Indian robotic spacecraft disappeared in September as it attempted to land on the moon.

But this one turned out to be the crucial clue in finding the missing lander, and on Monday NASA announced the location of the crash site, with photographs showing the scar on the moonscape.

The accomplishment was a triumph of crowdsourcing in modern space research, and pointed to the value of NASAs openness with its data and operations. Most of the data from American civilian space missions is freely available to both academics and curious amateurs, who were able to scour pictures from a NASA orbiter for signs of the Indian spacecraft.

By contrast, the Indian Space Research Organization, or ISRO, the agency that runs Indias space program, has been parsimonious in revealing what it knew about the fate of Vikram, which was part of Chandrayaan-2, a mission that launched in July. An accompanying orbiter continues to operate around the moon.

If Vikram had successfully made it to the surface, India would have become only the fourth nation to accomplish that feat. But as it descended, something went awry about a mile above the surface. Vikram shifted off course, then went quiet.

A day later, the Indian space agency posted on its website that it had already found the lander: Vikram lander has been located by the orbiter of Chandrayaan-2, but no communication with it yet.

This week, K. Sivan, ISROs director, dismissed the NASA announcement, repeating the claim that Vikrams location had been identified back in September.

However, the Indian space agency never released images or other data to corroborate the statement, nor did it share the coordinates of where Vikram supposedly sat on the moons surface. Only last month did the Indian government admit failure.

Thus, NASA and others looked for Vikram without ISROs help.

The Lunar Reconnaissance Orbiter, which has been methodically mapping the lunar surface for a decade, happened to pass over the Vikram landing site 10 days after its crash.

Dr. Robinson and other camera scientists examined the images, but there were no obvious signs of Vikram. The high-resolution images encompassed about a billion pixels, and the small lander, if it were not hidden in the shadows, would be only a few pixels wide.

There was a huge search area, said Dr. Robinson, a professor of earth and space exploration at Arizona State University. There were five or six people who pitched in and spent a day.

They then returned to their more scientific tasks. It was interesting to do, Dr. Robinson said. There wasnt a lot of scientific value in it.

The orbiter made additional flyovers of the site on Oct. 14, Oct. 15 and Nov. 11, adding more pictures to analyze. The direction the spacecraft was pointing during the Nov. 11 flyover provided better lighting and sharper resolution in the images.

Amateur enthusiasts continued to examine the NASA images, and many claims of Vikram sightings landed in Dr. Robinsons inbox. For most, a quick before-and-after comparison with older photographs showed that the purported impact crater was already a feature of the lunar surface.

While NASAs openness has enabled many more eyes to look over the scientific data, the space agency, with management of its missions spread around the country, is not always diligent in following up on tips.

The November email came from Shanmuga Subramanian, a computer programmer and mechanical engineer living in the south Indian city of Chennai, who had already tried for a month to tell NASA what he thought he had found.

On Oct. 3, Mr. Shanmuga posted on Twitter a tiny white speck that was not visible in an older image, which he said he thought could be Vikram.

Two weeks later, he emailed Noah E. Petro, the project scientist for the Lunar Reconnaissance Orbiter. Five days later he followed up with Dr. Petro and John W. Keller, the deputy project scientist.

But it was only on the third email that he added Dr. Robinson, who forwarded the email to other scientists on the camera team, and they quickly found the crash site.

First, they confirmed that the speck Mr. Shanmuga identified was not there before September but was also visible in the October and November flybys. That ruled out the possibility that the speck was unlucky camera noise.

They then found changes in the brightness of nearby soil caused by bits of the moon flying upward and outward after the impact.

The pattern looked like a splash of water and pointed to where Vikram had slammed into the moon, about 2,500 feet to the southeast of the speck Mr. Shanmuga had seen. The speck turned out to be a piece of Vikram thrown out by the impact, and the scientists spotted other bits of wreckage.

The debris is spread out over a wide area, Dr. Robinson said.

While Indian authorities had initially suggested that the spacecraft could still be operational after a harder-than-designed landing, the images showed Vikram had disintegrated.

It wasnt a hard landing, Dr. Robinson said. It was a crash.

Dr. Robinson said it took a few days to carefully check the analysis before he informed Dr. Petro and Dr. Keller, who in turn told agency officials before Thanksgiving.

A NASA spokesman said that the release of the findings was coordinated with the Indian space agency. But the spokesman said ISRO did not share with NASA the coordinates of where it thought Vikram had ended up.

ISRO did not respond to questions about the claim that the Chandrayaan-2 orbiter had already located the lander in September.

Vikrams inadvertent strike of the moon reveals properties of the soil in the area that scientists would not have seen otherwise.

At the impact point, the surface became darker.

That material is not itself necessarily darker, but rather chunkier and thus casting more shadows, making it appear darker.

That tells something about the cratering mechanics, Dr. Robinson said.

Farther away, lighter-colored material emanates outward. The lighter streaks are not a coating of material thrown out by the impact but rather, the surface was smoothed out, making it more reflective and brighter, Dr. Robinson said. Seeing that could aid future studies of the moons surface.

_____

Hari Kumar contributed reporting from New Delhi.

Here is the original post:

A Billion Pixels and the Search for Indias Crashed Moon Lander - The New York Times

Posted in Space Exploration | Comments Off on A Billion Pixels and the Search for Indias Crashed Moon Lander – The New York Times

To the moon and beyond 5: What space exploration will look like in 2069 – AlterNet

Posted: at 8:46 pm

What will space exploration look like in 2069, a century after the first moon landing? In the fifth and final episode of podcast series, To the moon and beyond, we speak to space scientists about the missions they are dreaming about and planning for the future.

In episode four we heard about plans to establish a base on the moon, potentially mining the lunar surface for minerals and even water that could be turned into rocket fuel. Episode five finds out what happens when this is built. How could a base on the moon help us travel to other parts of the solar system? And where should we go? These are some of the questions we investigate.

We start by finding out why the moon is seen as such a great place from which to launch missions further into space. Ultimately its down to the fact that the hardest part of any space journey is getting a rocket out of Earths gravity.

Alex Ellery, an associate professor of Space Robotics and Space Technology at Carleton University in Canada, explains the different ways its possible to exploit the moons weak gravity. One way is to build a new space station that orbits the moon something that NASA and other international space stations are already planning.

Another way is to build a base on the moons surface using lunar resources. This would be much more ambitious but could ultimately be safer and more sustainable, according to Ellery:

In fact, there is a veritable host of useful stuff on the moon. Iron, aluminium, titanium, silicon, ceramics, reagents, regolith gases of various kinds, and so on, from which it is possible to build an entire infrastructure and to do this robotically. This is how we get the true value of using the moon as a stepping stone towards Mars and elsewhere.

While different people have different views about when well actually make it back to the moon and how, most academics weve spoken to are confident it will happen. Monica Grady, professor of planetary and space sciences at the Open University in the UK, told us where she would go, once a moon base is set up.

For her, its all about travelling to the places where life might be. This could be Mars, Jupiters moon, Europa, or Saturns moon, Enceladus. Europa and Enceladus are unusual in the sense that they have huge internal liquid oceans buried under a thick sheet of ice heated by the gravitational tug of the huge planets they orbit. Grady says:

If I had to really pick one place where I thought there was definitely going to be life a living life I would say Europa. Because Europa has had all those building blocks, its had all the ingredients, its had plenty of time. I imagine that the ocean floor, Europas ocean floor must be a relatively stable environment [for life to develop].

Grady also explains how scientists would go about finding life on another planet when that life is probably not going to be visible aliens walking around above ground. In cold places like Mars, Europa or Enceladus, its more likely to be some sort of microorganism thats not visible to the naked eye and is deep below the surface.

When it comes to finding life elsewhere in the solar system, a big concern is the extent that humans (and robots built by humans) may contaminate alien ecosystems in the process. At the same time, futurists warn that space exploration is a necessary part of human survival. Anders Sandberg, from the Future of Humanity Institute at Oxford University, says the financial cost of space exploration is a worthwhile investment:

In terms of cost effectiveness, space is maybe not in the cheapest way of saving humanity. There are many other important things we can and should do down here. But its not a competition. Its not like the space budget is always eating into the budget of fixing the environment. In fact theyre quite complementary. One of the best ways of monitoring the environment is after all from space.

Sandberg predicts that humans could be living on Mars in 30 to 100 years time. Going beyond our solar system to exoplanets will be much trickier, but this is the next step. And there are scientists working on far flung missions to explore them. Frdric Marin, an astrophysicist at the University of Strasbourg in France, is one. He tells us about ideas for a giant, multi-generational spaceship that could go the distance:

You have to find a way to keep your crew alive for centuries-long missions and part of my work is to investigate if this is feasible in biological terms, in terms of physics, chemistry, food production and energy production, artificial gravity, and so on. So Im currently working on simulations of multi-generational space travels, in which a population will live inside a vessel and procreate, die and the new generation will continue this cycle until the population reaches an exoplanet.

While this kind of mission may get off the ground in the next 50 years, current technology would not see it arrive at the nearest exoplanet until well beyond 2069 into future centuries. So watch this space.

To the moon and beyond is produced by Gemma Ware and Annabel Bligh. Additional reporting by Nehal El-Hadi and Aline Richard. Sound editing by Siva Thangarajah. Thank you to City, University of Londons Department of Journalism for letting us use their studios.

Music: Even when we fall and Western Shores by Philipp Weigl; An Oddly Formal Dance by Blue Dot Sessions; Traverse Night Sky (Non Dreamers) by epitomeZero. All via Free Music Archive.

Take it all in via Zapslat.

Archive footage: Apollo 11 and 17 audio from NASA.

Miriam Frankel, Co-host, To the moon and beyond Podcast, The Conversation and Martin Archer, Space Plasma Physicist, Queen Mary University of London.

It's that time of year when we all give thanks, and we want to extend that thanks to you. All of us at AlterNet are honored by your readership and support. We hope you and your family enjoy a cozy, joyful Thanksgiving.

AlterNets journalists work tirelessly to counter the traditional corporate media narrative. Were here seven days a week, 365 days a year. And were proud to say that weve been bringing you the real, unfiltered news for 20 yearslonger than any other progressive news site on the Internet.

Its through the generosity of our supporters that were able to share with you all the underreported news you need to know. Independent journalism is increasingly imperiled; ads alone cant pay our bills. AlterNet counts on readers like you to support our coverage. Did you enjoy content from David Cay Johnston, Common Dreams, Raw Story and Robert Reich? Opinion from Salon and Jim Hightower? Analysis by The Conversation? Then join the hundreds of readers who have supported AlterNet this year.

Every reader contribution, whatever the amount, makes a tremendous difference. Help ensure AlterNet remains independent long into the future. Support progressive journalism with a one-time contribution to AlterNet, or click here to become a subscriber. Thank you. Click here to donate by check.

Read this article:

To the moon and beyond 5: What space exploration will look like in 2069 - AlterNet

Posted in Space Exploration | Comments Off on To the moon and beyond 5: What space exploration will look like in 2069 – AlterNet

What we now know (and still dont) about life on Mars – WTOP

Posted: at 8:46 pm

The first lander to reach Mars was launched nearly 50 years ago, but much about the red planet remains a mystery. After decades of roving, research and taking illuminating photos, the biggest question remains: Could there be life on Mars?

For decades, space was the final frontier. But as space exploration advanced, scientists increasingly set their sights on a new frontier: Mars.

The first lander to reach Mars was launched nearly 50 years ago, but much about the red planet remains a mystery. Scientists are still attempting to bring samples of Mars red soil back to Earth for further study, and human trips to Mars are still years from being feasible.

After decades of roving, research, and taking illuminating photos of the red planet, the biggest question remains: Could there be life on Mars?

To understand Mars potential for life, we need to go back in time about 3 or 4 billion years.

At that time, Mars and Earth shared many of the same characteristics. The red planet was warm and wet, with a robust atmosphere a far cry from the cold, unforgiving place it is today.

Mars is a planet that started with all the same raw materials as Earth, but along the way has suffered changes, said the European Space Agencys Director of Human and Robotic Exploration, David Parker. You could say its kind of broken down.

Because it was once Earths sister planet, Parker said scientists must ask themselves, When life got going on Earth, did it get going on Mars?

Mars lost its magnetic field, meaning nothing shields the planet (or potential life forms) from radiation. Mars also lost most of its atmosphere another deviation from Earth, where the atmosphere supports life by giving us oxygen and acting as a blanket for the planet.

Mars still has an atmosphere but its very thin and mostly carbon dioxide, so its colder, explained Parker.

That means the average temperature on Mars is -81 degrees Fahrenheit, which makes it an unforgiving planet for most life forms.

But just because Mars is cold and unprotected doesnt mean scientists have ruled out finding life.

In 2018, NASAs Curiosity rover found organic matter on Mars, which could mean that the building blocks for life once existed, or still exist, on Mars.

Organic matter preservation is central to understanding biological potential on Mars through time, wrote NASA researchers in the journal Science. Whether it holds a record of ancient life, is the food for extant life, or has existed in the absence of life, organic matter in martian materials holds chemical clues to planetary conditions and processes.

NASAs rover has also detected methane on Mars, which is considered the most simple organic molecule and could be another chemical clue of life.

With our current measurements, we have no way of telling if the methane source is biology or geology, or even ancient or modern, said Paul Mahaffy, director for NASA Goddards Solar System Exploration Division, in a June press release.

Meanwhile, Europe and Russias ExoMars Trace Gas Orbiter launched in 2016 with the aim of detecting atmospheric gases that could mean theres active, biological life on Mars. The ESAs Parker said that while the Curiosity Rover found methane on parts of the surface, they have not detected methane all across Mars atmosphere.

We have not seen methane globally on Mars, which means methane gas is being produced somehow, Parker said. So is there a methane cycle on Mars?

The discovery of localized methane presents an exciting breakthrough because a common source of methane on Earth is microbial life, according to NASA.

Water and ice on Mars also provide valuable clues that suggest Mars might be more habitable than once thought.

In 2015, NASA scientists thought they found evidence of occasional flowing, salty water flows across the surface of Mars. However, another NASA study in 2017 determined that the flows were most likely grains of sand and dust.

But another breakthrough came in 2018 when the European Space Agency detected a small lake of liquid water beneath the southern polar ice cap of Mars, which the ESA said could further contribute to knowledge about Mars evolution and habitability.

And this year, NASAs Curiosity rover found evidence in Mars Gale Crater that there were once ancient salty lakes on the surface another hint that the red planet could have once supported microbial life.

Water is key because almost everywhere we find water on Earth, we find life, wrote NASA on their website.

Its not just liquid water that space scientists are interested in, but also ice. Parker said the ESA is currently working on research about the ice below Mars surface.

Were getting more and more information about subsurface water ice its further from the poles than we thought, Parker told CNN.

Ice could be further evidence of habitable conditions, and it could also be a valuable resource if space agencies send humans to Mars one day.

To unravel the more complex mysteries surrounding life on Mars, scientists want to collect samples, which would require a round-trip mission.

Because the really powerful scientific instruments are huge, we cant take them and never will be able to take them to Mars. So we need to bring Mars back to Earth, Parker said. By bringing Mars back, we can study it for the next 50 years.

Although no space agency has yet figured out how to launch an unmanned craft from the surface of Mars to get samples back to Earth, one way to bring back Martian samples would be for astronauts and cosmonauts to collect them in person.

But reaching Mars, which at its closest point is still about 33.9 million miles away from Earth, would be a feat of engineering.

Its is an order of magnitude farther away. Youre talking about a 3-year round-trip mission, said NASA spokeswoman Stephanie Schierholz.

If reaching the Moon was one giant leap for mankind, reaching Mars would be more like an Olympic long jump. And unlike traveling to the International Space Station (a mere 250 miles above Earth), traveling to Mars would potentially require a lot more packing.

We send up resupply missions every few months (to the space station), Schierholz said. We dont have the luxury of doing that if we go to Mars.

Despite the challenges, NASA is aiming to send astronauts to Mars by 2035. That means the first life on Mars could be us.

This content was republished with permission from CNN.

Original post:

What we now know (and still dont) about life on Mars - WTOP

Posted in Space Exploration | Comments Off on What we now know (and still dont) about life on Mars – WTOP

All of the Best Moments From the 2019 Kennedy Center Honors – Washingtonian

Posted: at 8:46 pm

The 2019 Kennedy Center Honors this year highlighted the lifetime achievements of five artists:Linda Ronstadt,Sally Field,Michael Tilson Thomas, Earth, Wind & Fire, and Sesame Street, which was the first TV show to receive the award. Politicians, celebs, and Washington socialites all gathered to celebrate.

The star-packed evening began on the red carpet, where Sesame Street puppeteers walked in character, holding aloft the celebrities we really wanted to talk to. Elmo talked about learning the art of the clip-on bowtie and Abby Cadabby joked about having rented her gown. Much of the Sesame Street team was wearing yellow feather pins to commemorate the original puppeteer behind Big Bird and Oscar the Grouch,Caroll Spinney, who died earlier that same day.

When Field walked down the carpet, one reporter asked about the Presidents noted absence (he has skipped all of the Kennedy Centers high-profile events since taking office). Field responded that if he were in attendance, she wouldnt be. One of her guests for the evening was Tom Hanks, who spent a lot of time talking about space exploration and the 50th anniversary of moon landing. He said he could talk about it all night, and after a couple minutes, I really believed him. (But who could get bored with Hanks explaining Apollo missions? Id listen to that podcast.)

The show started with the Eagles Don Henley speaking about Ronstadt. One of our first shows was here in the DC area, he said. Glenn [Frey] and I shared a room at the Georgetown Inn and we played at a little club that existed then called the Cellar Door down on M Street, capacity 163. That was almost 49 years ago. (Ronstadt herself made a little news the night before, at the State Departments intimate dinner for the honorees, when she reportedly said that Secretary of State Mike Pompeo was enabling Donald Trump.)

While Trump was not mentioned specifically at the Honors, the audience made its feelings known. At one point, Kennedy Center chairman David Rubenstein gave a shout out to the many lawmakers and other political figures in the room, including Trump-administration figures Pompeo, Betsy DeVos, andWilbur Ross, to polite applause (I didnt hear any boos). But when Rubenstein mentioned attendeeNancy Pelosi, the Opera House erupted in shouts and cheersa standing ovation for the House Speaker who last week announced that she would move forward with impeachment.

The most awkward part of the night was host (and former honoree)LL Cool J, who seemed to have something to say but was a bit too afraid to say it. Theres so many people here that make important decisions, theres so many people that deal with so many things that so many dont understand, but ultimately we are one, he said. He went on to ramble about unity, but acknowledged the countrys dirty laundry history that were not so proud of. When he tried to sum it up, he said, So I would encourage us to not be arrogant, but to actually embrace the world and make sure that we provide leadership for the world that is so desperately needed. The audience slowly clapped, confused but relieved it was over. Next time, get the man an index card!

The music, of course, did not disappoint. To honor Ronstadt,Carrie Underwood performed Blue Bayou while the all-female mariachi group Flor de Toloache beautifully highlighted the singers Mexican roots with harmonies that could make you (cough, me) cry. Sesame Street puppets along with country artist Thomas Rhett performed the classic Sing, and Michael Tilson Thomas was honored with some killer Stravinsky, as well asAudra McDonald singing Leonard Bernsteins Somewhere.

The biggest boogie came in the final tribute toPhilip Bailey, Verdine White, and Ralph Johnson, the remaining original members of Earth, Wind & Fire, with performances by John Legend, Harriet actor Cynthia Erivo, Ne-Yo, and the Jonas Brothers. As all of the vocalists came together for September, everyone in the crowd was up on their feet dancing.

Join the conversation!

Web Producer/Writer

Rosa joined Washingtonian as an editorial fellow in fall 2016. She likes to write about race, culture, music, and politics. She graduated from Mount Holyoke College with a degree in International Relations and French with a minor in Journalism. When she can, she performs with her familys Puerto Rican folkloric music ensemble based in Jersey City. She lives in Adams Morgan.

Continue reading here:

All of the Best Moments From the 2019 Kennedy Center Honors - Washingtonian

Posted in Space Exploration | Comments Off on All of the Best Moments From the 2019 Kennedy Center Honors – Washingtonian

This Phoenix engineer will have her own device in space in 2021 – FOX 10 News Phoenix

Posted: at 8:46 pm

This Phoenix engineer will have her own device in space in 2021

A 26-year-old engineer from Arizona, working in Phoenix, invented a system that will allow space explorers to stay in the solar system for at least 2 years. The device reduces CO2 in the International Space System.

PHOENIX - An engineer from the valley is helping astronauts breathein space through her own invention.

Phoebe Henson, 26, created a device that cuts down on carbon dioxide in the International Space System. She'sbeen at Honeywell for just 4 years, but she'salready leading engineers that are much older and who've been doing it much longer.

She works as an advanced systems engineer, and herproject will allowastronauts to live in space for twoyears.Some say this will change space exploration as we know it.

The system will be used to help astronauts breathe on missions to the moon and Mars, and even out in deep space.

Henson says it's the most efficient, safest, lightestand smallest comparedto any other system on the market.

Leading a team of engineers at Honeywell, which has a partnership with NASA, a CO2 removal system for the international space station was created. The deviceabsorbs CO2 from the air, captures it and turns it into oxygen.

She says her system maintains a CO2 concentration half the levels on the space station currently.

"This problem is a critical one to solve if we are going to make long term space habitation a reality," Henson says.

This is important because astronauts experience negative healtheffects including headaches dizziness and fatigue.

At a young age, Henson says she wanted to become an engineer. She studied at Arizona State University and tookher first job out of college at Honeywell.

She's proud to work for a company that's given her opportunities to grow and change the way we study space.

"It is really exciting," she said."It is always a dream of mine to put something into space."

Henson's system will be put to use in the space station in 2021.

Another bit of exciting news for Henson: She was just namedas one of Forbes' "30 Under 30" recipients for her groundbreaking work.

Link:

This Phoenix engineer will have her own device in space in 2021 - FOX 10 News Phoenix

Posted in Space Exploration | Comments Off on This Phoenix engineer will have her own device in space in 2021 – FOX 10 News Phoenix