High-throughput SNPs dataset reveal restricted population connectivity of marine gastropod within the narrow distribution range of peripheral oceanic…

Posted: February 9, 2022 at 1:39 am

Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443466 (2009).

PubMed Google Scholar

Hellberg, M. E. Gene flow and isolation among populations of marine animals. Annu. Rev. Ecol. Evol. Syst. 40, 291310 (2009).

Google Scholar

Selkoe, K. A. et al. Taking the chaos out of genetic patchiness: Seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mol. Ecol. 19, 37083726 (2010).

PubMed Google Scholar

Guo, X. et al. Phylogeography of the rock shell Thais clavigera (Mollusca): Evidence for long-distance dispersal in the Northwestern Pacific. PLoS ONE 10, e0129715 (2015).

PubMed PubMed Central Google Scholar

Hoffman, J. I., Clarke, A., Linse, K. & Peck, L. S. Effects of brooding and broadcasting reproductive modes on the population genetic structure of two Antarctic gastropod molluscs. Mar. Biol. 158, 287296 (2011).

Google Scholar

Modica, M. V., Russini, V., Fassio, G. & Oliverio, M. Do larval types affect genetic connectivity at sea? Testing hypothesis in two sibling marine gastropods with contrasting larval development. Mar. Environ. Res. 127, 92101 (2017).

CAS PubMed Google Scholar

Je Lee, H. & Boulding, E. G. Spatial and temporal population genetic structure of four northeastern Pacific littorinid gastropods: The effect of mode of larval development on variation at one mitochondrial and two nuclear DNA markers. Mol. Ecol. 18, 21652184 (2009).

Google Scholar

Barbosa, S. S., Klanten, S. O., Puritz, J. B., Toonen, R. J. & Byrne, M. Very fine-scale population genetic structure of sympatric asterinid sea stars with benthic and pelagic larvae: Influence of mating system and dispersal potential. Biol. J. Linn. Soc. 108, 821833 (2013).

Google Scholar

Shanks, A. L. Pelagic larval duration and dispersal distance revisited. Biol. Bull. 216, 373385 (2009).

PubMed Google Scholar

Riginos, C., Buckley, Y. M., Blomberg, S. P. & Treml, E. A. Dispersal capacity predicts both population genetic structure and species richness in reef fishes. Am. Nat. 184, 5264 (2014).

PubMed Google Scholar

Wort, E. J. G. et al. Contrasting genetic structure of sympatric congeneric gastropods: Do differences in habitat preference, abundance and distribution matter?. J. Biogeogr. 46, 369380 (2019).

Google Scholar

Ayre, D. J., Minchinton, T. E. & Perrin, C. Does life history predict past and current connectivity for rocky intertidal invertebrates across a marine biogeographic barrier?. Mol. Ecol. 18, 18871903 (2009).

CAS PubMed Google Scholar

Meyer, C. P., Geller, J. B. & Paulay, G. Fine scale endemism on coral reefs: Archipelagic differentiation in turbinid gastropods. Evolution (N. Y.) 59, 113125 (2005).

Google Scholar

White, C. et al. Ocean currents help explain population genetic structure. Proc. R. Soc. B Biol. Sci. 277, 16851694 (2010).

Google Scholar

Marko, P. B. Whats larvae got to do with it? Disparate patterns of post-glacial population structure in two benthic marine gastropods with identical dispersal potential. Mol. Ecol. 13, 597611 (2004).

CAS PubMed Google Scholar

Edmands, S. Phylogeography of the intertidal copepod Tigriopus californicus reveals substantially reduced population differentiation at northern latitudes. Mol. Ecol. 10, 17431750 (2001).

CAS PubMed Google Scholar

Ni, G., Li, Q., Kong, L. & Yu, H. Comparative phylogeography in marginal seas of the northwestern Pacific. Mol. Ecol. 23, 534548 (2014).

PubMed Google Scholar

Vendrami, D. L. J. et al. RAD sequencing sheds new light on the genetic structure and local adaptation of European scallops and resolves their demographic histories. Sci. Rep. 9, 113 (2019).

CAS Google Scholar

Sandoval-Castillo, J., Robinson, N. A., Hart, A. M., Strain, L. W. S. & Beheregaray, L. B. Seascape genomics reveals adaptive divergence in a connected and commercially important mollusc, the greenlip abalone (Haliotis laevigata), along a longitudinal environmental gradient. Mol. Ecol. 27, 16031620 (2018).

PubMed Google Scholar

Hirai, J. Insights into reproductive isolation within the pelagic copepod Pleuromamma abdominalis with high genetic diversity using genome-wide SNP data. Mar. Biol. 167, 16 (2020).

CAS Google Scholar

Hosoya, S. et al. Random PCR-based genotyping by sequencing technology GRAS-Di (genotyping by random amplicon sequencing, direct) reveals genetic structure of mangrove fishes. Mol. Ecol. Resour. 19, 11531163 (2019).

CAS PubMed Google Scholar

Losos, J. B. & Ricklefs, R. E. Adaptation and diversification on islands. Nature https://doi.org/10.1038/nature07893 (2009).

Article PubMed Google Scholar

Savolainen, V. et al. Sympatric speciation in palms on an oceanic island. Nature https://doi.org/10.1038/nature04566 (2006).

Article PubMed Google Scholar

Parent, C. E. & Crespi, B. J. Ecological opportunity in adaptive radiation of Galpagos endemic land snails. Am. Nat. https://doi.org/10.1086/646604 (2009).

Article PubMed Google Scholar

Chiba, S. & Cowie, R. H. Evolution and extinction of land snails on oceanic islands. Annu. Rev. Ecol. Evol. Syst. 47, 123141 (2016).

Google Scholar

Grant, P. R. & Grant, B. R. Unpredictable evolution in a 30-year study of Darwins finches. Science (80-.) 296, 707711 (2002).

CAS ADS Google Scholar

Scheltema, R. The relevance of passive dispersal for the biogeography of Caribbean mollusks. Am. Malacol. Bull. 11, 95115 (1995).

Google Scholar

Bernardi, G. et al. Darwins fishes: Phylogeography of Galpagos Islands reef fishes. Bull. Mar. Sci. 90, 533549 (2014).

Google Scholar

Eble, J. A., Toonen, R. J. & Bowen, B. W. Endemism and dispersal: Comparative phylogeography of three surgeonfishes across the Hawaiian Archipelago. Mar. Biol. 156, 689698 (2009).

Google Scholar

Tomokuni, M. M. Aquatic and Semiaquatic Insects of the Bonin Islands (including the Volcano Islands). Mem. Natl. Sci. Museum (1978).

Sugawara, T., Watanabe, K., Kato, H. & Yasuda, K. Dioecy in Wikstroemia pseudoretusa (Thymelaeaceae) endemic to the Bonin (Ogasawara) islands. APG Acta Phytotaxon. Geobot. https://doi.org/10.18942/apg.KJ00004622804 (2004).

Article Google Scholar

Chiba, S. Species diversity and conservation of Mandarina, an endemic land snail of the Ogasawara Islands. In Restoring the Oceanic Island Ecosystem: Impact and Management of Invasive Alien Species in the Bonin Islands (eds Kawakami, K. & Okochi, I.) 117125 (Springer, 2010). https://doi.org/10.1007/978-4-431-53859-2_18.

Chapter Google Scholar

Mukai, T., Nakamura, S., Suzuki, T. & Nishida, M. Mitochondrial DNA divergence in yoshinobori gobies (Rhinogobius species complex) between the Bonin Islands and the Japan-Ryukyu Archipelago. Ichthyol. Res. 52, 410413 (2005).

Google Scholar

Shih, H. T., Komai, T. & Liu, M. Y. A new species of fiddler crab from the Ogasawara (Bonin) Islands, Japan, separated from the widely-distributed sister species Uca (Paraleptuca) crassipes (White, 1847) (Crustacea: Decapoda: Brachyura: Ocypodidae). Zootaxa 3746, 175193 (2013).

PubMed Google Scholar

Yamazaki, D. et al. Genetic diversification of intertidal gastropoda in an archipelago: The effects of islands, oceanic currents, and ecology. Mar. Biol. https://doi.org/10.1007/s00227-017-3207-9 (2017).

Article Google Scholar

Nakano, T., Takahashi, K. & Ozawa, T. Description of an endangered new species of Lunella (Gastropoda:Turbinidae) from the Ogasawara Islands, Japan. Venus J. Malacol. Soc. Japan 66, 110 (2007).

Google Scholar

Nakano, T., Yazaki, I., Kurokawa, M., Yamaguchi, K. & Kuwasawa, K. The origin of the endemic patellogastropod limpets of the Ogasawara Islands in the northwestern Pacific. J. Molluscan Stud. 75, 8790 (2009).

Google Scholar

Gonzlez-Wevar, C. A., Nakano, T., Palma, A. & Poulin, E. Biogeography in cellana (patellogastropoda, nacellidae) with special emphasis on the relationships of southern hemisphere oceanic island species. PLoS ONE 12, 116 (2017).

Google Scholar

Tenggardjaja, K. A., Bowen, B. W. & Bernardi, G. Reef fish dispersal in the Hawaiian Archipelago: Comparative phylogeography of three endemic damselfishes. J. Mar. Sci. https://doi.org/10.1155/2016/3251814 (2016).

Article Google Scholar

Tenggardjaja, K. A., Bowen, B. W. & Bernardi, G. Comparative phylogeography of widespread and endemic damselfishes in the Hawaiian Archipelago. Mar. Biol. 165, 121 (2018).

Google Scholar

Kurozumi, T. & Asakura, A. Marine molluscs from the northern Mariana Islands, Micronesia. Nat. Hist. Res. Spec. Issue 1, 121168 (1994).

Google Scholar

Nakano, D. & Makoto, N. Age structure and growth in a population of Monodonta labio (Linnaeus) at Shima Peninsula, Japan. Venus J. Malacol. Soc. Japan 40, 3440 (1981).

Google Scholar

Hashino, T. & Tomiyama, K. Life history of Monodonta labio confusa Tapprone-Canefri, 1874 in Kagoshima Bay, Kyushu, Japan and age estimation based on annual ring analysis of shell. Nat. Kagoshima 39, 143155 (2013).

Google Scholar

Yoh, A. & Sakurai, I. Reproductive cycle and food habits of the herbivorous snail Monodonta confusa off the coast of Suttsu Bay in southwestern Hokkaido, Japan. Proc. Sch. Biol. Sci. Tokai Univ. 6, 1723 (2017).

Google Scholar

Sasaki, R. Larval identification and occurrence of ezo abalone, Haliotis discus hannai, in the adjacent waters of Kesennuma Bay, Miyagi Prefecture. Suisan Zoushoku 32, 199206 (1985).

Google Scholar

Yamazaki, D., Miura, O., Uchida, S., Ikeda, M. & Chiba, S. Comparative seascape genetics of co-distributed intertidal snails Monodonta spp. in the Japanese and Ryukyu archipelagoes. Mar. Ecol. Prog. Ser. 657, 135146 (2020).

ADS Google Scholar

Ballard, J. W. O. & Whitlock, M. C. The incomplete natural history of mitochondria. Mol. Ecol. 13, 729744 (2004).

PubMed Google Scholar

Parham, J. F. et al. Genetic introgression and hybridization in Antillean freshwater turtles (Trachemys) revealed by coalescent analyses of mitochondrial and cloned nuclear markers. Mol. Phylogenet. Evol. 67, 176187 (2013).

CAS PubMed Google Scholar

Hirano, T. et al. Enigmatic incongruence between mtDNA and nDNA revealed by multi-locus phylogenomic analyses in freshwater snails. Sci. Rep. 9, 6223 (2019).

PubMed PubMed Central ADS Google Scholar

Funk, D. J. & Omland, K. E. Species-level paraphyly and polyphyly: Frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 34, 397423 (2003).

Google Scholar

Toews, D. P. L. & Brelsford, A. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21, 39073930 (2012).

Link:

High-throughput SNPs dataset reveal restricted population connectivity of marine gastropod within the narrow distribution range of peripheral oceanic...

Related Posts