Daily Archives: February 29, 2020

106 VR Titles Generated More than $1 Million in Revenues in 2019 – Virtual Reality Times

Posted: February 29, 2020 at 11:13 pm

The VR industry might be seeing a sluggish growth but there are areas of the ecosystem that are seeing some good traction. One of the best ways to see how the industry is performing is by looking at the revenues generated by the top VR titles. VR Fun investor Tipatat Chennavasin has an analysis of the Virtual Reality industry that reveals the year 2019 as a significant inflection point for the industry. According to the analysis, 106 VR titles generated more than $1 million in revenues during that year.

According to Chennavasin, we are likely going to see the first $100 million VR title this year. The analysis was published early this month and was based on the data from the major Virtual Reality storefronts including PlayStation Network, Steam, Oculus PC and Oculus Rift. The data is also based on developer insights. According to the analysis, half of the top-grossing VR titles came in the past 12 months.

The top seven titles in the analysis generated more than $10 million in revenues. The leading VR title grossed $60 million. Chennavasin expects a VR title to hit the $100 million milestone by this time next year.

According to the analyst, the number of Virtual Reality titles that gross $1 million or more is an important data point as it shows that success in the industry is repeatable and that VR is no longer just the developers domain but a platform that provides real business opportunity.

The analyst estimates that Virtual Reality game revenues hit $300 million in 2019 across various platforms. This was a major rise in revenues compared to the previous years. The surge was partly boosted by Oculus Quest as well as by considerable growth in other VR platforms.

For more data and analysis on the state of Virtual Reality from the analysts point of view, you can read his report here.

The rest is here:

106 VR Titles Generated More than $1 Million in Revenues in 2019 - Virtual Reality Times

Posted in Virtual Reality | Comments Off on 106 VR Titles Generated More than $1 Million in Revenues in 2019 – Virtual Reality Times

Immersive learning: the power of enhanced reality – Education Technology

Posted: at 11:13 pm

How many of us have been present at the dawn (or recurring dawn) of a new technology or approach, excited by the promise it holds and certain, deep in our minds, that this device or service is special, harbouring the power to transform teaching and learning? Gazing into the crystal ball and emerging with the right answer is one of technologys most complex tricks.

History shows us that the answer is rarely no. We are all too convinced by our own enthusiasm that we assume is shared by every teacher around the globe, and so we push our chosen platforms and technologies with tweets and impassioned speeches. This Darwinian survival of the fittest is a constant and necessary process to refine and select those that can really make a difference.

In the late 1990s I was fortunate to be working alongside ICL (International Computers Limited) in Liverpool on an education initiative powered by innovation and technology. I had the chance to put on a VR headset that was so heavy it almost broke my neck, but it also blew my mind. I was in a world of giant blocks that looked like trees and rocks and a dinosaur that wouldnt look out of place in Minecraft, but with much lower resolution. Back then, it was a stunning vision of the future and much was made across the globe of the new virtual world we would all soon inhabit, not to mention the dangers that lurked therein and the certain demise of our social fabric as we retreated from actual reality (where do I sign up?). The answer to the question of whether this was a new pedagogical dawn was a resigned and forced no when we learnt of the enormous costs and technical barriers of bringing it into the classroom.

But that was the 20th century. Fast forward to the 21st century and thanks to Moores Law, the technology required is exponentially more powerful and affordable. We have the ability to trick our minds via our physical senses, convincing ourselves that something is happening when its most definitely not: that the object appearing through the lens of the tablet is really there, or that your body is in motion when you are stationary; that the thing you can hear behind you really is breathing down your neck. Thrills and gimmicks can have a place in the classroom, but they have a fleeting and elusive impact, hard to grab hold of and utilise for learning as it rapidly dissipates. Careful planning is required to unashamedly manipulate the receiving brains into contextualising the power of immersion.

In Discovery Educations immersive studio, we have long held two basic questions in mind: the first is So what?. We must have a compelling, learning outcome-based reason to go to the effort and expense of crafting immersion. Conversely, teachers must have a compelling reason to use them.

You might also like: Industry must get hands-on to plug the tech skills gap

As we graduate from virtual reality rollercoasters and 3D augmented reality planets hovering over a page, we start to appreciate the power true immersion can have. If we promise to take pupils on an impossible field trip to the lunar surface in the footsteps of the Apollo programme, its got to deliver on many fronts 2D, 360-degree photographs will only get you so far and will leave a moderate impression. But if you recreate the lunar surface accurately in 3D, overlay the actual audio from mission control in gorgeous 3D ambisonic sound and then let users walk, explore and interact. Interesting things start to happen. Feed in the narrative of the bold, vast, audacious and beautiful ambition to go to the moon alongside the magnificent desolation of the lunar surface, as described by Buzz Aldrin. Put a child (or adult) in the virtual seat of the lunar rover from Apollo 15 and observe their absolute belief that they are driving it in the foothills of the lunar Apennine mountain range 250,000 miles away. The wonder and emotional response is real and a precursor to what follows.

Using well designed and integrated augmented reality (AR) has an equally powerful immersive effect. Immersion occurs when a persons senses are displaced, even overwhelmed, by something completely out of the ordinary appearing, almost magically in front of their eyes. As the science fiction writer and futurist Arthur C. Clarke famously exclaimed, any sufficiently advanced technology is indistinguishable from magic. Using AR to replace the surface of a desk with a mountain range, or the sports hall with the surface of Mars, creates powerful moments of magic. In the ever-skilled hands of a teacher, our second guiding question, What next? comes into play. Whether using augmented or virtual technology, we are enhancing reality and amplifying the learning experience.

Any teacher will tell you that when pupils lean into a concept or experience, an opportunity arises to capitilise and exploit the immersive effect. Immersion embeds knowledge, sometimes indelibly. When a child sees an abstract fossil transform, seemingly in real life in front of them, into a living creature from our prehistoric past, they remember the moment and in doing so, file away the knowledge surrounding it; the name, the science, the period. It can even spark a love of learning based on that topic.

We cant use these techniques every day and they must be carefully deployed. When we use them effectively, pupils emerge from these atmospheric, inspiring experiences ready to write, paint, create and talk about what they have just lived. They are ready to learn. They have been there, seen something different and they have a perspective to share with the world. Let them loose and express it any way they can.

Explore Discovery Educations immersive learning experiences at: discoveryeducation.co.uk/immersive-experiences

View original post here:

Immersive learning: the power of enhanced reality - Education Technology

Posted in Virtual Reality | Comments Off on Immersive learning: the power of enhanced reality – Education Technology

What’s Genetic Engineering? | Live Science

Posted: at 11:12 pm

Genetic engineering is the process of using technology to change the genetic makeup of an organism - be it an animal, plant or a bacterium.

This can be achieved by using recombinant DNA (rDNA), or DNA that has been isolated from two or more different organisms and then incorporated into a single molecule, according to the National Human Genome Research Institute (NHGRI).

Recombinant DNA technology was first developed in the early 1970s, and the first genetic engineering company, Genentech, was founded in 1976. The company isolated the genes for human insulin into E. coli bacteria, which allowed the bacteria to produce human insulin.

After approval by the Food and Drug Administration (FDA), Genentech produced the first recombinant DNA drug, human insulin, in 1982. The first genetically engineered vaccine for humans was approved by the FDA in 1987 and was for hepatitis B.

Since the 1980s, genetic engineering has been used to produce everything from a more environmentally friendly lithium-ion battery to infection-resistant crops such as the HoneySweet Plum. These organisms made by genetic engineering, called genetically modified organisms (GMOs), can be bred to be less susceptible to diseases or to withstand specific environmental conditions.

But critics say that genetic engineering is dangerous. In 1997, a photo of a mouse with what looked like a human ear growing out of its back sparked a backlash against using genetic engineering. But the mouse was not the result of genetic engineering, and the ear did not contain any human cells. It was created by implanting a mold made of biodegradable mesh in the shape of a 3-year-old's ear under the mouse's skin, according to the National Science Foundation, in order to demonstrate one way to produce cartilage tissue in a lab.

While genetic engineering involves the direct manipulation of one or more genes, DNA can also be controlled through selective breeding. Precision breeding, for example, is an organic farming technique that includes monitoring the reproduction of species members so that the resulting offspring have desirable traits.

A recent example of the use of precision breeding is the creation of a new type of rice. To address the issue of flooding wiping out rice crops in China, Pamela Ronald, a professor of plant pathology at the University of California-Davis, developed a more flood-tolerant strain of rice seed.

Using a wild species of rice that is native to Mali, Ronald identified a gene, called Sub1, and introduced it into normal rice varieties using precision breeding creating rice that can withstand being submerged in water for 17 days, rather than the usual three.

Calling the new, hardier rice the Xa21 strain, researchers hope to have it join the ranks of other GMOs currently being commercially grown worldwide, including herbicide-tolerant or insect-resistant soy, cotton and corn, within the next year, Ronald said. For farmers in China, the world's top producer and consumer of rice, being able to harvest enough of the crop to support their families is literally a matter of life and death.

Because Ronald used precision breeding rather than genetic engineering, the rice will hopefully meet with acceptance among critics of genetic engineering, Ronald said.

"The farmers experienced three to five fold increases in yield due to flood tolerance," Ronald said at a World Science Festival presentation in New York. "This rice demonstrates how genetics can be used to improve the lives of impoverished people."

Got a question? Email it to Life's Little Mysteries and we'll try to answer it. Due to the volume of questions, we unfortunately can't reply individually, but we will publish answers to the most intriguing questions, so check back soon.

Read more from the original source:
What's Genetic Engineering? | Live Science

Posted in Genetic Engineering | Comments Off on What’s Genetic Engineering? | Live Science

Is it time to have a national conversation about genetic engineering? – TVNZ

Posted: at 11:12 pm

Were proud to be Nuclear Free. We want to be Predator Free. But what about GE Free?Is it time to have a national conversation about genetic engineering?

Dr Sean Simpson Source: 1 NEWS

As I sit opposite Dr Sean Simpson in his companys high-tech Chicago HQ, I cant help but notice his T-Shirt.

Firstly, because its bright yellow. Secondly because hes worn it before he tells me he owns three, all in various stages of fading. The message on the front however couldnt be clearer Science Doesnt Care What You Believe.

Simpson is a man on a mission to reduce the worlds carbon footprint a mission that began in New Zealand.

It was a very basic set up when he started his company LanzaTech with the late Dr Richard Forster in an Auckland basement back in 2005.

Our first experiments were done with a rotisserie unit bought from The BBQ Warehouse and two defunct refrigeration units from the local dairy, he laughs.

Both scientists, Simpson and Forster set out to make a clean burning fuel, ethanol from waste products i.e. pollution and rubbish. They succeeded - the company is now valued at over $1 billion.

Its understandable then that when LanzaTech announced in 2014 it was relocating its head office from Auckland to Chicago there was a sense that New Zealand had missed a major opportunity to retain this innovative and world-leading company.

Simpson acknowledges that New Zealand is a fantastic place in which to start a business, but one of the key reasons for their move was our stance on genetic engineering.

LanzaTechs process uses microbes that secrete ethanol when they are fed waste gases but by genetically modifying the bugs, they can produce a range of other chemicals i.e. not just ethanol. Those chemicals can be used to make things we need every day without contributing to our carbon footprint, and you can't scale that technology in New Zealand.

The government's interim climate change committee has pointed to that stance (which predominantly confines GE to the lab), as a possible barrier to lowering our carbon emissions.

GE also has potential applications in pest control remember were aiming to be predator free by 2050. However, for now, the rules arent likely to change.

Professor Peter Dearden, the Director of Genomics Aotearoa from the University of Otago says pest control, agriculture and medicine are key areas where Kiwis could benefit from GE technology but that our regulations have had a chilling effect on research as much of it depends on whether companies can take their technology to market.

The result of which is that were not doing critical work we need to do in the laboratory because the chances of it being used are so small".

Dearden believes our position will only change if the issue is personalised the best approach is for us to look at NZ solutions to NZ problems, things like Kauri dieback, invasive wasps. The key thing is making it about people, if you or I see a personal benefit then were much more likely to see it differently".

Ultimately, he says its about weighing up the risks and benefits so the public can decide.

The Minister for the Environment, David Parker, was advised on the matter late last year by officials. His office confirmed on Friday that he is still considering it as it is not a straightforward issue.

Even though our GE rules were a factor in LanzaTech heading off-shore, Bruce Jarvis of the governments business support agency, Callaghan Innovation, says it wasnt the only reason as for NZ companies to be successful they have to be close to their market.

In the US most petrol is blended with up to 10 per cent ethanol so theres an enormous opportunity for ethanol producers there.

Jarvis says even though it can be a blow to the Kiwi psyche when a company leaves (especially when its received government start-up funding), there isnt enough focus on their legacy and ongoing benefits to NZ.

He says often whats left behind are highly skilled people who start their own companies and share what theyve learned in terms of commercialisation and thats gold for us.

Its part of the cycle, these people are entrepreneurs, they get bored quickly, this is what they love doing, they love building successful tech companies.

Its an ambition Sean Simpson shares, hes determined to come back to New Zealand for good one day to reinvest his time and talent in other tech start-ups.

In the meantime, although the sentiment behind Seans favourite T-shirt will never change, it could be a lot more faded before theres a significant change to our GE rules.

For the full story on Sean Simpsons incredible journey with LanzaTech, watch SUNDAY, on TVNZ1 at 7:30pm.

Read more here:
Is it time to have a national conversation about genetic engineering? - TVNZ

Posted in Genetic Engineering | Comments Off on Is it time to have a national conversation about genetic engineering? – TVNZ

Solution for a scourge? University of Minnesota scientist is progressing with carp-killer tool – Minneapolis Star Tribune

Posted: at 11:12 pm

Sam Erickson followed his love of science to outer space one summer during an internship at NASA. He came away fascinated by seeing into deep space by interpreting interaction between matter and infrared radiation.

Now a full-fledged researcher at the University of Minnesotas College of Biological Sciences, the 25-year-old Alaska native is immersed in something far more earthly: killing carp. His fast-moving genetic engineering project is drawing attention from around the country as a potential tool to stop the spread of invasive carp.

I want to make a special fish, Erickson said in a recent interview at Gortner Laboratory in Falcon Heights.

In short, he plans to produce batches of male carp that would destroy the eggs of female carp during spawning season. The modified male fish would spray the eggs as if fertilizing them. But the seminal fluid thanks to DNA editing would instead cause the embryonic eggs to biologically self-destruct in a form of birth control that wouldnt affect other species nor create mutant carp in the wild.

His goal is to achieve the result in a controlled setting using common carp. From there, it will be up to federal regulators and fisheries biologists to decide whether to translate the technology to constrain reproduction of invasive carp in public waters.

What were developing is a tool, Erickson said. If we could make this work, it would be a total game-changer.

Supervised by University of Minnesota assistant professor Michael Smanski, Erickson recently received approval to accelerate his project by hiring a handful of undergraduate assistants. He also traveled last month to Springfield, Ill., to present his research plan to the 2020 Midwest Fish and Wildlife Conference.

Were pretty excited about where his project is at, said Nick Phelps, director of the Minnesota Aquatic Invasive Species Research Center at the U. Things are sure moving fast. Theres excitement and caution.

Ericksons research has received funding from Minnesotas Environment and Natural Resources Trust Fund. No breeding populations of invasive carp have been detected in Minnesota, but the Department of Natural Resources has confirmed several individual fish captures and the agency has worked to keep the voracious eaters from migrating upstream from the lower Mississippi River. Silver carp, bighead carp and other Asian carps pose a threat to rivers and lakes in the state because they would compete with native species for food and habitat.

Erickson views his birth control project as one possible piece in the universitys integrated Asian carp research approach to keep invasive carp out of state waters. Already the DNR has supported electric barriers and underwater sound and bubble deterrents at key migration points. Another Asian carp-control milestone was closing the Mississippi River lock at Upper St. Anthony Falls in Minneapolis in 2015.

Shooting star

Growing up in Anchorage, Erickson had never heard of Macalester College in St. Paul. But he visited the campus at the urging of a friend and felt like he fit in. He majored in chemistry and worked for a year at 3M in battery technology. But his interests tilted toward the natural world and how to better live in cooperation with nature, he said. Erickson met with Smanski about research opportunities at the university and was hired on the spot.

Smanski, one of the universitys top biological engineers, said carp is not an easy organism to work with and Erickson lacked experience in the field. But he hired the young researcher and assigned him to the carp birth control project because he seemed to have a rare blend of determination and intelligence.

I could tell right away when I was talking to him that he was like a shooting star, Smanski said. If you set a problem in front of him, he wont stop until he solves it Hes taken this farther than anyone else.

In two short years, Smanksi said, Erickson has mastered genetic engineering to the point that his research is starting to bear fruit.

With his new complement of research assistants, Erickson aims to clear his projects first major hurdle sometime this year. The challenge is to model his experiment in minnow-sized freshwater zebrafish. The full genetic code of zebrafish like common carp is already known.

Ericksons task is to make a small change to the DNA sequence of male zebrafish, kind of like inserting a DNA cassette into the fish, he said. During reproduction, the alteration will create lethal overexpression of genes in the embryonic eggs laid by females.

By analogy, Erickson said, the normal mating process is like a symphony with a single conductor turning on genes inside each embryo, Erickson said. But the DNA modification sends in a mess of conductors and the mixed signals destroy each embryo within 24 hours.

In the lab we have to make sure were causing the disruption with no off-target effects, he said. If we can do this in zebrafish, we hope to translate it. They are genetically similar to carp.

Ericksons upcoming experimentation with tank-dwelling live carp could be painfully slow because the fish only mate once a year. But hes working his way around that problem by altering lighting conditions and changing other stimuli in his lab to stagger when batches of fish are ready to reproduce.

The birth control process projected to be affordable for fisheries managers if it receives approval is already proven to work in yeast and insects. And Erickson said the same principles of molecular genetics have been used to create an altered, fast-growing version of Atlantic salmon approved for human consumption in the U.S.

Were not building a new carp from the bottom up but its kind of a whole new paradigm, so we have to get it done right, he said.

Visit link:
Solution for a scourge? University of Minnesota scientist is progressing with carp-killer tool - Minneapolis Star Tribune

Posted in Genetic Engineering | Comments Off on Solution for a scourge? University of Minnesota scientist is progressing with carp-killer tool – Minneapolis Star Tribune

The growing viral threat – The Week

Posted: at 11:12 pm

Infectious disease experts warn that it's inevitable that a virus will jump from animals to humans and kill tens of millions. Here's everything you need to know:

Why are experts worried?Picture a new viral disease like the Wuhan coronavirus, now called COVID-19, that passes easily from person to person and spreads rapidly around the globe. But unlike COVID-19, which kills perhaps 2 or 3 percent of its victims, this virus kills 20 percent of those infected. Or 40 percent. It might sound like a disaster movie premise (and in fact it was, in 2011's Contagion), but viral disease experts are in wide agreement that such a pandemic is coming, and that it will inflict unimaginable devastation. The only question is when it will hit. Last September, the Global Preparedness Monitoring Board (GPMB), a group convened in 2018 by the World Bank and the World Health Organization, warned of "a very real threat" of a pandemic that would kill 50 million to 80 million people, cost $3 trillion, and create "widespread havoc, instability, and insecurity." We need only look to the recent past to see how dire things can get: The Spanish flu of 1918 killed between 50 million and 100 million (including 675,000 Americans), or about 3 percent of the global population.

Where would such a virus come from?The most likely scenario is a pathogen that jumps from animals to humans and can spread through the air. The outbreak of COVID-19 was traced to a live-animal market in Wuhan, China, where a bat virus appears to have added some genetic material from a soldierfish. Many viral diseases have been traced to animals, including HIV (which originated in chimpanzees), MERS (camels), SARS (probably bats and civet cats), and Ebola (unknown, but probably bats). Last year researchers at Johns Hopkins ran a simulation of a hypothetical coronavirus emerging from a Brazilian pig farm: The result was 65 million dead within 18 months. Another concern is a familiar very deadly virus that mutates, allowing it to spread more easily. The avian flu H5N1, for example, has proven highly lethal but not very communicable so far. The intentional or accidental release of a manmade pathogen is another threat; new genetic engineering tools have made them far easier to create. A laptop captured from ISIS in 2014 contained instructions on how to weaponize plague bacteria.

Why is this more of a problem now?Human population growth. People are encroaching on previously wild areas where unknown viruses and bacteria lurk in animals; those who become infected carry the pathogens back to densely packed cities, where disease is easily spread. The 1998 emergence of the Nipah virus, for example, was linked to deforestation in Malaysia that displaced fruit bats and put them near pig farms. Pigs became infected, and the virus then spread to farmworkers. In the past 50 years, more than 300 pathogens have emerged or re-emerged, including Zika and yellow fever. At the same time, climate change has enabled insects and animals that carry disease to expand their habitats to new regions. Human migratory patterns are a factor as well: The surge in international travel allows viruses to spread around the globe quickly. "We've created an interconnected, dynamically changing world that provides innumerable opportunities to microbes," says Richard Hatchett of the Coalition for Epidemic Preparedness Innovations. "If there's weakness anywhere, there's weakness everywhere."

Are we prepared for a major pandemic?Not at all. A report released last October by the Global Health Security Index found glaring gaps in readiness; out of 195 countries surveyed, not one was judged fully prepared to handle a major event. In the U.S. under President Trump, the federal budgets for both research and response preparation have been cut, the National Security Council's global health security unit has been disbanded, and the White House official in charge of pandemic response left his job in 2018 and has not been replaced. We're caught in a "cycle of panic and neglect," World Health Organization Director-General Tedros Adhanom Ghebreyesus said. "We throw money at an outbreak, and when it's over, we forget about it and do nothing to prevent the next one."

What needs to be done?Experts say the U.S. and other countries need to spend vastly more money on pandemic preparedness. We need to develop better diagnostic tools, stockpile drugs and vaccines, and fund research into new treatments and vaccine technologies. Above all, there needs to be an international effort to improve sanitation, medical care, and response capability in poorer countries where new diseases are most likely to arise and spread. All of this requires a major change in mindset, say experts. "The world needs to prepare for pandemics the same way it prepares for war," said Microsoft founder Bill Gates, who's invested tens of millions in viral disease research. Humanity's biggest threat, he says, is "not missiles, but microbes."

It's happened many times beforeEpidemics have been a fact of life since the first human settlements. As humans built cities and trade routes, the capacity for pandemics grew, and history is marred by many devastating outbreaks. The earliest on record dates to 430 B.C., when a pestilence that may have been typhoid fever took root in Athens, killing up to two-thirds of the city's population. In A.D. 541, the Justinian plague spread through the Mediterranean world; recurrences over the next two centuries would kill more than 25 percent of the world's population. In the 14th century, another outbreak of plague, called the Black Death driven by fleas that live on rats but can bite humans claimed over 75 million lives, including some 60 percent of the population of Europe, whose cities were piled with reeking corpses. In the 16th and 17th centuries Native Americans were ravaged by smallpox and other diseases brought by European conquerors and colonists; in some areas as much as 90 percent of native populations were wiped out. The pandemic with the greatest number of casualties in history was the Spanish flu of 1918. It infected some 500 million people worldwide a third of the population and killed as many as 100 million.

This article was first published in the latest issue of The Week magazine. If you want to read more like it, try the magazine for a month here.

Visit link:
The growing viral threat - The Week

Posted in Genetic Engineering | Comments Off on The growing viral threat – The Week

Biobased Plastics and the Sustainability Puzzle – The National Law Review

Posted: at 11:12 pm

Friday, February 28, 2020

As consumer interest in sustainable alternatives to fossil-based plastics continues to grow and food and beverage companies set goals to reduce their environmental footprint, the use of biobased plastics in food packaging is expanding. Revenue for the U.S. biobased plastics manufacturing sector was $177.9 million annually, according to a 2018 report prepared for U.S. Department of Agriculture (USDA), titled,An Economic Impact Analysis of the U.S. Biobased Products Industry.[1]The report also estimates a 4.5% grow rate for the sector over the five years from 2018 through 2023.

The total production volume of bio-based building blocks and polymers (worldwide) was 7.5 million tons in 2018, or about 2% of the production volume of petrochemical polymers, with a growth rate of 4% expected through 2023, according to a report by Nova-Institute GmbH.[2]The potential for significant growth is much higher, but low oil prices and a lack of political support are hampering growth, notes the report.

Examples of the use of biobased plastics in food packaging include Snickerscandy bars with a bio-based film wrapper made from potato starch by-products that were introduced by Mars in 2016 and the soon-to-be-available 20-ounce size Dansani water bottles made with up to 50% of renewable plant-based and recycled PET material beginning in mid-2020. The Coca-Cola Company first launched recyclable bottles made partially from plants (PlantBottle) in 2009 and expanded access to the PlantBottle IP in early 2019 to encourage industry-wide adoption. The new bottle, referred to as HybridBottle, includes recycled PET material in addition to the plant-based material.[3]

Other uses of biobased plastics in food contact articles include bags; containers for fruit, vegetables, eggs and meat; bottles for soft drinks and dairy products; flexible packaging; and coffee pods. Biobased plastics also have been used in food service ware, such as bowls, cups, and straws.

Like most materials that are intended to be used to package or otherwise in contact with food, biobased materials are also subject to the regulatory requirements imposed by several jurisdictions throughout the world. This article will focus on the requirements related to obtaining regulatory approval of biobased food contact materials (FCMs) in the U.S. and the European Union (EU), safety considerations, and future considerations.

Well begin with some definitions. Biobased means related to or based out of natural, renewable, or living sources. Biodegradable means capable of being broken down naturally to basic elemental components (water, biomass, and gas) with the aid of microorganisms. Compostable plastics are a subset of biodegradable plastics that biodegrade under specified conditions and timeframes.

Several international standards are available to determine compostability of plastic packaging. The European Committee for Standardization, standard EN 13432, Requirements for packaging recoverable through composting and biodegradation, is a harmonized European standard and is linked to the EU Directive on Packaging and Packaging Waste (94/62/EC). In the U.S., American Society for Testing and Materials standard ASTM 6400, Standard Specification for Labeling of Plastics Designed to be Aerobically Composted in Municipal of Industrial Facilities, is cited in various regulations. For example, California requires that food and beverage containers labeled as compostable must meet the ASTM D6400 standard.

An important distinction exists between biobased plastics and bioplastics. European Bioplastics defines bioplastics as a plastic material that is either biobased OR biodegradable OR both. On the other hand, biobased plastics are plastics manufactured from renewable biomass, such as vegetable oil, cornstarch, pea starch, and microbiota. Accordingly, a product can be both biobased and biodegradable, but it can also be biobased and not biodegradable, or biodegradable and not biobased.

Bio-based food contact materials (BBFCMs) are derived from biological renewable resources (animal or plant biomass) that consist of polymers directly extracted or removed from biomass, produced by chemical synthesis using renewable bio-based monomers, or produced by microorganisms or genetically modified bacteria, according to the 2019 report,Bio-Based Materials For Use In Food Contact Applications.[4]

The first bioplastics were developed from traditional agricultural resources, such as sugarcane, soy protein, starch, and cellulose. Within this group are polymers directly extracted from biomass and polymers produced by chemical synthesis using renewable biobased monomers. For example, polylactic acid (PLA), which is commonly used as a base material or coating in food packaging, is produced through the polymerization of lactic acid, which can be derived from the fermentation of agri-food wastes such as sugar beets or sugarcane.

PLA exhibits barrier properties comparable to fossil-based plastics, such as low-density polyethylene (PP) and polyethylene (PE), and has been used as a replacement for them, although it has the disadvantage of being more expensive to produce. The first generation of bioplastics also includes polymers produced by microorganisms or microbial fermentation, such as polyhydroxyalkanoate (PHA) and poly-3-hydroxybutyrate.

The second generation of bioplastics that are beginning to be introduced are made from raw materials such as food byproducts, wood, and sawdust, explained Patrick Krieger, Plastics Industry Association, in an interview for the 2018 USDA report mentioned above. He added that the next or third generation of bioplastics, many of which currently are in the laboratory stage, will come from algae and other organisms that are not associated with the production of food. Another area of research is the production of strains of microbes through genetic engineering that can improve yields of biobased polymers.

While biobased plastics offer a myriad of benefits related to sustainability, there are some concerns related to end-of-life issues. A potential disadvantage arising from the use of BBFCMs is the need to ensure effective segregation from fossil-based materials to enable their effective recycling, suggests Fera in the UK Report. For example, the presence of small quantities of PLA can prevent recycling of PET into a transparent product suitable for re-use in food and drink applications. Also, bioplastics produced from polymer blends that include biobased fillers may be difficult to recycle or may adversely affect the existing recycling stream.

Generally speaking, biobased plastics are required to comply with the same regulations with respect to food safety as fossil-based plastics.

In the U.S., the Federal Food, Drug and Cosmetic Act, 21 U.S.C. Section 301, et seq., provides that any substance, the intended use of which, is reasonably expected to become a component of food (e.g., migrates from packaging into food) must be authorized for such use by the U.S Food and Drug Administration (FDA) through a food additive regulation or in the case of packaging and other food contact materials, a Food Contact Notification (FCN), or the substance must be generally recognized as safe (GRAS), or used in accordance with a sanction or approval issued prior to 1958 by either the U FDA or USDA, among other potentially available exemptions and exclusions.

Polymers cleared for food-contact use through food additives petitions are listed in Title 21 of the Code of Federal Regulations (C.F.R.), Part 177, "Indirect Food Additives: Polymers." This part is further divided by types of polymers. Polymers and other food contact substances can also be cleared through an FCN. FCNs are proprietary and only may be relied on by the notifier/manufacturer and its customers.

For plastic packaging materials, FDA regulations generally clear the final polymer, not unreacted starting materials. There are, however, some exceptions where FDA permits certain starting reactants to be used to make a finished polymer. For example, in Part 175.300, "Resinous and polymeric coatings," FDA lists cleared precursor materials since these substances are typically complex and often cross-linked compounds.

In addition, any food-packaging material intended to come in contact with food must comply with FDA's Good Manufacturing Practices (GMP) regulation, found in Title 21 C.F.R. Section174.5. GMP requirements apply to both the use level of an additive as well as to its purity. This means that additives may only be used in an amount necessary to achieve their function or purpose and may not contain impurities at levels sufficiently high as to result in the adulteration of food.

In the EU, the Plastics Regulation, (EU) No. 10/2011, governs the use of plastic materials and articles intended to contact food. It applies to the plastic layers in all multilayer food-contact articles. This regulation includes a positive list of permissible monomers and other starting substances, additives (other than colorants), and some polymer production aids. In contrast to U.S. regulations, the EU Plastics Regulation does not include limits on co-reactants or use levels for starting materials, temperature restrictions, specification of single versus repeated use and food types for specific substances.

Anyone can petition to add a new monomer or additive to the Plastics Regulation's positive list. These petitions are first reviewed by the European Food Safety Authority (EFSA), which will issue a formal opinion on the safety of the substance when intended for use with food and any limitations that should be observed. Once EFSA has issued an opinion, finding a proposed use of a substance to be safe, the European Commission (EC), provided it concurs with the opinion, will add the substance to the list through an amendment to the regulation.

Finally, all FCMs in the EU must comply with the safety criteria set forth in Framework Regulation (EC) No. 1935/2004, which specifies that that food contact materials and articles may not transfer their constituents to food in quantities that could endanger human health, bring about an unacceptable change in the composition of the food, or bring about a deterioration in the organoleptic characteristic of the food. All food-contact materials must also comply with the Good Manufacturing Practice Regulation, (EC) No 2023/2006.

While certain biobased polymers have been cleared in the U.S. and the EU, such as PHA, there are a number of regulatory issues that need to be considered for new materials or new applications for existing materials. For example, when preparing a submission to obtain clearance of the material, what are the appropriate food simulants to be used to estimate the potential for migration? Likewise, how do you prove to authorities (and to customers) that the substance is stable for an intended application that involves a specific type of food or temperature range?

Also, in some instances, it may be necessary to demonstrate the suitable purity of product with respect to the potential presence of organic matter, such as cellular debris. Possible contamination with naturally produced contaminants (e.g., mycotoxins and algal biotoxins) may also need to be considered. Also, possible contamination with organic compounds (e.g., dioxins and polychlorinated phphenyls) or inorganic compounds (e.g., lead and arsenic), nitrates, pesticide and veterinary medicines residues, and plant toxins may need to be evaluated. In addition, depending on the feedstock and processing conditions, process contaminates such as acrylamide could be formed due to Maillard reactions occurring when complex biomaterials such as food are heated.

Additional questions could result from the inclusion of nanoscale materialsto improve barrier function and to achieve similar or better shelf lifein biobased packaging. There could also be questions about the genetically modified microbial strains, if they are used, to produce the biobased plastic. The UK Food Standards Agency (FSA) report points out that, to date, there have not been any studies that address the presence of genetically modified materials present in the biomass used for the production of BBFCMs.

Another regulatory consideration concerns the use of alternative fiber sources in biobased food packagingan area that is being investigated in both the U.S. and the EU. A potential application for fiber is the addition of bamboo to a polymer backbone for products such re-usable cups. Regulators in the EU are currently considering the use of bamboo in contact with food. With respect to other fiber sources, in the U.S., pulp is listed as generally recognized as safe (GRAS) under 21 C.F.R. Section186.1673 for food packaging uses, including paper production. It is defined as soft, spongy pith inside the stem of a plant such as wood, straw, sugarcane, or other natural plant sources, and therefore gives wide latitude in the potential candidates that could be available for use as alternative pulp sources. In the EU, untreated wood flour and fibers are cleared as additives in the Plastics Regulation. However, in all of these cases, the suitable purity/safety demand of the regulations are still applicable.

Conclusion

The report,Bio-Based Materials for Use In Food Contact Applications, was the result of a review commissioned by the FSA on potential risks and other unintended consequences of replacing fossil-based plastic food contact materials with BBFCMs. The key findings from the study are summarized below.

While the current use of BBFCMs is low, the UK report predicts that their use will grow significantly in response to consumer pressures, manufacturer demand, and increased levels of industrial production. Also contributing to the growth of biobased plastic are new regulations that encourage movement toward sustainable products, especially in the EU, and the development of biobased polymers with increased performance benefits, such as ones that can be used in lighter weight bottles that can hold carbonated pressure longer. Finally, increased demand for biobased products is likely to drive down production costs.

*This article is reprinted with the permission ofFood Safety magazine. It first appeared in theFebruary/March 2020 issue.

[1]The report is available at:https://www.biopreferred.gov/BPResources/files/BiobasedProductsEconomicAnalysis2018.pdf.

[2]See Nova-Institute GmbH press release at:http://news.bio-based.eu/2018-was-a-very-good-year-for-bio-based-polymers-several-additional-capacities-were-put-into-operation/.

[3]The Coca-Cola Company issued a press release on August 13, 2019, on the new HybridBottle, that can be found here:https://www.coca-colacompany.com/press-center/press-releases/dasani-takes-steps-to-reduce-plastic-waste.

[4]This report was prepared by Fera Science Limited (Fera) for the UK Food Standards Agency and is available here:https://www.food.gov.uk/sites/default/files/media/document/bio-based-materials-for-use-in-food-contact-applications.pdf.

Read more from the original source:
Biobased Plastics and the Sustainability Puzzle - The National Law Review

Posted in Genetic Engineering | Comments Off on Biobased Plastics and the Sustainability Puzzle – The National Law Review

Theres a better way out of the PG&E bankruptcy – San Francisco Chronicle

Posted: at 11:08 pm

Pacific Gas and Electric Co.s lawyers recently submitted a revised plan to take the company out of bankruptcy, masterfully sprinkling billions among the companys most powerful stakeholders hedge funds, shareholders and bondholders along with perhaps $1 billion in fees to consultants, banks and, yes, attorneys. All will cheer the companys procession out of bankruptcy court and over to the California Public Utilities Commission, again and again, for rate hikes.

But 73,000 wildfire victims and 16 million California ratepayers should not be cheering.

The wildfire victims deserve better. The utility will pay those claimants from a $13.5 billion fund financed half in cash and half in stock PG&E stock. Thats right: The current plan tethers the victims financial futures to the performance of the company that burned down their homes. It also saddles those families with the risk of any future wildfires started by PG&Es failing equipment. Thats chutzpah.

If the victims are worried about uncertain PG&E stock valuations, they should be. In the 23-month span over which the companys wires ignited 18 wildfires killing 107 people and destroying 15,700 homes the companys shares plummeted 90%. What about the next wildfire season?

Last year, a federal court monitor found evidence of shoddy work, poor record-keeping and falsified documents in the companys vegetation maintenance efforts. More recently, PG&E resisted a judges efforts to tie executive bonuses to safety improvements.

The company must compensate wildfire victims entirely in cash, just as it pledged all-cash payments to insurance companies and other claimants. Opportunistic hedge funds gobbled up insurance claims at steep discounts and will reap steep profits on their $11 billion payout in cash, not stock.

PG&Es plan also unfairly dilutes the victims claims by committing to secure bondholders claims over theirs and by allowing the Federal Emergency Management Agency and other government agencies to recover funds from the victims allocation.

Millions of customers dont fare much better under PG&Es plan, which stands to leave us depending on a company with a junk-level credit rating to provide our power. The plans generous distribution of assets to powerful stakeholders will encumber the utility with heavy debts, and many observers doubt it will emerge with the financial soundness to issue investment-grade bonds. Junk-rated PG&E bonds would not only inhibit PG&Es access to capital but also inflate its financing costs a worrisome prospect for a company whose exit plan requires it to take on $38 billion in debt and pay billions of dollars a year in interest.

The result would be hefty rate hikes that force customers to pay hundreds of millions of dollars more to Wall Street through their monthly utility bills. PG&E optimistically projects that electricity rates will increase by a third over the next three years, but more realistic assumptions would push energy bills even higher. Company executives have little to fear, however: By turning wildfire victims into shareholders, they will have created a sympathetic bulwark against customer objections.

There is a better way: transforming PG&E into a customer-owned private company. A customer-owned utility has the best chance of restoring safe, reliable and affordable power delivery by aligning the companys financial interest with the public interest and sharply reducing capital costs. The leaner capital structure of a customer-owned company would avoid billions of dollars in expenses for dividends, high-yield bonds and federal taxes. It would reinvest those savings in grid safety and reliability, compensating victims and dampening rate increases. And unlike a public takeover, a customer-driven buyout would avoid exorbitant costs to taxpayers and endless legal battles.

Getting there wouldnt be easy. We would need a bankruptcy court willing to force shareholders and institutional funds to absorb the losses that any investor should incur in a bankruptcy. We would need a Public Utilities Commission willing to stand up to incessant industry pleas for excessive rate increases. And we would need Sacramento lawmakers to continue resisting company efforts to jam an inadequate plan through bankruptcy.

But we should not waste this crisis or the opportunity it presents to transform PG&E into a responsible, responsive utility. Financial institutions stand ready to effectuate a buyout. We need the states leaders to embrace it as nearly 200 local elected officials, representing more than 9 million Californians, have urged them to do.

Regardless of the outcome, ratepayers collectively face a burden of many billions of dollars in long-overdue investment in maintenance, upgrades, and microgrids. If customers are going to pay for PG&E, we ought to own it.

Sam Liccardo is the mayor of San Jose, the largest city in PG&Es service area. He leads a coalition of 195 mayors, supervisors and other elected officials urging that PG&E become a customer-owned utility.

Read more:

Theres a better way out of the PG&E bankruptcy - San Francisco Chronicle

Posted in Bankruptcy | Comments Off on Theres a better way out of the PG&E bankruptcy – San Francisco Chronicle

The Year in Bankruptcy: 2019 | Jones Day – JD Supra

Posted: at 11:08 pm

Updated: May 25, 2018:

JD Supra is a legal publishing service that connects experts and their content with broader audiences of professionals, journalists and associations.

This Privacy Policy describes how JD Supra, LLC ("JD Supra" or "we," "us," or "our") collects, uses and shares personal data collected from visitors to our website (located at http://www.jdsupra.com) (our "Website") who view only publicly-available content as well as subscribers to our services (such as our email digests or author tools)(our "Services"). By using our Website and registering for one of our Services, you are agreeing to the terms of this Privacy Policy.

Please note that if you subscribe to one of our Services, you can make choices about how we collect, use and share your information through our Privacy Center under the "My Account" dashboard (available if you are logged into your JD Supra account).

Registration Information. When you register with JD Supra for our Website and Services, either as an author or as a subscriber, you will be asked to provide identifying information to create your JD Supra account ("Registration Data"), such as your:

Other Information: We also collect other information you may voluntarily provide. This may include content you provide for publication. We may also receive your communications with others through our Website and Services (such as contacting an author through our Website) or communications directly with us (such as through email, feedback or other forms or social media). If you are a subscribed user, we will also collect your user preferences, such as the types of articles you would like to read.

Information from third parties (such as, from your employer or LinkedIn): We may also receive information about you from third party sources. For example, your employer may provide your information to us, such as in connection with an article submitted by your employer for publication. If you choose to use LinkedIn to subscribe to our Website and Services, we also collect information related to your LinkedIn account and profile.

Your interactions with our Website and Services: As is true of most websites, we gather certain information automatically. This information includes IP addresses, browser type, Internet service provider (ISP), referring/exit pages, operating system, date/time stamp and clickstream data. We use this information to analyze trends, to administer the Website and our Services, to improve the content and performance of our Website and Services, and to track users' movements around the site. We may also link this automatically-collected data to personal information, for example, to inform authors about who has read their articles. Some of this data is collected through information sent by your web browser. We also use cookies and other tracking technologies to collect this information. To learn more about cookies and other tracking technologies that JD Supra may use on our Website and Services please see our "Cookies Guide" page.

We use the information and data we collect principally in order to provide our Website and Services. More specifically, we may use your personal information to:

JD Supra takes reasonable and appropriate precautions to insure that user information is protected from loss, misuse and unauthorized access, disclosure, alteration and destruction. We restrict access to user information to those individuals who reasonably need access to perform their job functions, such as our third party email service, customer service personnel and technical staff. You should keep in mind that no Internet transmission is ever 100% secure or error-free. Where you use log-in credentials (usernames, passwords) on our Website, please remember that it is your responsibility to safeguard them. If you believe that your log-in credentials have been compromised, please contact us at privacy@jdsupra.com.

Our Website and Services are not directed at children under the age of 16 and we do not knowingly collect personal information from children under the age of 16 through our Website and/or Services. If you have reason to believe that a child under the age of 16 has provided personal information to us, please contact us, and we will endeavor to delete that information from our databases.

Our Website and Services may contain links to other websites. The operators of such other websites may collect information about you, including through cookies or other technologies. If you are using our Website or Services and click a link to another site, you will leave our Website and this Policy will not apply to your use of and activity on those other sites. We encourage you to read the legal notices posted on those sites, including their privacy policies. We are not responsible for the data collection and use practices of such other sites. This Policy applies solely to the information collected in connection with your use of our Website and Services and does not apply to any practices conducted offline or in connection with any other websites.

JD Supra's principal place of business is in the United States. By subscribing to our website, you expressly consent to your information being processed in the United States.

You can make a request to exercise any of these rights by emailing us at privacy@jdsupra.com or by writing to us at:

You can also manage your profile and subscriptions through our Privacy Center under the "My Account" dashboard.

We will make all practical efforts to respect your wishes. There may be times, however, where we are not able to fulfill your request, for example, if applicable law prohibits our compliance. Please note that JD Supra does not use "automatic decision making" or "profiling" as those terms are defined in the GDPR.

Pursuant to Section 1798.83 of the California Civil Code, our customers who are California residents have the right to request certain information regarding our disclosure of personal information to third parties for their direct marketing purposes.

You can make a request for this information by emailing us at privacy@jdsupra.com or by writing to us at:

Some browsers have incorporated a Do Not Track (DNT) feature. These features, when turned on, send a signal that you prefer that the website you are visiting not collect and use data regarding your online searching and browsing activities. As there is not yet a common understanding on how to interpret the DNT signal, we currently do not respond to DNT signals on our site.

For non-EU/Swiss residents, if you would like to know what personal information we have about you, you can send an e-mail to privacy@jdsupra.com. We will be in contact with you (by mail or otherwise) to verify your identity and provide you the information you request. We will respond within 30 days to your request for access to your personal information. In some cases, we may not be able to remove your personal information, in which case we will let you know if we are unable to do so and why. If you would like to correct or update your personal information, you can manage your profile and subscriptions through our Privacy Center under the "My Account" dashboard. If you would like to delete your account or remove your information from our Website and Services, send an e-mail to privacy@jdsupra.com.

We reserve the right to change this Privacy Policy at any time. Please refer to the date at the top of this page to determine when this Policy was last revised. Any changes to our Privacy Policy will become effective upon posting of the revised policy on the Website. By continuing to use our Website and Services following such changes, you will be deemed to have agreed to such changes.

If you have any questions about this Privacy Policy, the practices of this site, your dealings with our Website or Services, or if you would like to change any of the information you have provided to us, please contact us at: privacy@jdsupra.com.

As with many websites, JD Supra's website (located at http://www.jdsupra.com) (our "Website") and our services (such as our email article digests)(our "Services") use a standard technology called a "cookie" and other similar technologies (such as, pixels and web beacons), which are small data files that are transferred to your computer when you use our Website and Services. These technologies automatically identify your browser whenever you interact with our Website and Services.

We use cookies and other tracking technologies to:

There are different types of cookies and other technologies used our Website, notably:

JD Supra Cookies. We place our own cookies on your computer to track certain information about you while you are using our Website and Services. For example, we place a session cookie on your computer each time you visit our Website. We use these cookies to allow you to log-in to your subscriber account. In addition, through these cookies we are able to collect information about how you use the Website, including what browser you may be using, your IP address, and the URL address you came from upon visiting our Website and the URL you next visit (even if those URLs are not on our Website). We also utilize email web beacons to monitor whether our emails are being delivered and read. We also use these tools to help deliver reader analytics to our authors to give them insight into their readership and help them to improve their content, so that it is most useful for our users.

Analytics/Performance Cookies. JD Supra also uses the following analytic tools to help us analyze the performance of our Website and Services as well as how visitors use our Website and Services:

Facebook, Twitter and other Social Network Cookies. Our content pages allow you to share content appearing on our Website and Services to your social media accounts through the "Like," "Tweet," or similar buttons displayed on such pages. To accomplish this Service, we embed code that such third party social networks provide and that we do not control. These buttons know that you are logged in to your social network account and therefore such social networks could also know that you are viewing the JD Supra Website.

If you would like to change how a browser uses cookies, including blocking or deleting cookies from the JD Supra Website and Services you can do so by changing the settings in your web browser. To control cookies, most browsers allow you to either accept or reject all cookies, only accept certain types of cookies, or prompt you every time a site wishes to save a cookie. It's also easy to delete cookies that are already saved on your device by a browser.

The processes for controlling and deleting cookies vary depending on which browser you use. To find out how to do so with a particular browser, you can use your browser's "Help" function or alternatively, you can visit http://www.aboutcookies.org which explains, step-by-step, how to control and delete cookies in most browsers.

We may update this cookie policy and our Privacy Policy from time-to-time, particularly as technology changes. You can always check this page for the latest version. We may also notify you of changes to our privacy policy by email.

If you have any questions about how we use cookies and other tracking technologies, please contact us at: privacy@jdsupra.com.

Visit link:

The Year in Bankruptcy: 2019 | Jones Day - JD Supra

Posted in Bankruptcy | Comments Off on The Year in Bankruptcy: 2019 | Jones Day – JD Supra

Fish fry and bankruptcy: Buffalo’s first Friday of Lent – WKBW-TV

Posted: at 11:08 pm

TONAWANDA, N.Y. (WKBW) Fridays during Lent means fish fry for many across Western New York. Joseph Kroczynski has been in charge at Saint Amelia's School fish fry in Tonawanda for more than 15 years.

"We love doing it to see the joy of people coming in. It's like a club, an annual club," Krocynski said. The Catholic school holds a fish fry every Friday during Lent. Seven volunteers man the kitchen cooking up 250 orders. All of the proceeds go back towards the school.

"The price is right. The people are nice. The community is good. I'm a community guy, so I sort of stay in my community and do the best I can," Jerry Niedziela said. He was one of the first for fish fry as a steady stream of people came in throughout the evening.

"It's supporting the church and it's supporting the school and you meet your friends and you don't have to cook," Carol Reingold said. She's been a member of St. Amelia's for 45 years.

But the first Friday of the Lent season in Buffalo was also marked with the announcement of the Diocese declaring bankruptcy. Weather is always a topic of conversation, according to Kroczynski, but adds the news about the Diocese also came up at the dinner table.

"I don't think it effects your faith. That's a financial part. It's not that your faith had anything to do with the finances of the whole situation," Kroczynski said.

Reingold adding, "I believe in my church and there's good and bad in everybody and I guess we can't really pick our people."

"I don't know where the money is going to come from. They're not going to take care of the people as much as they promised, so I have a lot of compassion for everyone in that regard," Niedziela said.

More here:

Fish fry and bankruptcy: Buffalo's first Friday of Lent - WKBW-TV

Posted in Bankruptcy | Comments Off on Fish fry and bankruptcy: Buffalo’s first Friday of Lent – WKBW-TV