Unbreakable quantum entanglement – Phys.Org

Posted: May 11, 2017 at 1:24 pm

May 10, 2017 The rotating centrifuge in which the entangled photon source was accelerated to 30 times its weight. Credit: IQOQI/AW

Einstein's "spooky action at a distance" persists even at high accelerations, researchers of the Austrian Academy of Sciences and the University of Vienna were able to show in a new experiment. A source of entangled photon pairs was exposed to massive stress: The photons' entanglement survived the drop in a fall tower as well as 30 times the Earth's gravitational acceleration in a centrifuge. This was reported in the most recent issue of Nature Communications. The experiment helps deepen our understanding of quantum mechanics and at the same time gives valuable results for quantum experiments in space.

Einstein's theory of relativity and the theory of quantum mechanics are two important pillars of modern physics. On the way of achieving a "Theory of Everything," these two theories have to be unified. This has not been achieved as of today, since phenomena of both theories can hardly be observed simultaneously. A typical example of a quantum mechanical phenomenon is entanglement: This means that the measurement of one of a pair of light particles, so-called photons, defines the state of the other particle immediately, regardless of their separation. High accelerations on the other hand can best be described by the theory of relativity. Now for the first time, quantum technologies enable us to observe these phenomena at once: The stability of quantum mechanical entanglement of photon pairs can be tested while the photons undergo relativistically relevant acceleration.

Quantum entanglement proves to be highly robust

Researchers of the Viennese Institute of Quantum Optics and Quantum Information (IQOQI) of the Austrian Academy of Sciences (OeAW) and of the University of Vienna have now investigated this area of research experimentally for the first time. They could show in their experiment that entanglement between photons survives even when the source of entangled photon pairs including the detectors are experiencing free fall or are being accelerated with 30g, that is, 30 times the Earth's acceleration. Doing so, the Viennese researchers have experimentally established an upper bound below which there is no degradation of entanglement quality.

Important for quantum experiments with satellites

"These experiments shall help to unify the theories of quantum mechanics and relativity," says Rupert Ursin, group leader at IQOQI Vienna. The sturdiness of quantum entanglement even for strongly accelerated systems is crucial also for quantum experiments in space. "If entanglement were too fragile, quantum experiments could not be carried out on a satellite or an accelerated spacecraft or only in a very limited range," exemplifies Matthias Fink, first author of the publication.

12 meters falling height and 30g

In order to prove the robustness of quantum entanglement, quantum physicist Matthias Fink and his colleagues mounted a source of polarization-entangled photon pairs in a crate which was firstly dropped from a height of 12 meters to achieve zero gravity during the fall. In the second part of the experiment, the crate was fixed to the arm of a centrifuge and then accelerated up to 30g. As a comparison for the reader: A roller coaster ride exerts maximally 6g on the passengers.

Detectors mounted on the crate monitored the photons' entanglement during the experiments. Analysing the data, the physicists could calculate an upper bound of disadvantageous effects of acceleration on entanglement. The data showed that entanglement quality did not significantly exceed the expected contribution of background noise. "Our next challenge will be to stabilize the setup even more in order for it to withstand much higher accelerations. This would enhance the explanatory power of the experiment even further," says Matthias Fink.

Explore further: Researchers demonstrated violation of Bell's inequality on frequency-bin entangled photon pairs

More information: Experimental test of photonic entanglement in accelerated reference frames, Nature Communications, 2017. DOI: 10.1038/NCOMMS15304

Quantum entanglement, one of the most intriguing features of multi-particle quantum systems, has become a fundamental building block in both quantum information processing and quantum computation. If two particles are entangled, ...

Scientists have discovered a new mechanism involved in the creation of paired light particles, which could have significant impact on the study of quantum physics.

Researchers at the Institute of Quantum Optics and Quantum Information, the University of Vienna, and the Universitat Autonoma de Barcelona have achieved a new milestone in quantum physics: they were able to entangle three ...

Albert Einstein called quantum entanglementtwo particles in different locations, even on other sides of the universe, influencing each other"spooky action at a distance."

Physicists of the group of Prof. Anton Zeilinger at the Institute for Quantum Optics and Quantum Information (IQOQI), the University of Vienna, and the Vienna Center for Quantum Science and Technology (VCQ) have, for the ...

(Phys.org)"Spooky action at a distance," Einstein's famous, dismissive characterization of quantum entanglement, has long been established as a physical phenomenon, and researchers are keen to develop practical applications ...

Researchers have uncovered the exact mechanism that causes new solar cells to break down in air, paving the way for a solution.

More than 400 years ago, renowned mathematician and scientist Johannes Kepler speculated about the creation of one of nature's most angelic and unique shapes: the six-sided snowflake. Although atoms would not be discovered ...

(Phys.org)Physicists have theoretically shown that a superconducting current of electrons can be induced to flow by a new kind of transport mechanism: the potential flow of information. This unusual phenomenon is predicted ...

National Institute of Standards and Technology (NIST) physicists have solved the seemingly intractablepuzzle of how to control the quantum properties of individual charged molecules, or molecular ions. Thesolution is to use ...

Einstein's "spooky action at a distance" persists even at high accelerations, researchers of the Austrian Academy of Sciences and the University of Vienna were able to show in a new experiment. A source of entangled photon ...

An experiment at the cutting edge of condensed matter physics and materials science has revealed that the dream of more efficient energy usage can become reality. An international collaboration led by the scientists of Italy's ...

Adjust slider to filter visible comments by rank

Display comments: newest first

It's way past time for sci-writers to stop gushing, "Spooky action, blah, blah". No one not living on Mars is not sick of this tired put-down of entanglement, not unlike the despised `god particle' moniker of the Higgs. AE did not believe in god or spooks, & used those terms colloquially. But now the sci-writers, lacking any creativity for modern descriptions, all parrot AE.

What? Is this supposed to mean the centrifuge produced 30g?

The use of intriguing and interesting language to inspire interest in the subject at hand is a tool used by all journalists. Spooky action at a distance has been referred to as often as it has because it is effective at gaining attention. To lobby for the removal of such an iconic phrase as spooky action at a distance from scientific journals would be counterproductive to the goal of spreading interest in the scientific study of reality and the laws governing it. There is an intrinsic value to use outrageous language to describe outrageous scientific phenomenon. One of Einstein's greatest contributions to science was the interest he created in the subject. Also while his religious beliefs were far from firmly established he often referred to a Force having a role in the guiding of our universe. The article was informative, interesting, and entertaining. And just to make clear what was very clear in the article, yes 30 times Earth's gravity is 30g. It said 30g multiple times

The force does not guide. It survives. Whether anyone learns... we'll see.

Fill a bucket on a rope with water, whirl it around, figure out why the water doesn't spill. Or read this 🙂 https://en.wikipe...ntrifuge

What was discovered was that the aperatus could survive. The limited "relative forces" of these experiments really can't be expected to do much else. Want to determin the "strength" of entangment then send one of the entangled pairs through an accelerator.

Hence you have here peddling cliches, catch phrases, gross simplifications in the aura of mystery and discovery while scientific formalism suffers. All in attempt to draw audiences to science and advertisers.

This particular piece fails to explain what actually those researchers wanted to accomplish and why would they expect entanglement of photons (a phase entanglement vs. spin (magnetic) entanglement) to be affected by inertial acceleration of measly 30g (1E5g may be).

Also and most importantly why would they expect to influence an "undetermined" state of a phase of light of entangled pair by mechanical force. I am sure in the paper they answer those questions quite simply.

An interesting take on addressing the problem of misinterpretation of QM I found here: https://questforn...-quanta/

It's an important point that entanglement still occurs across varying gravity strengths. It's one of those assumptions that must be tested; these are some important negative results.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

See the article here:

Unbreakable quantum entanglement - Phys.Org

Related Posts