The Prometheus League
Breaking News and Updates
- Abolition Of Work
- Ai
- Alt-right
- Alternative Medicine
- Antifa
- Artificial General Intelligence
- Artificial Intelligence
- Artificial Super Intelligence
- Ascension
- Astronomy
- Atheism
- Atheist
- Atlas Shrugged
- Automation
- Ayn Rand
- Bahamas
- Bankruptcy
- Basic Income Guarantee
- Big Tech
- Bitcoin
- Black Lives Matter
- Blackjack
- Boca Chica Texas
- Brexit
- Caribbean
- Casino
- Casino Affiliate
- Cbd Oil
- Censorship
- Cf
- Chess Engines
- Childfree
- Cloning
- Cloud Computing
- Conscious Evolution
- Corona Virus
- Cosmic Heaven
- Covid-19
- Cryonics
- Cryptocurrency
- Cyberpunk
- Darwinism
- Democrat
- Designer Babies
- DNA
- Donald Trump
- Eczema
- Elon Musk
- Entheogens
- Ethical Egoism
- Eugenic Concepts
- Eugenics
- Euthanasia
- Evolution
- Extropian
- Extropianism
- Extropy
- Fake News
- Federalism
- Federalist
- Fifth Amendment
- Fifth Amendment
- Financial Independence
- First Amendment
- Fiscal Freedom
- Food Supplements
- Fourth Amendment
- Fourth Amendment
- Free Speech
- Freedom
- Freedom of Speech
- Futurism
- Futurist
- Gambling
- Gene Medicine
- Genetic Engineering
- Genome
- Germ Warfare
- Golden Rule
- Government Oppression
- Hedonism
- High Seas
- History
- Hubble Telescope
- Human Genetic Engineering
- Human Genetics
- Human Immortality
- Human Longevity
- Illuminati
- Immortality
- Immortality Medicine
- Intentional Communities
- Jacinda Ardern
- Jitsi
- Jordan Peterson
- Las Vegas
- Liberal
- Libertarian
- Libertarianism
- Liberty
- Life Extension
- Macau
- Marie Byrd Land
- Mars
- Mars Colonization
- Mars Colony
- Memetics
- Micronations
- Mind Uploading
- Minerva Reefs
- Modern Satanism
- Moon Colonization
- Nanotech
- National Vanguard
- NATO
- Neo-eugenics
- Neurohacking
- Neurotechnology
- New Utopia
- New Zealand
- Nihilism
- Nootropics
- NSA
- Oceania
- Offshore
- Olympics
- Online Casino
- Online Gambling
- Pantheism
- Personal Empowerment
- Poker
- Political Correctness
- Politically Incorrect
- Polygamy
- Populism
- Post Human
- Post Humanism
- Posthuman
- Posthumanism
- Private Islands
- Progress
- Proud Boys
- Psoriasis
- Psychedelics
- Putin
- Quantum Computing
- Quantum Physics
- Rationalism
- Republican
- Resource Based Economy
- Robotics
- Rockall
- Ron Paul
- Roulette
- Russia
- Sealand
- Seasteading
- Second Amendment
- Second Amendment
- Seychelles
- Singularitarianism
- Singularity
- Socio-economic Collapse
- Space Exploration
- Space Station
- Space Travel
- Spacex
- Sports Betting
- Sportsbook
- Superintelligence
- Survivalism
- Talmud
- Technology
- Teilhard De Charden
- Terraforming Mars
- The Singularity
- Tms
- Tor Browser
- Trance
- Transhuman
- Transhuman News
- Transhumanism
- Transhumanist
- Transtopian
- Transtopianism
- Ukraine
- Uncategorized
- Vaping
- Victimless Crimes
- Virtual Reality
- Wage Slavery
- War On Drugs
- Waveland
- Ww3
- Yahoo
- Zeitgeist Movement
-
Prometheism
-
Forbidden Fruit
-
The Evolutionary Perspective
Monthly Archives: May 2022
AskBio to Present 11 Abstracts at Upcoming American Society of Gene and Cell Therapy’s 25th Annual Meeting – PR Newswire
Posted: May 17, 2022 at 7:15 pm
Presentations convey essential technological and scientific knowledge regarding AAV gene therapy and advancements across key disease areas
CEO Sheila Mikhail and President of Therapeutics, Katherine A. High will be featured speakers
RESEARCH TRIANGLE PARK, N.C., May 16, 2022 /PRNewswire/ --Asklepios BioPharmaceutical, Inc. (AskBio), a wholly owned and independently operated subsidiary of Bayer AG, today announced that the Company will present 11 abstracts at the upcoming American Society of Gene & Cell Therapy (ASGCT) 25th Annual Meeting being heldMay 16 19, 2022 at the Walter E. Washington Convention Center in Washington, D.C.
The ASGCT Annual Meeting is the premier event for professionals in gene and cell therapy where noted industry professionals gather to learn from the latest advances in scientific and clinical research and cell and gene technology. Abstracts being presented by AskBio team members include new data and insights regarding Adeno Associated Virus (AAV) gene therapy, T-cell immune response to empty capsid technologies, inducible promoters and gene expression, and doggybone DNA (dbDNA) as well as data for AskBio's key clinical development programs, including Pompe Disease, Parkinson's Disease and Congestive Heart Failure.
AskBio will make seven oral presentations and four poster presentations. CEO Sheila Mikhail and President of Therapeutics, Katherine A. High will be featured speakers during the event.
"Having 11 abstracts accepted for presentations reflects the significant progress made by our teams across a broad front," commented Kathy High, President, Therapeutics for AskBio. "I am very proud of the groundbreaking work by our research and clinical teams as we continue to advance our therapeutic pipeline and AAV gene therapy research and manufacturing."
Jude Samulski, Chief Science Officer and Co-Founder for AskBio said, "These presentations underscore our commitment to advancing the science of gene therapy to tackle many of the biggest challenges in the space today, including manufacturing, dosing, immune response and treatment efficacy. We hope that, together with our many colleagues in cell and gene therapy space, we can make a profound difference in the lives of patients around the world who are waiting for transformative gene therapies."
AskBio's presentations at ASGCT include:
Monday, May 16
Oral PresentationAbstract 37: Functional Assessment of T-cell Responses to AAV8 Empty Capsids in Healthy VolunteersSession: Immune Responses to AAV Vectors10:30 am 11:45 am, Room: 102
Oral PresentationAbstract 28: A First-in-Human Phase 1 Clinical Gene Therapy Trial for the Treatment of Heart Failure Using a Novel Re-Engineered Adeno-Associated VectorSession: Cardiovascular and Pulmonary Diseases11:45 am 12 PM, Room 206
Featured SpeakerLaunching Innovation Into Gene Therapy CompaniesSession: Part 2: Translating Science Into Medicine: Moving from Bench to Startup (Organized by the Bioindustry & Translational Science Committees)Sheila Mikhail, JD, CEO and Co-Founder, AskBio1:302:18 PM Room: Salon G
Tuesday, May 17Oral Presentation:Abstract 434: Characterization of Alternative Reading Frame Proteins Generated from AAV CassettesSession: Discoveries in Fundamental AAV Biology4:004:15 PM, Ballroom A
Poster Presentation:Abstract 796: Safety and preliminary efficacy of neurosurgical AAV2-GDNF delivery for Parkinson's diseaseSession: Gene and Cell Therapy Trials in Progress5:30PM, Hall D
Poster Presentation:Abstract 711: Effect of tolerogenic ImmTOR nanoparticles on the formation of anti-AAV8 antibodies in mice, nonhuman primates, and healthy human volunteersSession: Immunological Aspects of Gene Therapy and Vaccines I5:30PM, Hall D
Poster Presentation:
Abstract 708: ImmTOR blunts AAVrh32.33 capsid-specific immune responses in C57BL/6 albino miceSession Immunological Aspects of Gene Therapy and Vaccines I5:30PM, Hall D
Wednesday, May 18
Presidential SymposiumTurning Genes into Medicines: The Long and Winding Road from Gene Discovery to Gene Therapeutics
Session: Presidential Symposium and Presentation of Top AbstractsKatherine A. High, MD, President, Therapeutics, AskBio
1:302:15 PM, Hall E
Oral PresentationAbstract 866: Long Term Stability Profiles of AAV Vectors at Ambient Temperature within a Film MatrixSession: Vector Manufacturing and Engineering 3: Improving Vector Design and System Performance5:00PM, Room 201
Poster PresentationAbstract 897: Identification of plasmid backbone-derived antisense RNAs in AAV transduced animalsSession: AAV Vectors - Virology and Vectorology III5:30PM, Hall D
Thursday, May 19
Oral Presentation:Abstract 1203: Inducible Gene Expression for Gene Therapy: Design and Exemplification of Powerful, Small, Modular and Tightly Controlled Regulatable PromotersSession: New Technologies for AAV Gene Therapy10:3010:45 AM, Ballroom C
Oral Presentation:Abstract 1211: Phase 1 Study of Gene Therapy in Late-onset Pompe Disease: Initial 104 Week Experience for Cohort 1Session: AAV Vectors - Clinical Studies10:45AM, Ballroom B
Oral Presentation:Abstract 1213: Rationally Designed Cardiotropic AAV Capsid Demonstrates 30 Fold Higher Efficiency in Human vs Porcine HeartSession: AAV Vectors Clinical Studies11:1511:30 AM, Ballroom B
Abstracts and additional information for the ASGCT 2022 Annual Meeting are available on the ASGCT Annual Meeting web site.
About AskBioAsklepios BioPharmaceutical, Inc. (AskBio), a wholly owned and independently operated subsidiary of Bayer AG acquired in 2020,is a fully integrated gene therapy company dedicated to developing life-saving medicines that cure genetic diseases. The company maintains a portfolio of clinical programs across a range of neuromuscular, central nervous system, cardiovascular and metabolic disease indications with a clinical-stage pipeline that includes therapeutics for Pompe disease, Parkinson's disease and congestive heart failure, as well as out-licensed clinical indications for hemophilia and Duchenne muscular dystrophy. AskBio's gene therapy platform includes Pro10, an industry-leading proprietary cell line manufacturing process, and an extensive capsid and promoter library. With global headquarters in Research Triangle Park, North Carolina, and European headquarters in Edinburgh, UK, the company has generated hundreds of proprietary capsids and promoters, several of which have entered clinical testing. Founded in 2001 and an early innovator in the gene therapy field, the company holds more than 750 patents in areas such as AAV production and chimeric and self-complementary capsids. Learn more atwww.askbio.comor follow us onLinkedIn.
About BayerBayer is a global enterprise with core competencies in the life science fields of health care and nutrition. Its products and services are designed to help people and the planet thrive by supporting efforts to master the major challenges presented by a growing and aging global population. Bayer is committed to driving sustainable development and generating a positive impact with its businesses. At the same time, the Group aims to increase its earning power and create value through innovation and growth. The Bayer brand stands for trust, reliability and quality throughout the world. In fiscal 2021, the Group employed around 100,000 people and had sales of 44.1 billion euros. R&D expenses before special items amounted to 5.3 billion euros. For more information, go towww.bayer.com.
Find more information at https://pharma.bayer.com/Follow us on Facebook: http://www.facebook.com/pharma.bayerFollow us on Twitter: @BayerPharma
AskBio Forward-Looking StatementsThis press release contains "forward-looking statements." Any statements contained in this press release that are not statements of historical fact may be deemed to be forward-looking statements. Words such as "believes," "anticipates," "plans," "expects," "will," "intends," "potential," "possible" and similar expressions are intended to identify forward-looking statements. These forward-looking statements include without limitation statements regarding AskBio's pipeline of development candidates, manufacturing technology and process. These forward-looking statements involve risks and uncertainties, many of which are beyond AskBio's control. Known risks include, among others: AskBio may not be able to execute on its business plans and goals, including meeting its expected or planned regulatory milestones and timelines, its reliance on third-parties, clinical development plans, manufacturing processes and plans, and bringing its product candidates to market, due to a variety of reasons, including the ongoing COVID-19 pandemic, possible limitations of company financial and other resources, manufacturing limitations that may not be anticipated or resolved in a timely manner, potential disagreements or other issues with our third-party collaborators and partners, and regulatory, court or agency feedback or decisions, such as feedback and decisions from the United States Food and Drug Administration or the United States Patent and Trademark Office. Any of the foregoing risks could materially and adversely affect AskBio's business and results of operations. You should not place undue reliance on the forward-looking statements contained in this press release. AskBio does not undertake any obligation to publicly update its forward-looking statements based on events or circumstances after the date hereof.
SOURCE AskBio
Posted in Gene Medicine
Comments Off on AskBio to Present 11 Abstracts at Upcoming American Society of Gene and Cell Therapy’s 25th Annual Meeting – PR Newswire
Protein linked to intellectual disability has complex role Washington University School of Medicine in St. Louis – Washington University School of…
Posted: at 7:15 pm
Visit the News Hub
Finding therapies for fragile X may depend on understanding the many ways proteins loss affects brain
Researchers at Washington University School of Medicine in St. Louis have identified a previously unknown function for the fragile X protein, the loss of which is the leading inherited cause of intellectual disability. The researchers showed that the protein modulates how neurons in the brains memory center process information, a central part of learning and memory.
Fragile X syndrome, the leading inherited cause of intellectual disability, is due to a genetic mutation that largely eliminates the fragile X protein, a critical element of normal brain development and function.
The fragile X protein modulates neuronal functions, including neurons within the so-called GABAergic system that regulates the activity of neural circuits. The proteins absence throws that system off kilter, and so far, experimental therapies designed to reset the system by compensating for the missing proteins functions have not been effective in clinical trials.
Now, researchers at Washington University School of Medicine in St. Louis have identified a previously unknown role for the fragile X protein in the GABAergic system. They have shown that the protein regulates the opening and closing of the GABA-A receptor in neurons from the brains memory center, thereby influencing how such neurons process information, a central part of learning and memory.
The findings, published May 17 in Cell Reports, indicate that the fragile X proteins role is more complex than previously thought, and that finding effective therapies may depend on a more nuanced understanding of the myriad ways loss of this protein affects the brain.
People think that since fragile X is related to the loss of a single protein, it is a simple disease that we can quickly understand and fix, said senior author Vitaly A. Klyachko, PhD, a professor of cell biology & physiology. But the reality is that the more we study, the more we understand its not simple at all. I think part of the reason why clinical trials fail may be because we dont really understand whats going on very well. It is possible that we need to fix more than one mechanism at the same time for patients to see any meaningful improvement.
People with fragile X syndrome have intellectual or learning disabilities, social and behavioral problems, and characteristic physical features such as large ears and long faces. They also often are noted for their friendly dispositions. The condition affects about 1 in 7,000 males and 1 in 11,000 females, with males typically more severely affected. The fragile X gene is located on the X chromosome, so females inherit one good and one bad copy of the gene, but males have only the bad copy. There are no treatments that address the underlying cause.
The GABAergic system is based on the transmission of gamma aminobutyric acid (GABA) from one neuron to another. When it arrives, GABA binds to a receptor molecule and triggers a cascade of events in the receiving neuron that results in suppression of the activity of that neuron. An overactive GABAergic system puts people to sleep; an underactive one is linked to depression, anxiety and epileptic seizures.
To better understand the role of fragile X protein in the GABAergic system, Klyachko and first author Pan-Yue Deng, MD, PhD, an associate professor of cell biology & physiology, studied neurons from the brains of mice with and without the fragile X protein. Specifically, they recorded the activity of key information-processing neurons controlled by the GABAergic system in the hippocampus, the brains learning and memory center. Such neurons sense the presence of GABA primarily by using the so-called GABA-A receptor.
The receptor is a channel that can open to allow negatively charged chloride ions to flow into the cell to modulate its activity. The researchers found that fragile X protein influences how much time the GABA-A receptor spends open and how much chloride it allows into the cell, thereby setting the baseline electrical charge inside the neuron. This baseline charge, in turn, affects the neurons ability to distinguish between multiple signals that arrive at nearly the same time, a critical mechanism of pattern separation essential for learning and memory formation.
The fragile X protein directly interacts with receptors that play a major role in the way neurons process information, Klyachko said. This is an additional function for the fragile X protein, and it may be an important one. These neuronal receptors are everywhere, and they control many critical brain functions.
But Klyachko cautions against assuming that these findings can be easily translated into therapies for people living with fragile X syndrome. The GABAergic system is complex, and small tweaks can have unexpected and far-reaching effects on brain function, he said.
I think there is a very strong desire an understandable one to immediately translate each discovery into a clinical trial, Klyachko said. But if we dont understand all of the functions this protein has and we try to go after one specific mechanism, it may destabilize the other ones, and the end result is that people dont get better. An entirely different approach to treating this disease may be possible, but I think we need to first understand much more about how it works. This is just the first stepping stone in a new direction.
Deng PY, Kumar A, Cavalli V, Klyachko VA. FMRP regulates GABAA receptor channelactivity to control signal integration in hippocampal granule cells. Cell Reports. May 17, 2022. DOI: 10.1016/j.celrep.2022.110820
This work was supported by the National Institutes of Health (NIH), grant numbers R35NS111596, R01NS111719 and R35NS122260.
Washington University School of Medicines 1,700 faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Childrens hospitals. The School of Medicine is a leader in medical research, teaching and patient care, and currently is No. 4 in research funding from the National Institutes of Health (NIH). Through its affiliations with Barnes-Jewish and St. Louis Childrens hospitals, the School of Medicine is linked to BJC HealthCare.
Posted in Gene Medicine
Comments Off on Protein linked to intellectual disability has complex role Washington University School of Medicine in St. Louis – Washington University School of…
CU School of Medicine Research Defines the Role of HDAC6 in Regulating Heart Stiffness – University of Colorado Anschutz Medical Campus
Posted: at 7:15 pm
Researchers at theUniversity of Colorado School of Medicine have discovered an enzyme that regulates heart stiffness, setting the stage for developing novel treatments for heart failure.
The enzyme,histone deacetylase 6 (HDAC6), has been studied in the context of many diseases, including heart disease, but CU School of Medicine researchersTimothy McKinsey, PhD, professor of medicine in theDivision of Cardiology, andKathleen Woulfe, PhD, assistant professor of medicine in the Division of Cardiology, recently discovered a new role for HDAC6 in the regulation of myofibrils, the contractile units of the heart. The research was published May 16 in The Journal of Clinical Investigation.
When your heart is pumping and relaxing optimally, it's at a certain stiffness, McKinsey says. Stresses including aging, hypertension, and obesity can cause the heart to become too stiff, preventing it from relaxing and filling with blood efficiently,which leads to something called diastolic dysfunction. In other instances, the heart is not stiff enough, so it can't pump effectively, which leads to systolic dysfunction. Both conditions are life-threatening.
The CU researchers found evidence that HDAC6 acts on titin, a massive myofibril protein that contributes to heart stiffness. HDAC6 appears to remove a chemical modification known as acetylation fromtitin.When HDAC6 is inhibited, titin causes the heart to become stiffer; when HDAC6 is activated, the heart becomes less stiff. In the future, once cardiologists determine which type of dysfunction a patient has, it might be possible to therapeutically adjust HDAC6 enzymatic activity or levels to help the heart to pump and relax at an optimal stiffness.
Heart failure is still a huge problem that affects millions of people worldwide, McKinsey says. Even though there are medications to treat heart failure, people with the condition still often have poor quality of life and die at an alarming rate. We think this discovery could provide a novel avenue for treating heart failure through a distinct mechanism.
The progress of therapeutically manipulating HDAC6 to treat heart failure is helped along by the fact that HDAC6 inhibitors are actively being developed to treat other conditions, including neurodegeneration and cancer, though McKinsey cautionsthat the heart needs to be monitored more carefully in people receiving HDAC6 inhibitors.
"Our data suggest that in some cases, if you inhibit this enzyme, the heart might get too stiff, McKinsey says. Nevertheless, we firmly support continued clinical development of HDAC6 inhibitors, since this class of compounds holds great promise for treating a variety of devastating diseases, including certain forms of heart failure.
The CU researchers plan to continue to study the role of HDAC6 in heart stiffness, including testing HDAC6 inhibitors in preclinical models of systolic heart failure where titin is too compliant, and developing gene therapy to provide activated HDAC6 to hearts that are too stiff. Much of their work takes place in Woulfes laboratory, which is one of a handful of labs in the world that can isolate and study myofibril mechanics.
We are able to isolate proteins that direct contraction and relaxation in the heart in a way that preserves the mechanical function, Woulfe says. We can do this from tissue that's frozen, from our human heart bank, or from animals. We take away everything else except for those proteins that contract and relax. They are the fundamental basis of the function of the heart.This system enabled us to discover that HDAC6 directly regulates myofibril stiffness, most likely by deacetylating titin.
We think this is a major finding, and there's still a lot more to do, McKinsey adds. Scientific discovery is a series of building blocks, and we believe this is a key building block that allows us to understand the mechanics of the heart better at a molecular level, and also suggests therapeutic potential. We're going to keep vigorously working on the details of HDAC6 action in the heart.
This work was partially supported by theConsortium for Fibrosis Research & Translation, a program funded by the CU School of Medicine and co-directed by McKinsey. It aims to improve understanding of fibrotic diseases across various organ systems.
In addition to Woulfe and McKinsey, the other researchers on the study areYing-Hsi Lin, Jennifer Major, Joshua Travers, Sara Wennersten, Cortney Wilson, Korey Haefner, Maria Cavasin, Mark Jeong, Yu Han, Amrut Ambardekar, and Maggie Lam from the CU School of Medicine Division of Cardiology; Scott Ferguson from the Cardiovascular and Pulmonary Research Laboratory in the CU Department of Medicine; Tim Liebner and Chunaram Choudhary from the University of Copenhagen, Denmark; Zaynab Hourani and Henk Granzier from the University of Arizona; and Michael Gotthardt from the Max Delbruck Center for Molecular Medicine in Germany.
Read the original:
CU School of Medicine Research Defines the Role of HDAC6 in Regulating Heart Stiffness - University of Colorado Anschutz Medical Campus
Posted in Gene Medicine
Comments Off on CU School of Medicine Research Defines the Role of HDAC6 in Regulating Heart Stiffness – University of Colorado Anschutz Medical Campus
Emendo Biotherapeutics’ next generation CRISPR gene editing technologies achieve breakthrough results with allele-specific approach for ELANE-related…
Posted: at 7:15 pm
NEW YORK--(BUSINESS WIRE)--Emendo Biotherapeutics presented the results of its next generation CRISPR-based gene editing approaches for several indications in an oral presentation and three posters at the 25th Annual Meeting of the American Society of Gene & Cell Therapy (ASGCT) held May 16-19, 2022, in Washington, D.C.
Emendo presented pre-clinical data for the treatment of ELANE-related Severe Congenital Neutropenia using an allele-specific editing approach, demonstrating the power of Emendos dual technology platforms that enable the development of a highly specific editing composition that demonstrates no off-targets and complete allele specificity. Significantly, the lack of off-target achieved by Emendos engineered and optimized OMNI nuclease also eliminated any translocations. Edited patient derived CD34+ cells differentiated normally into neutrophils both in-vitro and in-vivo, showing full engraftment and reconstitution of all blood lineages, as required for the desired therapeutic effect.
ELANE-based Severe Congenital Neutropenia, Emendos lead indication, is a devastating disease affecting pediatric patients that until now has been incurable, said David Baram, Ph.D., President & CEO of Emendo Biotherapeutics. We are excited by the potentially curative treatment developed by our team and were pleased to present our pre-clinical results for this program and other diverse applications of our dual gene editing technology platforms at this years ASGCT meeting. And of course, we look forward to the discussion generated by our discoveries around Type II CRISPR nuclease classifications that promise to be ground-breaking in the field.
Senior members of the Emendo Biotherapeutics R&D team including Chief Technology Officer Lior Izhar, Ph.D. and Executive Vice-President Research & Development Rafi Emmanuel, Ph.D. presented Emendos research on-site at the conference.
Session Presentation
Title: A Novel Engineered CRISPR-Associated Nuclease Accurately Removes ELANE Mutated Allele and Shifts HSC Differentiation Towards Neutrophils in Severe Congenital Neutropenia
Session Title: Gene Therapy for Immunologic DiseasesSession Date/Time: Tuesday May 17, 2022 3:45 PM - 5:30 PMPresentation Time: 3:45pm - 4:00pmRoom: Room 202Final abstract number: 482
Poster Presentations
Title: A Unique CRISPR-Based Nuclease with a Non-NGG PAM Efficiently Targets Multiple Exclusive Genomic Sites for Immuno-Oncology Based Therapy
Session Title: Cancer - Targeted Gene and Cell Therapy ISession Date/Time: Monday May 16, 2022 5:30 PM - 6:30 PMPoster Board Number: M-215Room: Hall DFinal abstract number: 334
Title: CRISPR-Based Gene Editing Enhances LDLR Expression and Boosts LDL-C Uptake in Familial Hypercholesterolemia
Session Title: Metabolic, Storage, Endocrine, Liver and Gastrointestinal Diseases IISession Date/Time: Wednesday May 18, 2022 5:30 PM - 6:30 PMPoster Board Number: W-125Room: Hall DFinal abstract number: 999
Title: Challenges and Inconsistencies in Type II CRISPR-Associated Nuclease Subtype Classification
Session Title: Gene Targeting and Gene Correction IISession Date/Time: Tuesday May 17, 2022 5:30 PM - 6:30 PMPoster Board Number: Tu-61Room: Hall DFinal abstract number: 556
About Emendo Biotherapeutics
Emendo Biotherapeutics, a subsidiary of AnGes, Inc., is a next generation CRISPR gene editing company leveraging dual proprietary technology platforms to enable high precision gene editing throughout the genome. Emendos novel nuclease discovery platform broadens the targetable range of the genome while its target-specific optimization platform enables highly precise editing, including allele specific editing, while maintaining high efficiencies. The capabilities of the OMNI technology platforms, along with deep expertise in genomic medicine, protein engineering and therapeutic development, provide Emendo with a unique advantage when addressing indications within hematology, oncology, ophthalmology and other disease areas. For more information please visit http://www.emendobio.com.
Read this article:
Emendo Biotherapeutics' next generation CRISPR gene editing technologies achieve breakthrough results with allele-specific approach for ELANE-related...
Posted in Gene Medicine
Comments Off on Emendo Biotherapeutics’ next generation CRISPR gene editing technologies achieve breakthrough results with allele-specific approach for ELANE-related…
Latest Human Cells Atlas reveals more of the unknown world inside our bodies – EL PAS in English
Posted: at 7:15 pm
In the latest version of the Human Cells Atlas, 2,000 researchers in 83 countries have defined, one by one, some 60 million cells.
Our mission is to create a map of all human cells, says Israeli biologist Aviv Regev, who began the project in 2016 and leads the international consortium together with the German biologist Sarah Teichmann, from the Wellcome Sanger Institute in Cambridge (UK).
Regev, who is on leave from the Massachusetts Institute of Technology (MIT) and has a management position at US biotech company Genentech, says she believes the cross-continental team is halfway to its goal.
While children study some examples of cells at school such as neurons, red blood cells, white blood cells, and platelets, nobody knows how many types there really are, explains the scientist.
We didnt know how many genes we had until the Human Genome Project. This is a similar case, she says.
The Human Cells Atlas aims to catalog all cell types and their multiple subtypes, but also to locate them precisely in the human body and have a picture of the exact composition of each organ: what we are made of and why diseases arise.
Spanish immunologist Cecilia Domnguez Conde is among the main authors of the latest version, which was reported last week in the journal Science. The researchers describe the detailed profile of more than a million cells; presenting cross-referenced data from 33 organs of the human body, such as the heart, skin and lungs.
Domnguez Condes team is based at the Wellcome Sanger Institute, and has focused on the cells of the immune system.
We have discovered how cells adapt to different environments, says the immunologist, who will begin leading her own laboratory at the Human Technopole, a new research center in Milan (Italy), in June.
The diversity of cell types within the immune system is absolutely incredible, says Domnguez Conde, adding that the work had previously focused on the blood circulating in the body, while now, we study the cells in different tissues and we see new mechanisms.
The immunologist notes that there is a new generation of cancer treatments, the so-called CAR-T, in which white T lymphocyte blood cells are extracted from the patient. Then, using genetic engineering, they are redesigned in the laboratory to increase their ability to destroy cancer cells.
Biology textbooks have traditionally spoken of about 300 cell types in the human body, but the authors of the atlas have found 500 types in the last million cells analyzed. Understanding this astonishing diversity will make it possible to improve vaccines, increase the efficacy of antitumor therapies, facilitate regenerative medicine and develop new treatments for rare and common diseases, according to Regev, who now has a management position at the US biotech company Genentech.
While biology textbooks usually teach that there are about 300 cell types in the human body, the authors of the Human Cell Atlas have now found some 500 types. This new understanding, says Aviv Regev, will contribute to improving vaccines and antitumor therapies as well as regenerative medicine and new treatments for both rare and common diseases.
A mutation in a gene can cause a disease, but although all cells share the same DNA, the problem will only appear in cells that have that particular gene activated.
We have found many unexpected cells that have active disease-associated genes, says Regev.
For example, we have observed non-muscle cells in muscle tissue expressing genes that cause rare muscle diseases.
This is important, because if we want to develop treatments we need to know the cells in order to target them, explains the biologist.
Regev also highlights possible applications of these findings to regenerative medicine, a specialization that tries to rebuild damaged organs using new cells.
To get it right, we need to generate cells with the right properties. The atlas is a reference to ensure that the cells generated in the laboratory have the desired characteristics, he says.
Neuroscientist Rafael Yuste, a professor at Columbia University in New York, applauds the latest version of the atlas.
This batch of results is historic. It is one of the first salvos of what will be a torrent of studies in the next decade that will classify all cell types in the body, says Yuste, who has not participated in the investigation. The Spanish neuroscientist was the founder of BRAIN, a billion-dollar project sponsored in 2013 by then-US president, Barack Obama, to obtain a map of the human brain.
Yuste is optimistic. The new technologies, called transcriptomics, allow cells to be placed in narrow channels and trapped one by one in oily droplets, analyzing their active genes in a manner that is fast, automated and cheap.
The first steps of this strategy have been spectacular. For example, in the United States, the Allen Institute of Brain Sciences has classified all the cells in a part of the cerebral cortex of the mouse, generating for the first time a list of all the types of neurons in an area of the brain, says Yuste, who has collaborated on that project.
Yuste recalls how the father of neuroscience, Santiago Ramn y Cajal, discovered in 1888, using a rudimentary microscope, that neurons were individual cells. Now, says Yuste, it is giant consortia like his BRAIN initiative and the Human Cell Atlas doing this work.
It is a huge effort, says the professor. It will have a fundamental impact on science and medicine, since, in the end, everything that the brain, or the body, does, is cooked up between cell types.
Originally posted here:
Latest Human Cells Atlas reveals more of the unknown world inside our bodies - EL PAS in English
Posted in Gene Medicine
Comments Off on Latest Human Cells Atlas reveals more of the unknown world inside our bodies – EL PAS in English
Middle-East precision medicine market was estimated to be at $3,942.6 million in 2021, which is expected to grow with a CAGR of 7.37% and reach…
Posted: at 7:15 pm
ReportLinker
Middle East Precision Medicine Market to Reach $8,620. 0 Million by 2032. Middle East Precision Medicine Market Industry Overview. The Middle East precision medicine market was estimated to be at $3,942.
New York, May 17, 2022 (GLOBE NEWSWIRE) -- Reportlinker.com announces the release of the report "Middle East Precision Medicine Market - Country Analysis: Focus on Ecosystem, Technology, Application, End User, and Country Data - Analysis and Forecast, 2022-2032" - https://www.reportlinker.com/p06277485/?utm_source=GNW 6 million in 2021, which is expected to grow with a CAGR of 7.37% and reach $8,620.0 million by 2032. The Middle East precision medicine market is expected to witness high growth, attributed to the rising prevalence of chronic disease, advancement of sequencing technologies, reducing adverse drug reactions through pharmacogenomics tests, and potential to reduce the overall healthcare cost across the globe. The continued significant investments by healthcare companies to meet industry demand and the growing adoption of precision medicine among major end users are the major factors propelling the growth of the Middle East precision medicine market.
Market Lifecycle Stage
Precision medicine refers to the medicine developed as per an individuals genetic profile.It provides guidance regarding the prevention, diagnosis, and treatment of diseases.
The segmentation of the population is done depending on the genome structure of individuals and their compatibility with a specific drug molecule.In the precision medicine market, the application of molecular biology is to study the cause of a patients disease at the molecular level so that target-based therapies or individualized therapies can be applied to cure the patients health-related problems.
This industry is gaining traction owing to the growing awareness about healthcare among individuals, the integration of smart devices such as smartphones and tablets into healthcare, and the increasing collaborations and agreements of information technology (IT) firms with the diagnostics and biopharmaceutical companies for the development of precision diagnostic tools.The growth of the precision medicine market over the last few years has been monumental.
New technologies are rapidly being introduced, expanding the arsenal of tools accessible to support the development and adoption of precision medicine solutions over one-size-fits-all therapies. Advancements in gene therapies, cell therapies, molecular biomarker analysis, and companion diagnostics have the potential to transform medicine and increase the ability to treat and cure several intractable diseases. Advances in sequencing technologies and non-invasive diagnostics, such as liquid biopsy and non-invasive prenatal testing (NIPT), have facilitated the acquisition of real-time data and gained interest for their usage in acquiring the data by exhibiting the biology of tumors and metastatic tissues.
Impact
The presence of major service providers of precision medicine products in Middle East regions has a major impact on the market. For instance, Illumina, Inc. provides NovaSeq 6000 S2, Reagent Kit, NovaSeq 6000 S4 reagent kit, and NovaSeq Xp 4-lane kit in the Middle East. Companies such as F. Hoffmann-La Roche Ltd provide foundation one liquid. The services are a reliable and convenient way to expand in-house resources with expertise and perfectly tailored bioinformatics services that ensure quality results. The presence of these companies has a positive impact on market growth.
Impact of COVID-19
The current Middle East precision medicine market study comprises products and applications utilized to provide beneficial effects to specific health benefits and treatments.Since the market is primarily application and ecosystem-dominated, the COVID-19 pandemic had a low impact on the growth or the revenue generated from the market.
The current market assessment has considered information provided by key opinion leaders in the market, from the supply side as well as the demand side.A majority of the products, such as kits and assays in the market, are used for infectious disease applications.
In addition, infectious diseases are playing an important role in the growth of the market.
Market Segmentation:Segmentation 1: by Ecosystem Applied Sciences Precision Therapeutics Digital Health and Information Technology Precision Diagnostics
The Middle East precision medicine market is expected to be dominated by the precision therapeutics segment. This is due to an increasing number of drugs or therapeutics offered to their end users.
Segmentation 2: by Application Oncology Infectious Diseases Neurology Endocrinology Cardiology Gastroenterology Others
The Middle East precision medicine market is dominated by the oncology segment owing to an increasing number of patients suffering from cancer. According to the data published by World Health Organization, cancer is a leading cause of deaths, with nearly 10 million deaths reported in 2020.
Segmentation 3: by End User Biopharmaceutical Companies Diagnostic Companies Others
Segmentation 4: by Region Middle East - K.S.A., Israel, Egypt, United Arab Emirates (U.A.E.), Iran, Qatar, Other Countries
Kingdom of Saudi Arabia (K.S.A.) generated the highest revenue of $1,059.7 million in 2021, which is attributed to the R&D advancements in the field of single-cell analysis and the presence of dominating players operating in the precision medicine market.
Recent Developments in Middle East Precision Medicine Market
In October 2020, Bio-Rad Laboratories launched the CFX Opus 96 Dx System and CFX Opus 384 Dx System. The product can multiplex near about five samples to offer effective in-vitro diagnostics (IVD) assay development and testing. The product has been commercialized in the Middle East region. In March 2021, F. Hoffmann-La Roche Ltd released the AVENIO Tumor Tissue CGP Kit, which enables laboratories to extend their oncology research in-house. In June 2019, F. Hoffmann-La Roche Ltd partnered with the Health Authority and an international health insurer, AXA, in Dubai. This partnership would develop funding for diagnostic and treatment for breast, colorectal, and cervical cancers.
Demand Drivers and Limitations
Following are the demand drivers for Middle East precision medicine market: Advancement of Sequencing Technologies Rising Prevalence of Chronic Diseases Shifting the Significance in Medicine from Reaction to Prevention Reducing Adverse Drug Reactions through Pharmacogenomics Test Potential to Reduce the Overall Healthcare Cost Across the Globe
The market is expected to face some limitations too due to the following challenges: Unified Framework for Data Integration Limited Knowledge about Molecular Mechanism/Interaction Lack of Robust Reimbursement Landscape
How Can This Report Add Value to an Organization?
Ecosystem/Innovation Strategy: The ecosystem segment helps the reader understand the four types of products, i.e., applied sciences, precision therapeutics, digital health and information technology, and precision diagnostics. These ecosystems are the major focus of the study as these are the target of market players in terms of revenue generation. Moreover, the study provides the reader with a detailed understanding of the different applications such as oncology, immunology, NIPT, microbiology, and others.
Growth/Marketing Strategy: The Middle East precision medicine market has been dominated significantly by companies such as QIAGEN N.V., PerkinElmer, Inc., F. Thermo Fisher Scientific Inc, and Hoffmann-La Roche Ltd., due to their expansive portfolio and strong presence across the world. The following figure represents the growth-share matrix for some of the major players in the Middle East precision medicine market based on their activities till the end of 2020. Many companies such as Agilent Technologies, Inc., Thermo Fisher Scientific Inc., PerkinElmer, Inc., Beckman Coulter, Inc. (Danaher Corporation), Illumina, Inc., Norgen Biotek Corp., and Omega Bio-tek, Inc. lie in the low growth and low market share segment. Most of the key market players in the Middle East precision medicine market are categorized under the low growth and low market share segment. The low market share of these companies is primarily due to limited products with respect to the Middle East precision medicine market in comparison to other segments of these companies. Also, the lack of synergistic activities with respect to the market is responsible for the low growth of these companies.
Competitive Strategy: Key players in the Middle East precision medicine market analyzed and profiled in the study have involved the precision medicine application-based product manufacturers that provide precision therapeutics and diagnostics.Moreover, a detailed competitive benchmarking of the players operating in the Middle East precision medicine market has been done to help the reader understand how players stack against each other, presenting a clear market landscape.
Additionally, comprehensive competitive strategies such as partnerships, agreements, and collaborations will aid the reader in understanding the untapped revenue pockets in the market.
Key Market Players and Competition Synopsis
The companies that are profiled have been selected based on inputs gathered from primary experts and analyzing company coverage, product portfolio, and market penetration.
Some of the prominent names established in this market are: Abbott Bio-Rad Laboratories, Inc. ASURAGEN, INC. bioMrieux SA Diginova Health Solutions Ltd. F. Hoffmann-La Roche Ltd Diginova Health Solutions Ltd. GlaxoSmithKline plc. Illumina, Inc. Intomics Merck KGaA Novartis AG Thermo Fisher Scientific Inc.
Companies that are not a part of the above-mentioned pool have been well represented across different sections of the report (wherever applicable).
Countries Covered K.S.A. Israel U.A.E. Egypt Iran QatarRead the full report: https://www.reportlinker.com/p06277485/?utm_source=GNW
About ReportlinkerReportLinker is an award-winning market research solution. Reportlinker finds and organizes the latest industry data so you get all the market research you need - instantly, in one place.
__________________________
Story continues
Go here to see the original:
Middle-East precision medicine market was estimated to be at $3,942.6 million in 2021, which is expected to grow with a CAGR of 7.37% and reach...
Posted in Gene Medicine
Comments Off on Middle-East precision medicine market was estimated to be at $3,942.6 million in 2021, which is expected to grow with a CAGR of 7.37% and reach…
Solution to Schrdinger’s Cat Problem Proposed in New Paper – University of Arkansas Newswire
Posted: at 7:14 pm
Photo Submitted
Art Hobson
FAYETTEVILLE, Ark. A paper recently published in the journal Quantum Engineering proposed a solution to a long-standing problem in quantum physics, popularly known as the Schrdinger's Cat problem. The paper, "Entanglement and the Measurement Problem," was authored by emeritus professor of physics, Art Hobson.
Schrdinger's Cat is a long-standing thought experiment used to explain the seemingly paradoxical state of quantum superposition, in which, for example, an atom is said to be both decaying and not decaying at the same time. The thought experiment begins when one imagines surrounding this atom with a measurement device that can detect an emitted particle.The device could, for instance, be a Geiger counter that will click when the particle hits it.According to quantum physics, this changes things. The atom is no longer said to be in a superposition of decaying and not decaying, but "entangled" with the detector.This entanglement appears to describe a detector that is both clicked and not clicked.
That said, physicists know that a large object like a Geiger counter cannot be in a superposition of clicking and not clicking. Erwin Schrdinger, one of the inventors of quantum physics, dramatized this by imagining that the detector is connected with a cat in such a way that, when the detector clicks, the cat dies. The cat effectively becomes the detector.Quantum physics then seems to imply that the atom plus cat entanglement describes a cat that is both dead and alive an example of the long-standing "measurement problem."
Hobson's paper examines entanglement by studying experiments conducted in 1990 at the purely microscopic level.In these experiments, two photons are entangled with each other. This entangled situation is identical mathematically with the atom plus detector entanglement, but the entirely microscopic nature of the two-photon system allows experimenters to manipulate the system in ways that would be impossible if one of the objects were a detector.
The implication of this, Hobson argues, is that entanglement is not what was previously thought, which was that the Schrdinger's cat entanglement predicted an undecayed nucleus and a live cat that are superposed with a decayed nucleus and a dead cat.He argues the experiments show that the theory predicts an undecayed nucleus that is correlated with a live cat, and a decayed nucleus that is correlated with a dead cat. Thus, the entangled state says the following:the nucleus is undecayed whenever the cat is alive, and the nucleus is decayed whenever the cat is dead. Hobson concludes that this solves the measurement problem.
Hobson retired in 1999 after 35 years of teaching. He has spent most of his time since retirement studying the foundations of quantum physics. He is a fellow of the American Physics Society. In 2006, he received the Robert A. Millikan Award, given by the American Association of Physics Teachers to members who have made notable and creative contributions to the teaching of physics. Since retirement, he has authored several research papers and a book on the foundations of quantum physics.
Excerpt from:
Solution to Schrdinger's Cat Problem Proposed in New Paper - University of Arkansas Newswire
Posted in Quantum Physics
Comments Off on Solution to Schrdinger’s Cat Problem Proposed in New Paper – University of Arkansas Newswire
Physicists Found a Way to Trigger The Strange Glow of Warp Speed Acceleration – ScienceAlert
Posted: at 7:14 pm
Every time you take a step, space itself glows with a soft warmth.
Called the FullingDaviesUnruh effect (or sometimes just Unruh effect if you're pushed for time), this eerie glow of radiation emerging from the vacuum is akin to the mysterious Hawking radiation that's thought to surround black holes.
Only in this case, it's the product of acceleration rather than gravity.
Can't feel it? There's a good reason for that. You'd need to move at an impossible speed to sense even the weakest of Unruh rays.
For now, the effect remains a purely theoretical phenomenon, far beyond our ability to measure. But that could soon change, following a discovery by researchers from the University of Waterloo in Canada and the Massachusetts Institute of Technology (MIT).
By going back to basics, they've demonstrated there could be a way to stimulate the Unruh effect so it can be studied directly under less extreme conditions.
In an unexpected twist, they might also have uncovered the secret to turning matter invisible.
The real prize, however, would be breaking new grounds in experiments that aim to unite two powerful but incompatible theories in physics one that describes how particles behave, the other covering the curving of space and time.
"The theory of general relativity and the theory of quantum mechanics are currently still somewhat at odds, but there has to be a unifying theory that describes how things function in the Universe," says mathematician Achim Kempf from the University of Waterloo.
"We've been looking for a way to unite these two big theories, and this work is helping to move us closer by opening up opportunities for testing new theories against experiments."
The Unruh effect sits right on the boundary of quantum laws and general relativity.
According to quantum physics, an atom sitting all alone in a vacuum would need to wait for an incoming photon to ripple through the electromagnetic field and give its electrons a jiggle before it could consider itself illuminated.
If we consider relativity, there is a way to cheat. Simply by accelerating, an atom could experience the smallest of wobbles in the surrounding electromagnetic field as low-energy photons, transformed by a kind of Doppler effect.
This interaction between the relative experience of waves in a quantum field and the jiggle of an atom's electrons relies on a shared timing in their frequencies. Any quantum effects that don't rely on timing are usually ignored, given on paper they tend to balance out in the long run.
Together with colleagues Vivishek Sudhir and Barbara Soda, Kempf showed that when an atom is accelerated, these usually negligible conditions become far more significant, and can actually take over as dominant effects.
By tickling an atom in just the right way, such as by using a powerful laser, they showed it's possible to make use of these alternative interactions to make moving atoms experience the Unruh effect without the need for large accelerations.
As a bonus, the team also found that given the right trajectory, an accelerating atom might turn transparent to incoming light, effectively suppressing its ability to absorb or emit certain photons.
Sci-fi applications aside, by identifying ways to influence an accelerating atom's ability to engage with ripples in a vacuum, it's possible we might be able to come up with new ways to find where quantum physics and general relativity give way to a new theoretical framework.
"For over 40 years, experiments have been hindered by an inability to explore the interface of quantum mechanics and gravity," says Sudhir, a physicist from MIT.
"We have here a viable option to explore this interface in a laboratory setting. If we can figure out some of these big questions, it could change everything."
This research was published in Physical Review Letters.
Go here to see the original:
Physicists Found a Way to Trigger The Strange Glow of Warp Speed Acceleration - ScienceAlert
Posted in Quantum Physics
Comments Off on Physicists Found a Way to Trigger The Strange Glow of Warp Speed Acceleration – ScienceAlert
Chien-Shiung Wus work defied the laws of physics – Popular Science
Posted: at 7:14 pm
The annals of science journalism werent always as inclusive as they could have been. SoPopSciis working to correct the record withIn Hindsight, a series profiling some of the figures whose contributions we missed. Read their stories and explore the rest of our 150th anniversary coveragehere.
In quantum physics, theres a law known as the conservation of parity, which is based on the notion that nature adheres to the ideal of symmetry. In a mirror-image of our world, it posits, the laws of physics would function the same waydespite everything being flipped. Since the early 1900s, experimental evidence suggested that this was true: To the pull of gravity or the draw of the electromagnetic force, the difference between left and right hardly mattered. So, physicists quite reasonably assumed that parity was a fundamental principle in the universe.
But in the 1950s, an experimental physicist at Columbia University named Chien-Shiung Wu devised an experiment that challengedand defiedthat law. Physics, she proved, to the astonishment of the field, did not always adhere to parity. Throughout her life, in fact, this woman demonstrated that parity was not the default; she flouted gender and racial barriers and eventually came to be known as the first lady of physics.
Wu was born in 1912 in a small fishing town north of Shanghai to parents who supported education for women. She displayed an extraordinary talent for physics as a college student in China. At the urging of Jing-Wei Gu, a female professor, she set her sights on earning a Ph.D. in the United States. In 1936, she arrived by ship in San Francisco and enrolled at the University of California, Berkeley, where she studied the nuclear fission of uranium.
She was 24 years old, in a new country where she wasnt fluent in the language and where the Chinese Exclusion Act, which prohibited Chinese workers from immigrating, was in full effect. It was preceded by the Page Act, which effectively banned the immigration of Chinese women based on the assumption that they intended to be sex workers. Wu was only able to enter the US because she was a student, but she was still ineligible for citizenship. There must have been so much tension and conflict there, says Leslie Hayes, vice president for education at the New York Historical Society. Im going to this place where I wont be welcome, but if I dont go, I wont be able to fulfill my goals and dreams.
After earning her Ph.D. in 1940, she married another Chinese-American physicist, and the couple moved to the East Coast in a long-shot search for tenure-track work. Major research institutes at the time were generally unwilling to hire women, people of color, or Jewish people, and the uptick in anti-Asian sentiment during World War II certainly didnt help. She was discriminated against as an Asian, but more so as a woman, Tsai-Chien Chiang wrote in his biography of Wu.
Nevertheless, shortly after a teaching stint at a womens college, she became the first female faculty member in Princeton Universitys physics department. That job was short lived; in 1944, Columbia University recruited her to work on the Manhattan Project, where she would advise a stumped Enrico Fermi on how to sustain a nuclear chain reaction.
Wu returned to research at Columbia after the war. Her reputation for brilliance and meticulousness grew in 1949 when she became the first to design an experiment that proved Fermis theory of beta decay, a type of radioactive decay in which a neutron spontaneously breaks down into a proton and a high-speed electron (a.k.a., a beta particle). In 1956, two theoretical physicists, Tsung-Dao Lee of Columbia and Chen Ning Yang of Princeton, sought Wus expertise in answering a provocative question: Is parity really conserved across the universe?
The law had been called into question by a problem known as theta-tau puzzle, a recently discovered paradox in particle physics. Theta and tau were two subatomic particles that were exactly the same in every respectexcept that one decayed into two smaller particles, and the other into three. This asymmetry confounded the physics community. Yang and Lee dove deep into the literature to see if anyone had ever actually proven that the nucleus of a particle always behaved symmetrically. As they found out, nobody had. So Wu, who they consulted during the process of writing their theoretical paper, got to work designing an experiment that would prove that it didnt.
Over the next few months, the men were in near constant communication with Wu. The monumental experiment that she designed and carried out rang the death knell for the concept of parity conservation in weak interactions, wrote nuclear physicist Noemie Benczer-Koller in her biography of Wu. Wus findings sparked such a sensation that they led to a Nobel Prize in physicsbut only for Yang and Lee. Wus groundbreaking work in proving the theory they advanced was ignored.
Though her genius allowed her to work in the same spaces as theoretical scientists, says Hayes, once there, she was not treated as a peer. But despite how frequently she experienced discrimination throughout her careerduring which she won every award in the field except the NobelWu didnt stop researching until her retirement in 1981.
Throughout her life, she was an outspoken advocate for the advancement of female physicistscampaigning, for the rest of her life, for the establishment of parity where it actually counted. Why didnt we encourage more women to go into science? she asked the crowd at an MIT symposium in 1964. I wonder whether the tiny atoms and nuclei, or the mathematical symbols, or the DNA molecules, have any preference for either masculine or feminine treatment.
Read more:
Chien-Shiung Wus work defied the laws of physics - Popular Science
Posted in Quantum Physics
Comments Off on Chien-Shiung Wus work defied the laws of physics – Popular Science
The Standard Model of Particle Physics May Be Broken A Physicist at the Large Hadron Collider Explains – SciTechDaily
Posted: at 7:14 pm
A recent series of precise measurements of already known, standard particles and processes have threatened to shake up physics.
As a physicist working at the Large Hadron Collider (LHC) at CERN, one of the most frequent questions I am asked is When are you going to find something? Resisting the temptation to sarcastically reply Aside from the Higgs boson, which won the Nobel Prize, and a whole slew of new composite particles? I realize that the reason the question is posed so frequently is down to how we have depicted progress in particle physics to the wider world.
We often talk about progress in terms of discovering new particles, and this is frequently true. Studying a new, very heavy particle helps us see underlying physical processes often without annoying background noise. That makes it easy to explain the value of the discovery to the general public and politicians.
Recently, however, a series of precise measurements of ordinary already known, standard particles and processes have threatened to shake up physics. And with the LHC getting ready to run at higher energy and intensity than ever before, it is time to start discussing the implications widely.
The storage-ring magnet for the Muon G-2 experiment at Fermilab. Credit: Reidar Hahn, Fermilab
In truth, particle physics has always proceeded in two ways, of which new particles is one. The other is by making very precise measurements that test the predictions of theories and look for deviations from what is expected.
The early evidence for Einsteins theory of general relativity, for example, came from discovering small deviations in the apparent positions of stars and from the motion of Mercury in its orbit.
Particles obey a counter-intuitive but hugely successful theory called quantum mechanics. This theory shows that particles far too massive to be made directly in a lab collision can still influence what other particles do (through something called quantum fluctuations.) Measurements of such effects are very complex, however, and much harder to explain to the public.
But recent results hinting at unexplained new physics beyond the standard model are of this second type. Detailed studies from the LHCb experiment found that a particle known as a beauty quark (quarks make up the protons and neutrons in the atomic nucleus) decays (falls apart) into an electron much more often than into a muon the electrons heavier, but otherwise identical, sibling. According to the standard model, this shouldnt happen hinting that new particles or even forces of nature may influence the process.
The LHCb experiment at CERN. Credit: CERN
Intriguingly, though, measurements of similar processes involving top quarks from the ATLAS experiment at the LHC show this decay does happen at equal rates for electrons and muons.
Meanwhile, the Muon g-2 experiment at Fermilab in the US has recently made very precise studies of how muons wobble as their spin (a quantum property) interacts with surrounding magnetic fields. It found a small but significant deviation from some theoretical predictions again suggesting that unknown forces or particles may be at work.
The latest surprising result is a measurement of the mass of a fundamental particle called the W boson, which carries the weak nuclear force that governs radioactive decay. After many years of data taking and analysis, the experiment, also at Fermilab, suggests it is significantly heavier than theory predicts deviating by an amount that would not happen by chance in more than a million million experiments. Again, it may be that yet undiscovered particles are adding to its mass.
Interestingly, however, this also disagrees with some lower-precision measurements from the LHC (presented in this study and this one).
While we are not absolutely certain these effects require a novel explanation, the evidence seems to be growing that some new physics is needed.
Of course, there will be almost as many new mechanisms proposed to explain these observations as there are theorists. Many will look to various forms of supersymmetry. This is the idea that there are twice as many fundamental particles in the standard model than we thought, with each particle having a super partner. These may involve additional Higgs bosons (associated with the field that gives fundamental particles their mass).
Others will go beyond this, invoking less recently fashionable ideas such as technicolor, which would imply that there are additional forces of nature (in addition to gravity, electromagnetism and the weak and strong nuclear forces), and might mean that the Higgs boson is in fact a composite object made of other particles. Only experiments will reveal the truth of the matter which is good news for experimentalists.
The experimental teams behind the new findings are all well respected and have worked on the problems for a long time. That said, it is no disrespect to them to note that these measurements are extremely difficult to make. Whats more, predictions of the standard model usually require calculations where approximations have to be made. This means different theorists can predict slightly different masses and rates of decay depending on the assumptions and level of approximation made. So, it may be that when we do more accurate calculations, some of the new findings will fit with the standard model.
Equally, it may be the researchers are using subtly different interpretations and so finding inconsistent results. Comparing two experimental results requires careful checking that the same level of approximation has been used in both cases.
These are both examples of sources of systematic uncertainty, and while all concerned do their best to quantify them, there can be unforeseen complications that under- or over-estimate them.
None of this makes the current results any less interesting or important. What the results illustrate is that there are multiple pathways to a deeper understanding of the new physics, and they all need to be explored.
With the restart of the LHC, there are still prospects of new particles being made through rarer processes or found hidden under backgrounds that we have yet to unearth.
Written by Roger Jones, Professor of Physics, Head of Department, Lancaster University.
This article was first published in The Conversation.
Read the original:
Posted in Quantum Physics
Comments Off on The Standard Model of Particle Physics May Be Broken A Physicist at the Large Hadron Collider Explains – SciTechDaily