The Singularity Is Near – Wikipedia, the free encyclopedia

Posted: July 21, 2015 at 1:01 pm

The Singularity Is Near: When Humans Transcend Biology is a 2005 non-fiction book about artificial intelligence and the future of humanity by inventor and futurist Ray Kurzweil.

The book builds on the ideas introduced in Kurzweil's previous books, The Age of Intelligent Machines (1990) and The Age of Spiritual Machines (1999). This time, however, Kurzweil embraces the term the Singularity, which was popularized by Vernor Vinge in his 1993 essay "The Coming Technological Singularity" more than a decade earlier. The first known use of the term in this context was made in 1958 by the Hungarian born mathematician and physicist John von Neumann.

Kurzweil describes his law of accelerating returns which predicts an exponential increase in technologies like computers, genetics, nanotechnology, robotics and artificial intelligence. He says this will lead to a technological singularity in the year 2045, a point where progress is so rapid it outstrips humans' ability to comprehend it.

Kurzweil predicts the technological advances will irreversibly transform people as they augment their minds and bodies with genetic alterations, nanotechnology, and artificial intelligence. Once the Singularity has been reached, Kurzweil says that machine intelligence will be infinitely more powerful than all human intelligence combined. Afterwards he predicts intelligence will radiate outward from the planet until it saturates the universe.

Kurzweil characterizes evolution throughout all time as progressing through six epochs, each one building on the one before. He says the four epochs which have occurred so far are Physics and Chemistry, Biology and DNA, Brains, and Technology. Kurzweil predicts the Singularity will coincide with the next epoch, The Merger of Human Technology with Human Intelligence. After the Singularity he says the final epoch will occur, The Universe Wakes Up.

Kurzweil explains that evolutionary progress is exponential because of positive feedback; the results of one stage are used to create the next stage. Exponential growth is deceptive, nearly flat at first until it hits what Kurzweil calls "the knee in the curve" then rises almost vertically. In fact Kurzweil believes evolutionary progress is super-exponential because more resources are deployed to the winning process. As an example of super-exponential growth Kurzweil cites the computer chip business. The overall budget for the whole industry increases over time, since the fruits of exponential growth make it an attractive investment; meanwhile the additional budget fuels more innovation which makes the industry grow even faster, effectively an example of "double" exponential growth.

Kurzweil says evolutionary progress looks smooth, but that really it is divided into paradigms, specific methods of solving problems. Each paradigm starts with slow growth, builds to rapid growth, and then levels off. As one paradigm levels off, pressure builds to find or develop a new paradigm. So what looks like a single smooth curve is really series of smaller S curves. For example Kurzweil notes that when vacuum tubes stopped getting faster and cheaper transistors became popular and continued the overall exponential growth.

Kurzweil calls this exponential growth the law of accelerating returns, and he believes it applies to many human-created technologies such as computer memory, transistors, microprocessors, DNA sequencing, magnetic storage, the number of Internet hosts, Internet traffic, decrease in device size, and nanotech citations and patents. Kurzweil cites two historical examples of exponential growth: the Human Genome Project and the growth of the Internet. Kurzweil claims the whole world economy is in fact growing exponentially, although short term booms and busts tend to hide this trend.

Moore's Law predicts the capacity of integrated circuits grows exponentially, but not indefinitely. Kurzweil feels the increase in the capacity of integrated circuits will probably slow by the year 2020. He feels confident that a new paradigm will debut at that point to carry on the exponential growth predicted by his law of accelerating returns. Kurzweil describes four paradigms of computing that came before integrated circuits: electromechanical, relay, vacuum tube, and transistors. What technology will follow integrated circuits, to serve as the fifth paradigm, is unknown, but Kurzweil believes nanotubes are the most likely alternative among a number of possibilities:

nanotubes and nanotube circuitry, molecular computing, self-assembly in nanotube circuits, biological systems emulating circuit assembly, computing with DNA, spintronics (computing with the spin of electrons), computing with light, and quantum computing.

Continued here:

The Singularity Is Near - Wikipedia, the free encyclopedia

Related Posts