Life Expectancy – Our World in Data

Posted: October 13, 2022 at 12:43 pm

Given that life expectancy at birth is highly sensitive to the rate of death in the first few years of life, it is common to report life expectancy figures at different ages, both under the period and cohort approaches. For example, the UN estimates that the (period) global life expectancy at age 10 in 2005 was 63.6 years. This means that the group of 10-year-old children alive around the world in 2005 could expect to live another 63.6 years (i.e. until the age of 73.6), provided that mortality patterns observed in 2005 remained constant throughout their lifetime.

Finally, another point to bear in mind is that period and cohort life expectancy estimates are statistical measures, and they do not take into account any person-specific factors such as lifestyle choices. Clearly, the length of life for an average person is not very informative about the predicted length of life for a person living a particularly unhealthy lifestyle.

In practical terms, estimating life expectancy entails predicting the probability of surviving successive years of life, based on observed age-specific mortality rates. How is this actually done?

Age-specific mortality rates are usually estimated by counting (or projecting) the number of age-specific deaths in a time interval (e.g. the number of people aged 10-15 who died in the year 2005), and dividing by the total observed (or projected) population alive at a given point within that interval (e.g. the number of people aged 10-15 alive on 1 July 2015).

To ensure that the resulting estimates of the probabilities of death within each age interval are smooth across the lifetime, it is common to use mathematical formulas, to model how the force of mortality changes within and across age intervals. Specifically, it is often assumed that the proportion of people dying in an age interval starting in year and ending in year corresponds to , where is the age-specific mortality rate as measured in the middle of that interval (a term often referred to as the central death rate for the age interval).16

Once we have estimates of the fraction of people dying across age intervals, it is simple to calculate a life table showing the evolving probabilities of survival and the corresponding life expectancies by age. Here is an example of a life table from the US, and this tutorial from MEASURE Evaluation explains how life tables are constructed, step by step (see Section 3.2 The Fergany Method).

Period life expectancy figures can be obtained from period life tables (i.e. life tables that rely on age-specific mortality rates observed from deaths among individuals of different age groups at a fixed point in time). And similarly, cohort life expectancy figures can be obtained from cohort life tables (i.e. life tables that rely on age-specific mortality rates observed from tracking and forecasting the death and survival of a group of people as they become older).

For some countries and for some time intervals, it is only possible to reconstruct life tables from either period or cohort mortality data. As a consequence, in some instancesfor example in obtaining historical estimates of life expectancy across world regionsit is necessary to combine period and cohort data. In these cases, the resulting life expectancy estimates cannot be simply classified into the period or cohort categories.

Life tables are not just instrumental to the production of life expectancy figures (as noted above), they also provide many other perspectives on the mortality of a population. For example, they allow for the production of population survival curves, which show the share of people who are expected to survive various successive ages. This chart provides an example, plotting survival curves for individuals born at different points in time, using cohort life tables from England and Wales.

At any age level in the horizontal axis, the curves in this visualization mark the estimated proportion of individuals who are expected to survive that age. As we can see, less than half of the people born in 1851 in England and Wales made it past their 50th birthday. In contrast, more than 95% of the people born in England and Wales today can expect to live longer than 50 years.

Since life expectancy estimates only describe averages, these indicators are complementary, and help us understand how health is distributed across time and space. In our entry on Life Expectancy you can read more about related complementary indicators, such as the median age of a population.

See the original post:
Life Expectancy - Our World in Data

Related Posts