DNA metabarcoding focusing on the plankton community: an effective approach to reconstruct the paleo-environment … – Nature.com

Posted: December 14, 2023 at 3:37 am

Chung, C. C., Gong, G. C., Lin, Y. C. & Hsu, C. W. Differences in the composition of abundant marine picoeukaryotes in the marginal sea derived from flooding. Front. Mar. Sci. 9, 853847 (2022).

Article Google Scholar

Armbrecht, L. et al. Ancient DNA and microfossils reveal dynamics of three harmful dinoflagellate species off Eastern Tasmania, Australia, over the last 9,000 years. BioRxiv https://doi.org/10.1101/2021.02.18.431790 (2021).

Article Google Scholar

Tamura, Y., Tango, M., Inouchi, Y. & Tokuoka, T. Seventeenth century environmental change from brackish to fresh water conditions in Lake ShinjiCT image photographic, sedimentologic and CNS elemental evidence. Laguna 3, 4956 (1996).

Google Scholar

Takayasu, K. Formation of Nakaumi Lagoon, Lake Shinji and Izumo Plain. In History of the Matsue city, Historical materials 1 Natural environment (ed. Matsue city) 218219 (Matsue city, Matsue, 2019).

Seto, K., Nakatake, M., Sato, T. & Katsuki, K. East diversion event of the Hii River and its influence on sedimentary environments in Lake Shinji. Quat. Res. 45, 375390 (2006).

Article Google Scholar

Uye, S., Shimazu, T., Yamamuro, M., Ishitobi, Y. & Kamiya, H. Geographical and seasonal variations in mesozooplankton abundance and biomass in relation to environmental parameters in Lake Shinji-Ohashi RiverLake Nakaumi brackish-water system, Japan. J. Mar. Sys. 26, 193207 (2000).

Article Google Scholar

Ishida, H. & Shigenaka, Y. Investigation of the protozoan distribution in the Shinji Lake. Bull. Fac. Life Env. Sci. Shimane Univ. 6, 15 (2001).

Google Scholar

Nojiri, Y., Kato, T. & Ohtani, S. Results of the phytoplankton surveys in Lake Shinji and Nakaumi Lagoon (fiscal year 2018). Rep. Shimane Pref. Inst. Pub. Heal. Env. Sci. 60, 6379 (2018).

Google Scholar

Nakamura, Y. et al. Molecular phylogeny of the widely distributed marine protists, Phaeodaria (Rhizaria, Cercozoa). Protist 166, 363373 (2015).

Article CAS PubMed Google Scholar

Toju, H. Exploring Ecosystems with DNA Information-Environmental DNA, Large-Scale Community Analysis, and Ecological Networks (Kyoritsu Press, 2016).

Google Scholar

Nakamura, Y. et al. Feeding ecology of a mysid species, Neomysis awatschensisCombining approach with microscopy, stable isotope analysis and DNA metabarcoding. Plankton Benthos Res. 15, 4454 (2020).

Article Google Scholar

Amaral-Zettler, L. A., McCliment, E. A., Ducklow, H. W. & Huse, S. M. A method for studying protistan diversity using massively parallel sequencing of V9 hypervariable regions of small-subunit ribosomal RNA genes. PLoS One 4, e6372. https://doi.org/10.1371/journal.pone.0006372 (2009).

Article ADS CAS PubMed PubMed Central Google Scholar

Tanabe, A. S. & Toju, H. Two new computational methods for universal DNA barcoding: A benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants. PLoS One 8, e76910. https://doi.org/10.1371/journal.pone.0076910 (2014).

Article ADS CAS Google Scholar

Tanabe, A.S. Metabarcoding and DNA barcoding for Ecologists. Life is fifthdimension. http://www.fifthdimension.jp (2018).

Adl, S. M. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Euk. Microbiol. 66, 4119 (2019).

Article PubMed Google Scholar

Nakamura, Y. et al. Current status on the taxonomy and ecology of plankton. Bull. Plankton Soc. Jap. 66, 2240 (2019).

Google Scholar

Mackereth, F. J. H. A portable core sampler for lake deposits. Limn. Ocean. 3, 181191 (1958).

Article Google Scholar

Nara, F. W. et al. Late-Holocene salinity changes in Lake Ogawara, Pacific coast of northeast Japan, related to sea-level fall inferred from sedimentary geochemical signatures. Palaeogeogr. Palaeoclimat. Palaeoecol. 592, 110907 (2022).

Article Google Scholar

Kjaer, K. H. et al. A 2-million-year-old ecosystem in Greenland uncovered by environmental DNA. Nature 612, 283291 (2022).

Article ADS CAS PubMed PubMed Central Google Scholar

Takahashi, K. Opal particle flux in the subarctic Pacific and Bering Sea and sidocoenosis preservation hypothesis. In Global Fluxes of Carbon and its Related Substances in the Coastal Sea-Ocean-Atmosphere System (eds Tsunogai, S. et al.) 458466 (M and J International, 1995).

Google Scholar

Ragueneau, O. et al. A review of the Si cycle in the modern ocean: Recent progress and missing gaps in the application of biogenic opal as a paleoproductivity proxy: Glob. Planet. Chan. 26, 317365 (2000).

Article Google Scholar

Parducci, L. et al. Ancient plant DNA in lake sediments. New Phytol. 214, 924942 (2017).

Article CAS PubMed Google Scholar

Kisand, V. et al. From microbial eukaryotes to metazoan vertebrates: Wide spectrum paleo-diversity in sedimentary ancient DNA over the last ~14,500 years. Geobiology 16, 628639 (2018).

Article CAS PubMed Google Scholar

Sogawa, S. et al. DNA metabarcoding reveals vertical variation and hidden diversity of Alveolata and Rhizaria communities in the western North Pacific. Deep Sea Res. I 183, 103765 (2022).

Article CAS Google Scholar

Matsuoka, K., Yurimoto, T., Chong, V. C. & Man, A. Marine palynomorphs dominated by heterotrophic organism remains in the tropical coastal shallow-water sediment; the case of Selangor coast and the estuary of the Manjung River in Malaysia. Paleontol. Res. 21, 1426 (2017).

Article Google Scholar

Thomsen, H. A. Ultrastructural studies of the flagellate and cyst stages of Pseudopedinella tricostata (Pedinellales, Chrysophyceae). Br. Phycol. J. 23, 116 (1988).

Article Google Scholar

Tokuoka, T., Onishi, I., Takayasu, K. & Mitsunashi, T. Natural history and environmental changes of Lakes Nakaumi and Shinji. Mem. Geol. Soc. Jpn. 36, 1534 (1990).

Google Scholar

Read this article:
DNA metabarcoding focusing on the plankton community: an effective approach to reconstruct the paleo-environment ... - Nature.com

Related Posts