Page 5«..2345

Category Archives: Human Genetic Engineering

Human Genetic Engineering Pros And Cons

Posted: July 31, 2015 at 8:44 am

Human Genetic Engineering Pros And Cons 3.78/5 (75.54%) 1970 votes

Many human genetic engineering pros and cons are there that have stayed the same since its introduction to humanity. When the humans started harnessing the atomic powers, then just few years later they also start recognizing the effects of human genetic engineering on mankind. Many scientists have a belief that gene therapy can be a mainstream for saving lives of many people. A lot of human genetic engineering pros and cons have been involved since the evolution of genetic engineering. Mentioned below are some important advantages or pros of genetic engineering:

Other human genetic engineering pros and cons include the desirable characteristics in different plants and animals at the same time convenient. One can also do the manipulation of genes in trees or big plants. This will enable the trees to absorb increased amount of carbon dioxide, and it will reduce the effects of global warming. However, there is a question from critics that whether man has the right to do such manipulations or alterations in the genes of natural things.

With human genetic engineering, there is always a chance for altering the wheat plants genetics, which will then enable it to grow insulin. Human genetic engineering pros and cons have been among the concern of a lot of people involved in genetic engineering. Likewise the pros, certain cons are there of using the genetic engineering. Mentioned below are the cons of human genetic engineering:

The evolution of genetic engineering gets the consideration of being the biggest breakthroughs in the history of mankind after the evolution of atomic energy, and few other scientific discoveries. However, human genetic engineering pros and cons together have contributed a lot in creating a controversial image of it among the people.

All these eventualities have forced the government of many countries to make strict legislation laws to put restrictions on different experiment being made on human genetic engineering. They have made this decision by considering different human genetic engineering pros and cons.

Continue reading here:

Human Genetic Engineering Pros And Cons

Posted in Human Genetic Engineering | Comments Off on Human Genetic Engineering Pros And Cons

Gene therapy – Wikipedia, the free encyclopedia

Posted: July 28, 2015 at 9:57 pm

Gene therapy is the therapeutic delivery of nucleic acid polymers into a patient's cells as a drug to treat disease. Gene therapy could be a way to fix a genetic problem at its source. The polymers are either expressed as proteins, interfere with protein expression, or possibly correct genetic mutations.

The most common form uses DNA that encodes a functional, therapeutic gene to replace a mutated gene. The polymer molecule is packaged within a "vector", which carries the molecule inside cells.

Gene therapy was conceptualized in 1972, by authors who urged caution before commencing human gene therapy studies. The first gene therapy experiment approved by the US Food and Drug Administration (FDA) occurred in 1990, when Ashanti DeSilva was treated for ADA-SCID.[1] By January 2014, some 2,000 clinical trials had been conducted or approved.[2]

Early clinical failures led to dismissals of gene therapy. Clinical successes since 2006 regained researchers' attention, although as of 2014, it was still largely an experimental technique.[3] These include treatment of retinal disease Leber's congenital amaurosis,[4][5][6][7]X-linked SCID,[8] ADA-SCID,[9][10]adrenoleukodystrophy,[11]chronic lymphocytic leukemia (CLL),[12]acute lymphocytic leukemia (ALL),[13]multiple myeloma,[14]haemophilia[10] and Parkinson's disease.[15] Between 2013 and April 2014, US companies invested over $600 million in the field.[16]

The first commercial gene therapy, Gendicine, was approved in China in 2003 for the treatment of certain cancers.[17] In 2012 Glybera, a treatment for a rare inherited disorder, became the first treatment to be approved for clinical use in either Europe or the United States after its endorsement by the European Commission.[3][18]

Following early advances in genetic engineering of bacteria, cells and small animals, scientists started considering how to apply it to medicine. Two main approaches were considered replacing or disrupting defective genes.[19] Scientists focused on diseases caused by single-gene defects, such as cystic fibrosis, haemophilia, muscular dystrophy, thalassemia and sickle cell anemia. Glybera treats one such disease, caused by a defect in lipoprotein lipase.[18]

DNA must be administered, reach the damaged cells, enter the cell and express/disrupt a protein.[20] Multiple delivery techniques have been explored. The initial approach incorporated DNA into an engineered virus to deliver the DNA into a chromosome.[21][22]Naked DNA approaches have also been explored, especially in the context of vaccine development.[23]

Generally, efforts focused on administering a gene that causes a needed protein to be expressed. More recently, increased understanding of nuclease function has led to more direct DNA editing, using techniques such as zinc finger nucleases and CRISPR. The vector incorporates genes into chromosomes. The expressed nucleases then "edit" the chromosome. As of 2014 these approaches involve removing cells from patients, editing a chromosome and returning the transformed cells to patients.[24]

Other technologies employ antisense, small interfering RNA and other DNA. To the extent that these technologies do not alter DNA, but instead directly interact with molecules such as RNA, they are not considered "gene therapy" per se.[citation needed]

Gene therapy may be classified into two types:

Here is the original post:

Gene therapy - Wikipedia, the free encyclopedia

Posted in Human Genetic Engineering | Comments Off on Gene therapy – Wikipedia, the free encyclopedia

Human Genetics Alert – The Threat of Human Genetic Engineering

Posted: at 9:57 pm

David King

The main debate around human genetics currently centres on the ethics of genetic testing, and possibilities for genetic discrimination and selective eugenics. But while ethicists and the media constantly re-hash these issues, a small group of scientists and publicists are working towards an even more frightening prospect: the intentional genetic engineering of human beings. Just as Ian Wilmut presented us with the first clone of an adult mammal, Dolly, as a fait accompli, so these scientists aim to set in place the tools of a new techno-eugenics, before the public has ever had a chance to decide whether this is the direction we want to go in. The publicists, meanwhile are trying to convince us that these developments are inevitable. The Campaign Against Human Genetic Engineering, has been set up in response to this threat.

Currently, genetic engineering is only applied to non-reproductive cells (this is known as 'gene therapy') in order to treat diseases in a single patient, rather than in all their descendants. Gene therapy is still very unsuccessful, and we are often told that the prospect of reproductive genetic engineering is remote. In fact, the basic technologies for human genetic engineering (HGE) have been available for some time and at present are being refined and improved in a number of ways. We should not make the same mistake that was made with cloning, and assume that the issue is one for the far future.

In the first instance, the likely justifications of HGE will be medical. One major step towards reproductive genetic engineering is the proposal by US gene therapy pioneer, French Anderson, to begin doing gene therapy on foetuses, to treat certain genetic diseases. Although not directly targeted at reproductive cells, Anderson's proposed technique poses a relatively high risk that genes will be 'inadvertently' altered in the reproductive cells of the foetus, as well as in the blood cells which he wants to fix. Thus, if he is allowed to go ahead, the descendants of the foetus will be genetically engineered in every cell of their body. Another scientist, James Grifo of New York University is transferring cell nuclei from the eggs of older to younger women, using similar techniques to those used in cloning. He aims to overcome certain fertility problems, but the result would be babies with three genetic parents, arguably a form of HGE. In addition to the two normal parents, these babies will have mitochondria (gene-containing subcellular bodies which control energy production in cells) from the younger woman.

Anderson is a declared advocate of HGE for medical purposes, and was a speaker at a symposium last year at UCLA, at which advocates of HGE set out their stall. At the symposium, which was attended by nearly 1,000 people, James Watson, of DNA discovery fame, advocated the use of HGE not merely for medical purposes, but for 'enhancement': 'And the other thing, because no one really has the guts to say it, I mean, if we could make better human beings by knowing how to add genes, why shouldn't we do it?'

In his recent book, Re-Making Eden (1998), Princeton biologist, Lee Silver celebrates the coming future of human 'enhancement', in which the health, appearance, personality, cognitive ability, sensory capacity, and life-span of our children all become artifacts of genetic engineering, literally selected from a catalog. Silver acknowledges that the costs of these technologies will limit their full use to only a small 'elite', so that over time society will segregate into the "GenRich" and the "Naturals":

"The GenRich - who account for 10 percent of the American population - all carry synthetic genes... that were created in the laboratory ...All aspects of the economy, the media, the entertainment industry, and the knowledge industry are controlled by members of the GenRich class...Naturals work as low-paid service providers or as labourers, and their children go to public schools... If the accumulation of genetic knowledge and advances in genetic enhancement technology continue ... the GenRich class and the Natural class will become...entirely separate species with no ability to cross-breed, and with as much romantic interest in each other as a current human would have for a chimpanzee."

Silver, another speaker at the UCLA symposium, believes that these trends should not and cannot be stopped, because to do so would infringe on liberty.

Most scientists say that what is preventing them from embarking on HGE is the risk that the process will itself generate new mutations, which will be passed on to future generations. Official scientific and ethical bodies tend to rely on this as the basis for forbidding attempts at HGE, rather than any principled opposition to the idea.

In my view, we should not allow ourselves to be lulled into a false sense of security by this argument. Experience with genetically engineered crops, for example, shows that we are unlikely ever to arrive at a situation when we can be sure that the risks are zero. Instead, when scientists are ready to proceed, we will be told that the risks are 'acceptable', compared to the benefits. Meanwhile, there will be people telling us loudly that since they are taking the risks with their children, we have no right to interfere.

See the original post here:

Human Genetics Alert - The Threat of Human Genetic Engineering

Posted in Human Genetic Engineering | Comments Off on Human Genetics Alert – The Threat of Human Genetic Engineering

Human Genetic Engineering – Popular Issues

Posted: at 9:57 pm

Human Genetic Engineering - A Hot Issue! Human genetic engineering is a hot topic in the legislative and executive branches of the U.S. government. Time will tell how committed the United States will be regarding the absolute ban on human cloning.

Human Genetic Engineering - Position of the U.S. Government Human genetic engineering has made its way to Capitol Hill. On July 31, 2001, the House of Representatives passed a bill which would ban human cloning, not only for reproduction, but for medical research purposes as well. The Human Cloning Prohibition Act of 2001, sponsored by Rep. Weldon (R-fL) and co-sponsored by over 100 Representatives, passed by a bipartisan vote of 265-to-162. The Act makes it unlawful to: "1) perform or attempt to perform human cloning, 2) participate in an attempt to perform cloning, or 3) ship or receive the product of human cloning for any purpose." The Act also imposes penalties of up to 10 years imprisonment and no less than $1,000,000 for breaking the law. The same bill, sponsored by Sen. Brownback (R-kS), is currently being debated in the Senate.

The White House also opposes "any and all attempts to clone a human being; [they] oppose the use of human somatic cell nuclear transfer cloning techniques either to assist human reproduction or to develop cell or tissue-based therapies."

Human Genetic Engineering - The Problems There are many arguments against human genetic engineering, including the established safety issues, the loss of identity and individuality, and human diversity. With therapeutic cloning, not only do the above issues apply, but you add all the moral and religious issues related to the willful killing of human embryos. Maybe the greatest concern of all is that man would become simply another man-made thing. As with any other man-made thing, the designer "stands above [its design], not as an equal but as a superior, transcending it by his will and creative prowess." The cloned child will be dehumanized. (See, Leon Kass, Preventing a Brave New World: Why we should ban human cloning now, New Republic Online, May 21, 2001.)

Human Genetic Engineering - A Final Thought Human genetic engineering leads to man usurping God as the almighty creator and designer of life. No longer will a child be considered a blessing from God, but rather, a product manufactured by a scientist. Man will be a created being of man. However, man was always intended to be a created being of God, in His absolute love, wisdom and glory.

Learn More Now!

What is your response?

Yes, today I am deciding to follow Jesus

Yes, I am already a follower of Jesus

I still have questions

Continued here:

Human Genetic Engineering - Popular Issues

Posted in Human Genetic Engineering | Comments Off on Human Genetic Engineering – Popular Issues

Human Genetic Engineering – Popular Issues …

Posted: February 16, 2015 at 3:49 am

Human Genetic Engineering - A Hot Issue! Human genetic engineering is a hot topic in the legislative and executive branches of the U.S. government. Time will tell how committed the United States will be regarding the absolute ban on human cloning.

Human Genetic Engineering - Position of the U.S. Government Human genetic engineering has made its way to Capitol Hill. On July 31, 2001, the House of Representatives passed a bill which would ban human cloning, not only for reproduction, but for medical research purposes as well. The Human Cloning Prohibition Act of 2001, sponsored by Rep. Weldon (R-fL) and co-sponsored by over 100 Representatives, passed by a bipartisan vote of 265-to-162. The Act makes it unlawful to: "1) perform or attempt to perform human cloning, 2) participate in an attempt to perform cloning, or 3) ship or receive the product of human cloning for any purpose." The Act also imposes penalties of up to 10 years imprisonment and no less than $1,000,000 for breaking the law. The same bill, sponsored by Sen. Brownback (R-kS), is currently being debated in the Senate.

The White House also opposes "any and all attempts to clone a human being; [they] oppose the use of human somatic cell nuclear transfer cloning techniques either to assist human reproduction or to develop cell or tissue-based therapies."

Human Genetic Engineering - The Problems There are many arguments against human genetic engineering, including the established safety issues, the loss of identity and individuality, and human diversity. With therapeutic cloning, not only do the above issues apply, but you add all the moral and religious issues related to the willful killing of human embryos. Maybe the greatest concern of all is that man would become simply another man-made thing. As with any other man-made thing, the designer "stands above [its design], not as an equal but as a superior, transcending it by his will and creative prowess." The cloned child will be dehumanized. (See, Leon Kass, Preventing a Brave New World: Why we should ban human cloning now, New Republic Online, May 21, 2001.)

Human Genetic Engineering - A Final Thought Human genetic engineering leads to man usurping God as the almighty creator and designer of life. No longer will a child be considered a blessing from God, but rather, a product manufactured by a scientist. Man will be a created being of man. However, man was always intended to be a created being of God, in His absolute love, wisdom and glory.

Learn More Now!

Like this information? Help us by sharing it with others. What is this?

Read more:

Human Genetic Engineering - Popular Issues ...

Posted in Human Genetic Engineering | Comments Off on Human Genetic Engineering – Popular Issues …

Human Genetic Engineering – Buzzle

Posted: February 12, 2015 at 6:42 pm

Human genetic engineering is about genetically engineering human beings by modifying their genotypes before birth. The Genotype is the genetic constitution of an individual with respect to a particular character under consideration. This is done to control the traits possessed by the individual after his/her birth.

The cells of our body contain encoded information about the body's growth, structure and functioning in the form of genes. Human genetic engineering aims at decoding this information and applying it to the welfare of mankind.

There are two types of genetic engineering. They are:

In human genetic engineering, the genes or the DNA of a person are changed. This can be used to bring about structural changes in human beings. More importantly, it can be used to introduce the genes for certain positive and desirable traits in embryos. Genetic engineering in humans can result in finding a permanent cure for many diseases.

There are people with certain exceptional qualities. If the genes responsible for these qualities can be identified, they can be implanted in the early embryos. This can lead to something like 'personalized babies'! Human genetic engineering might progress to such an extent that it will be possible to discover new genes and embed them into unborn babies.

The Lighter Side Gene therapy is one of the most important benefits of human genetic engineering. Over the past decade, gene therapy has succeeded in finding treatments for certain heart diseases. Researchers hope to find cures for all the genetic diseases. This will result in a healthier and more evolved human race.

A future benefit of human genetic engineering is that a fetus with a genetic disorder will be treated before the baby is born. Parents will be able to look forward to a healthy baby. In case of in-vitro fertilization, gene therapy can be used for embryos before they are implanted into the mother.

Genes can be cloned to produce pharmaceutical products of superior quality. Researchers are hopeful about being able to bio-engineer plants or fruits to contain certain drugs.

The Darker Side Firstly, while it seems easy to cure diseases by genetic modifications, gene therapy may manifest side effects. While treating one defect, it may cause another. Any given cell is responsible for many activities and manipulating its genes may not be that easy.

The process of cloning can lead to risking the fundamental factors such as the individuality and the diversity of human beings. Ironically, man will become just another man-made thing!

See the rest here:

Human Genetic Engineering - Buzzle

Posted in Human Genetic Engineering | Comments Off on Human Genetic Engineering – Buzzle

Pros and Cons of Genetic Engineering in Humans

Posted: at 6:42 pm

The human body is not perfect. Some are created with inherent faults and others break down before their time. Science has the potential to make good these problems by altering how humans are made. This is genetic engineering, and this article looks at the pros and cons of the technology in humans

This is part one of a two-part series. Here I will look at a definition of genetic engineering and the pros of human genetic engineering. In part two the cons and the ethics of human genetic engineering are discussed.

Before weighing up the pros and cons of genetic engineering in humans, it's worth taking the time to understand just what is meant by the idea. Simply put, it's a way of manipulating our genes in such a way as to make our bodies better. This alteration of a genome could take place in the sperm and egg cells. This is known as germline gene therapy and would alter the traits that a child is born with. The changes would be inheritable and passed down through the generations. It is currently illegal in many countries.

The other way to change our genome is to swap our bad genes for good ones - in cells other than the sex cells. This is known as somatic cell gene therapy. This is where a functioning gene could be fired into our bodies on a viral vector to carry out the functions that a faulty gene is unable to. This technology is permitted, though it has enjoyed a very limited success rate so far (largely because it is technically very difficult). Nonetheless, it still holds out a great deal of promise.

There are many potential advantages to being able to alter the cells in our bodies genetically.

To make disease a thing of the past

Most people on the planet die of disease or have family members that do. Very few of us will just pop up to bed one night and gently close our eyes for the last time. Our genomes are not as robust as we would like them to be and genetic mutations either directly cause a disease such as Cystic fibrosis, or they contribute to it greatly i.e. Alzheimer's. Or in the case of some conditions such as the heart disease Cardiomyopathy, genetic mutations can make our bodies more susceptible to attack from viruses or our own immune system. If the full benefits of gene therapy are ever realised we can replace the dud genes with correctly functioning copies.

To extend life spans

Having enjoyed life, most of us want to cling on to it for as long as possible. The genetic engineering of humans has the potential to greatly increase our life spans. Some estimates reckon that 100-150 years could be the norm. Of course gene therapy for a fatal condition will increase the lifespan of the patient but we're also talking about genetic modifications of healthy people to give them a longer life. Once we fully understand the genetics of ageing it may be possible to slow down or reverse some of the cellular mechanisms that lead to our decline - for example by preventing telomeres at the ends of chromosomes from shortening. Telomere shortening is known to contribute to cell senescence.

Better pharmaceuticals

See original here:

Pros and Cons of Genetic Engineering in Humans

Posted in Human Genetic Engineering | Comments Off on Pros and Cons of Genetic Engineering in Humans

Human Genetic Engineering History

Posted: at 6:42 pm

Human Genetic Engineering : History 4.93/5 (98.60%) 57 votes

Human Genetic Engineering History goes back to the 1919 when an engineer from Hungary gave a term biotechnology to products developed by using raw materials. The engineer made use of this term in its best possible sense. Civilizations in the ancient times discovered that a lot of products can be made by using micro-organisms.

However, people that time have no idea about there are active agents in the microbes. Back in 7000 B.C. some existing tribes also made precious discoveries about how to make beer using yeast. TheHuman Genetic Engineering History continues going ahead since those times. There is a lot of difference between Biotechnology and genetic engineering.

In one hand, gene manipulation is the result of equating biotechnology. However, many aspects are there that define biotechnology. On the other hand, genetic engineering came to perspective, because of its specific technique for manipulating genes.

The term Human Genetic Engineering made it presence felt in 1970. This is the time when several methods were devised with the help of molecular biologists for identifying or for isolating clone genes. Methods were also devised for manipulating the genes to other species or for mutating them in humans.

Restrictive enzymes got discovered during this research, and many have considered as the main success in the Human Genetic Engineering History. This enzyme can make organisms to isolate the DNA, and then it gets mixed with a vector preparation. Hybrid molecules can easily be generated with the sticky ends virtue. This molecule contains interest genes that can later get inserted into the vector.

Ethical concerns involved in Human Genetics

Many scientists knew that a lot of risk is there during the transfer of genes from one person to the other. Human Genetic Engineering History contains all the factors responsible for the invention of genetic engineering as a part of advance sciences. They found that their labs have been poised when they started experimenting clone genes.

Scientists also organized several meetings in order to discuss the risks involved in the transformation of genes. All scientists were given a chance to keep their points of view on the above subject. They made discussion on all the dangers that can potentially take place during their research. However, the meeting went unprecedented.

In this meeting, they made necessary or relevant decisions regarding the amount of time that might be needed for sorting out the solution. Certain guidelines came to existence for the recombinant organism biological and physical isolation. This should be done for ensuring that the organisms do not get mixed with the environment. Human Genetic Engineering History involves profound or numerous consequences.

More:

Human Genetic Engineering History

Posted in Human Genetic Engineering | Comments Off on Human Genetic Engineering History

Benefits of Human Genetic Engineering – Popular Issues …

Posted: at 6:42 pm

What are the benefits of human genetic engineering?

The benefits of human genetic engineering can be found in the headlines nearly every day. With the successful cloning of mammals and the completion of the Human Genome Project, scientists all over the world are aggressively researching the many different facets of human genetic engineering. These continuing breakthroughs have allowed science to more deeply understand DNA and its role in medicine, pharmacology, reproductive technology, and countless other fields.

The most promising benefit of human genetic engineering is gene therapy. Gene therapy is the medical treatment of a disease by repairing or replacing defective genes or introducing therapeutic genes to fight the disease. Over the past ten years, certain autoimmune diseases and heart disease have been treated with gene therapy. Many diseases, such as Huntington's disease, ALS (Lou Gehrig's disease), and cystic fibrosis are caused by a defective gene. The hope is that soon, through genetic engineering, a cure can be found for these diseases by either inserting a corrected gene, modifying the defective gene, or even performing genetic surgery. Eventually the hope is to completely eliminate certain genetic diseases as well as treat non-genetic diseases with an appropriate gene therapy.

Currently, many pregnant women elect to have their fetuses screened for genetic defects. The results of these screenings can allow the parents and their physician to prepare for the arrival of a child who may have special needs before, during, and after delivery. One possible future benefit of human genetic engineering is that, with gene therapy, a fetus w/ a genetic defect could be treated and even cured before it is born. There is also current research into gene therapy for embryos before they are implanted into the mother through in-vitro fertilization.

Another benefit of genetic engineering is the creation pharmaceutical products that are superior to their predecessors. These new pharmaceuticals are created through cloning certain genes. Currently on the market are bio-engineered insulin (which was previously obtained from sheep or cows) and human growth hormone (which in the past was obtained from cadavers) as well as bio-engineered hormones and blood clotting factors. The hope in the future is to be able to create plants or fruits that contain a certain drug by manipulating their genes in the laboratory.

The field of human genetic engineering is growing and changing at a tremendous pace. With these changes come several benefits and risks. These benefits and risks must be weighed in light of their moral, spiritual, legal, and ethical perspectives. The potential power of human genetic engineering comes with great responsibility.

Like this information? Help us by sharing it with others. What is this?

Read more:

Benefits of Human Genetic Engineering - Popular Issues ...

Posted in Human Genetic Engineering | Comments Off on Benefits of Human Genetic Engineering – Popular Issues …

Page 5«..2345