Photo: Kelly Sikkema/Unsplash.

Quantum physics is strange. At least, it is strange to us, because the rules of the quantum world, which govern the way the world works at the level of atoms and subatomic particles (the behaviour of light and matter, as the renowned physicist Richard Feynman put it), are not the rules that we are familiar with the rules of what we call common sense.

The quantum rules, which were mostly established by the end of the 1920s, seem to be telling us that a cat can be both alive and dead at the same time, while a particle can be in two places at once. But to the great distress of many physicists, let alone ordinary mortals, nobody (then or since) has been able to come up with a common-sense explanation of what is going on. More thoughtful physicists have sought solace in other ways, to be sure, namely coming up with a variety of more or less desperate remedies to explain what is going on in the quantum world.

These remedies, the quanta of solace, are called interpretations. At the level of the equations, none of these interpretations is better than any other, although the interpreters and their followers will each tell you that their own favored interpretation is the one true faith, and all those who follow other faiths are heretics. On the other hand, none of the interpretations is worse than any of the others, mathematically speaking. Most probably, this means that we are missing something. One day, a glorious new description of the world may be discovered that makes all the same predictions as present-day quantum theory, but also makes sense. Well, at least we can hope.

Meanwhile, I thought I might provide an agnostic overview of one of the more colorful of the hypotheses, the many-worlds, or multiple universes, theory. For overviews of the other five leading interpretations, I point you to my book, Six Impossible Things. I think youll find that all of them are crazy, compared with common sense, and some are more crazy than others. But in this world, crazy does not necessarily mean wrong, and being more crazy does not necessarily mean more wrong.

If you have heard of the Many Worlds Interpretation (MWI), the chances are you think that it was invented by the American Hugh Everett in the mid-1950s. In a way thats true. He did come up with the idea all by himself. But he was unaware that essentially the same idea had occurred to Erwin Schrdinger half a decade earlier. Everetts version is more mathematical, Schrdingers more philosophical, but the essential point is that both of them were motivated by a wish to get rid of the idea of the collapse of the wave function, and both of them succeeded.

Also read: If You Thought Quantum Mechanics Was Weird, Wait Till You Hear About Entangled Time

As Schrdinger used to point out to anyone who would listen, there is nothing in the equations (including his famous wave equation) about collapse. That was something that Bohr bolted on to the theory to explain why we only see one outcome of an experiment a dead cat or a live cat not a mixture, a superposition of states. But because we only detect one outcome one solution to the wave function that need not mean that the alternative solutions do not exist. In a paper he published in 1952, Schrdinger pointed out the ridiculousness of expecting a quantum superposition to collapse just because we look at it. It was, he wrote, patently absurd that the wave function should be controlled in two entirely different ways, at times by the wave equation, but occasionally by direct interference of the observer, not controlled by the wave equation.

Although Schrdinger himself did not apply his idea to the famous cat, it neatly resolves that puzzle. Updating his terminology, there are two parallel universes, or worlds, in one of which the cat lives, and in one of which it dies. When the box is opened in one universe, a dead cat is revealed. In the other universe, there is a live cat. But there always were two worlds that had been identical to one another until the moment when the diabolical device determined the fate of the cat(s). There is no collapse of the wave function. Schrdinger anticipated the reaction of his colleagues in a talk he gave in Dublin, where he was then based, in 1952. After stressing that when his eponymous equation seems to describe different possibilities (they are not alternatives but all really happen simultaneously), he said:

Nearly every result [the quantum theorist] pronounces is about the probability of this or that or that happening with usually a great many alternatives. The idea that they may not be alternatives but all really happen simultaneously seems lunatic to him, just impossible. He thinks that if the laws of nature took this form for, let me say, a quarter of an hour, we should find our surroundings rapidly turning into a quagmire, or sort of a featureless jelly or plasma, all contours becoming blurred, we ourselves probably becoming jelly fish. It is strange that he should believe this. For I understand he grants that unobserved nature does behave this waynamely according to the wave equation. The aforesaid alternatives come into play only when we make an observation which need, of course, not be a scientific observation. Still it would seem that, according to the quantum theorist, nature is prevented from rapid jellification only by our perceiving or observing it it is a strange decision.

In fact, nobody responded to Schrdingers idea. It was ignored and forgotten, regarded as impossible. So Everett developed his own version of the MWI entirely independently, only for it to be almost as completely ignored. But it was Everett who introduced the idea of the Universe splitting into different versions of itself when faced with quantum choices, muddying the waters for decades.

It was Hugh Everett who introduced the idea of the Universe splitting into different versions of itself when faced with quantum choices, muddying the waters for decades.

Everett came up with the idea in 1955, when he was a PhD student at Princeton. In the original version of his idea, developed in a draft of his thesis, which was not published at the time, he compared the situation with an amoeba that splits into two daughter cells. If amoebas had brains, each daughter would remember an identical history up until the point of splitting, then have its own personal memories. In the familiar cat analogy, we have one universe, and one cat, before the diabolical device is triggered, then two universes, each with its own cat, and so on. Everetts PhD supervisor, John Wheeler, encouraged him to develop a mathematical description of his idea for his thesis, and for a paper published in the Reviews of Modern Physics in 1957, but along the way, the amoeba analogy was dropped and did not appear in print until later. But Everett did point out that since no observer would ever be aware of the existence of the other worlds, to claim that they cannot be there because we cannot see them is no more valid than claiming that the Earth cannot be orbiting around the Sun because we cannot feel the movement.

Also read: What Is Quantum Biology?

Everett himself never promoted the idea of the MWI. Even before he completed his PhD, he had accepted the offer of a job at the Pentagon working in the Weapons Systems Evaluation Group on the application of mathematical techniques (the innocently titled game theory) to secret Cold War problems (some of his work was so secret that it is still classified) and essentially disappeared from the academic radar. It wasnt until the late 1960s that the idea gained some momentum when it was taken up and enthusiastically promoted by Bryce DeWitt, of the University of North Carolina, who wrote: every quantum transition taking place in every star, in every galaxy, in every remote corner of the universe is splitting our local world on Earth into myriad copies of itself. This became too much for Wheeler, who backtracked from his original endorsement of the MWI, and in the 1970s, said: I have reluctantly had to give up my support of that point of view in the end because I am afraid it carries too great a load of metaphysical baggage. Ironically, just at that moment, the idea was being revived and transformed through applications in cosmology and quantum computing.

Every quantum transition taking place in every star, in every galaxy, in every remote corner of the universe is splitting our local world on Earth into myriad copies of itself.

The power of the interpretation began to be appreciated even by people reluctant to endorse it fully. John Bell noted that persons of course multiply with the world, and those in any particular branch would experience only what happens in that branch, and grudgingly admitted that there might be something in it:

The many worlds interpretation seems to me an extravagant, and above all an extravagantly vague, hypothesis. I could almost dismiss it as silly. And yet It may have something distinctive to say in connection with the Einstein Podolsky Rosen puzzle, and it would be worthwhile, I think, to formulate some precise version of it to see if this is really so. And the existence of all possible worlds may make us more comfortable about the existence of our own world which seems to be in some ways a highly improbable one.

The precise version of the MWI came from David Deutsch, in Oxford, and in effect put Schrdingers version of the idea on a secure footing, although when he formulated his interpretation, Deutsch was unaware of Schrdingers version. Deutsch worked with DeWitt in the 1970s, and in 1977, he met Everett at a conference organized by DeWitt the only time Everett ever presented his ideas to a large audience. Convinced that the MWI was the right way to understand the quantum world, Deutsch became a pioneer in the field of quantum computing, not through any interest in computers as such, but because of his belief that the existence of a working quantum computer would prove the reality of the MWI.

This is where we get back to a version of Schrdingers idea. In the Everett version of the cat puzzle, there is a single cat up to the point where the device is triggered. Then the entire Universe splits in two. Similarly, as DeWitt pointed out, an electron in a distant galaxy confronted with a choice of two (or more) quantum paths causes the entire Universe, including ourselves, to split. In the DeutschSchrdinger version, there is an infinite variety of universes (a Multiverse) corresponding to all possible solutions to the quantum wave function. As far as the cat experiment is concerned, there are many identical universes in which identical experimenters construct identical diabolical devices. These universes are identical up to the point where the device is triggered. Then, in some universes the cat dies, in some it lives, and the subsequent histories are correspondingly different. But the parallel worlds can never communicate with one another. Or can they?

Deutsch argues that when two or more previously identical universes are forced by quantum processes to become distinct, as in the experiment with two holes, there is a temporary interference between the universes, which becomes suppressed as they evolve. It is this interaction that causes the observed results of those experiments. His dream is to see the construction of an intelligent quantum machine a computer that would monitor some quantum phenomenon involving interference going on within its brain. Using a rather subtle argument, Deutsch claims that an intelligent quantum computer would be able to remember the experience of temporarily existing in parallel realities. This is far from being a practical experiment. But Deutsch also has a much simpler proof of the existence of the Multiverse.

What makes a quantum computer qualitatively different from a conventional computer is that the switches inside it exist in a superposition of states. A conventional computer is built up from a collection of switches (units in electrical circuits) that can be either on or off, corresponding to the digits 1 or 0. This makes it possible to carry out calculations by manipulating strings of numbers in binary code. Each switch is known as a bit, and the more bits there are, the more powerful the computer is. Eight bits make a byte, and computer memory today is measured in terms of billions of bytes gigabytes, or Gb. Strictly speaking, since we are dealing in binary, a gigabyte is 230 bytes, but that is usually taken as read. Each switch in a quantum computer, however, is an entity that can be in a superposition of states. These are usually atoms, but you can think of them as being electrons that are either spin up or spin down. The difference is that in the superposition, they are both spin up and spin down at the same time 0 and 1. Each switch is called a qbit, pronounced cubit.

Using a rather subtle argument, Deutsch claims that an intelligent quantum computer would be able to remember the experience of temporarily existing in parallel realities.

Because of this quantum property, each qbit is equivalent to two bits. This doesnt look impressive at first sight, but it is. If you have three qbits, for example, they can be arranged in eight ways: 000, 001, 010, 011, 100, 101, 110, 111. The superposition embraces all these possibilities. So three qbits are not equivalent to six bits (2 x 3), but to eight bits (2 raised to the power of 3). The equivalent number of bits is always 2 raised to the power of the number of qbits. Just 10 qbits would be equivalent to 210 bits, actually 1,024, but usually referred to as a kilobit. Exponentials like this rapidly run away with themselves. A computer with just 300 qbits would be equivalent to a conventional computer with more bits than there are atoms in the observable Universe. How could such a computer carry out calculations? The question is more pressing since simple quantum computers, incorporating a few qbits, have already been constructed and shown to work as expected. They really are more powerful than conventional computers with the same number of bits.

Deutschs answer is that the calculation is carried out simultaneously on identical computers in each of the parallel universes corresponding to the superpositions. For a three-qbit computer, that means eight superpositions of computer scientists working on the same problem using identical computers to get an answer. It is no surprise that they should collaborate in this way, since the experimenters are identical, with identical reasons for tackling the same problem. That isnt too difficult to visualize. But when we build a 300-qbit machinewhich will surely happenwe will, if Deutsch is right, be involving a collaboration between more universes than there are atoms in our visible Universe. It is a matter of choice whether you think that is too great a load of metaphysical baggage. But if you do, you will need some other way to explain why quantum computers work.

Also read: The Science and Chaos of Complex Systems

Most quantum computer scientists prefer not to think about these implications. But there is one group of scientists who are used to thinking of even more than six impossible things before breakfast the cosmologists. Some of them have espoused the Many Worlds Interpretation as the best way to explain the existence of the Universe itself.

Their jumping-off point is the fact, noted by Schrdinger, that there is nothing in the equations referring to a collapse of the wave function. And they do mean thewave function; just one, which describes the entire world as a superposition of states a Multiverse made up of a superposition of universes.

Some cosmologists have espoused the Many Worlds Interpretation as the best way to explain the existence of the Universe itself.

The first version of Everetts PhD thesis (later modified and shortened on the advice of Wheeler) was actually titled The Theory of the Universal Wave Function. And by universal he meant literally that, saying:

Since the universal validity of the state function description is asserted, one can regard the state functions themselves as the fundamental entities, and one can even consider the state function of the whole universe. In this sense this theory can be called the theory of the universal wave function, since all of physics is presumed to follow from this function alone.

where for the present purpose state function is another name for wave function. All of physics means everything, including us the observers in physics jargon. Cosmologists are excited by this, not because they are included in the wave function, but because this idea of a single, uncollapsed wave function is the only way in which the entire Universe can be described in quantum mechanical terms while still being compatible with the general theory of relativity. In the short version of his thesis published in 1957, Everett concluded that his formulation of quantum mechanics may therefore prove a fruitful framework for the quantization of general relativity. Although that dream has not yet been fulfilled, it has encouraged a great deal of work by cosmologists since the mid-1980s, when they latched on to the idea. But it does bring with it a lot of baggage.

The universal wave function describes the position of every particle in the Universe at a particular moment in time. But it also describes every possible location of those particles at that instant. And it also describes every possible location of every particle at any other instant of time, although the number of possibilities is restricted by the quantum graininess of space and time. Out of this myriad of possible universes, there will be many versions in which stable stars and planets, and people to live on those planets, cannot exist. But there will be at least some universes resembling our own, more or less accurately, in the way often portrayed in science fiction stories. Or, indeed, in other fiction. Deutsch has pointed out that according to the MWI, any world described in a work of fiction, provided it obeys the laws of physics, really does exist somewhere in the Multiverse. There really is, for example, a Wuthering Heights world (but not a Harry Potter world).

That isnt the end of it. The single wave function describes all possible universes at all possible times. But it doesnt say anything about changing from one state to another. Time does not flow. Sticking close to home, Everetts parameter, called a state vector, includes a description of a world in which we exist, and all the records of that worlds history, from our memories, to fossils, to light reaching us from distant galaxies, exist. There will also be another universe exactly the same except that the time step has been advanced by, say, one second (or one hour, or one year).

But there is no suggestion that any universe moves along from one time step to another. There will be a me in this second universe, described by the universal wave function, who has all the memories I have at the first instant, plus those corresponding to a further second (or hour, or year, or whatever). But it is impossible to say that these versions of me are the same person. Different time states can be ordered in terms of the events they describe, defining the difference between past and future, but they do not change from one state to another. All the states just exist. Time, in the way we are used to thinking of it, does not flow in Everetts MWI.

John Gribbin is a Visiting Fellow in Astronomy at the University of Sussex, UK and the author of In Search of Schrdingers Cat, The Universe: A Biography and Six Impossible Thingsfrom which this article is excerpted.

Thisarticlehas been republished fromThe MIT Press Reader.

More here:

What Is the Many-Worlds Theory of Quantum Mechanics? - The Wire

- Max Planck Created Quantum Theory and Laid a New Foundation for Physics - Interesting Engineering - June 21st, 2020
- Do we need a 'Quantum Generation'? | TheHill - The Hill - June 21st, 2020
- 'Everything was centered around Sara, he was lost': Abhishek Kapoor on Sushant Singh Rajput after 'Kedarnath' - DNA India - June 21st, 2020
- RHOBH: What's with Denise Richards Husband Aaron Phypers? - Screen Rant - June 21st, 2020
- Restructuring cybersecurity with the power of quantum - TechRadar - June 21st, 2020
- In the atmosphere of Mars, a green glow offers scientists hints for future visits - NBCNews.com - June 21st, 2020
- Nano-motor of just 16 atoms runs at the boundary of quantum physics - New Atlas - June 20th, 2020
- Physics - The Period of the Universe's Clock - Physics - June 20th, 2020
- Why Gravity Is Not Like the Other Forces - Quanta Magazine - June 20th, 2020
- Toronto-based Association Quantum appoints Northern Hive PR - Business Up North - June 20th, 2020
- Physicists have proposed a new theory for Bose-Einstein condensates - Tech Explorist - June 20th, 2020
- Intricate Beauty, Quasiperiodic Structures, and the Cascade to Criticality - SciTechDaily - June 20th, 2020
- AI And The Parallel Universe - AI Daily - June 20th, 2020
- The stories a muon could tell - Symmetry magazine - June 20th, 2020
- Physicists Have Reversed Time on The Smallest Scale Using a Quantum Computer - ScienceAlert - June 13th, 2020
- Duckworth on Education: The Feynman Technique - EMSWorld - June 13th, 2020
- Sussex Uni physicist creates the fifth state of matter whilst working from home - The Tab - June 13th, 2020
- Beware of 'Theories of Everything' - Scientific American - June 13th, 2020
- Francesca Vidotto: The Quantum Properties of Space-Time - JSTOR Daily - June 1st, 2020
- MIT Student Probing Reality Through Physics, Philosophy and Writing - SciTechDaily - June 1st, 2020
- An Indian Origin Physicist Created the Fifth State of Matter from Her Living Room - News18 - June 1st, 2020
- Science and the humanities in the time of pandemic: better together - The Irish Times - June 1st, 2020
- Quantum Physicist Invents Code to Achieve the Impossible - Interesting Engineering - May 24th, 2020
- What does the Tenet title mean? Quantum mechanics and Einsteins theory - Explica - May 24th, 2020
- Covid 19 Pandemic: Quantum Computing Technologies Market 2020, Share, Growth, Trends And Forecast To 2025 - 3rd Watch News - May 24th, 2020
- Scientists Create a Cluster of 15 Trillion Entangled Atoms for the First Time Ever - Dual Dove - May 24th, 2020
- Teaching the next generation of quantum scientists | Harvard John A. Paulson School of Engineering and Applied Sciences - Harvard School of... - May 23rd, 2020
- Nasa discovers parallel universe where time runs backwards? Know the truth - Business Standard - May 23rd, 2020
- Company Hopes to Have Carbon Nanotube COVID-19 Detector Available in June - SciTechDaily - May 23rd, 2020
- The world is not as real as we think. - Patheos - May 23rd, 2020
- Physicists Just Built The First Working Prototype Of A 'Quantum Radar' - ScienceAlert - May 19th, 2020
- Quantum Brakes to Learn About the Forces Within Molecules - SciTechDaily - May 19th, 2020
- Armin Strom Discusses Resonance With PhD Of Quantum Physics And Watch Collector In An Easy-To-Understand Way (Video) - Quill & Pad - May 19th, 2020
- Embedded in the community: Outstanding physics student is a third-generation ASU student - ASU Now - May 19th, 2020
- 50 Years of Physical Review B: Solid Hits in Condensed Matter Research - Physics - May 19th, 2020
- Exploring the quantum field, from the sun's core to the Big Bang - MIT News - May 14th, 2020
- Registration Open for Inaugural IEEE International Conference on Quantum Computing and Engineering (QCE20) - thepress.net - May 14th, 2020
- 3 Simple Reasons Why Wolfram's New 'Fundamental Theory' Is Not Yet Science - Forbes - May 14th, 2020
- The Era of Anomalies - Physics - May 14th, 2020
- Exploring new tools in string theory - Space.com - May 14th, 2020
- Probing reality through physics, philosophy, and writing - MIT News - May 14th, 2020
- Recent Research Answers the Future of Quantum Machine Learning on COVID-19 - Analytics Insight - May 11th, 2020
- OK, WTF Are Virtual Particles and Do They Actually Exist? - VICE - May 11th, 2020
- Is string theory worth it? - Space.com - May 11th, 2020
- Finding the right quantum materials - MIT News - May 11th, 2020
- Cliff's Edge -- The Past Hypothesis - Adventist Review - May 11th, 2020
- Researchers Have Found a New Way to Convert Waste Heat Into Electricity to Power Small Devices - SciTechDaily - May 11th, 2020
- quantum mechanics | Definition, Development, & Equations ... - May 9th, 2020
- Physicists Criticize Stephen Wolfram's 'Theory of Everything' - Scientific American - May 9th, 2020
- Quantum Computing Market New Technology Innovations, Advancements and Global Development Analysis 2020 to 2025 - Cole of Duty - May 9th, 2020
- Physicist Brian Greene on learning to focus on the here and now - KCRW - May 9th, 2020
- Unified Field Theory: Einstein Failed, but What's the Future? - The Great Courses Daily News - May 9th, 2020
- A Discovery That Long Eluded Physicists: Superconductivity to the Edge - SciTechDaily - May 9th, 2020
- Why Self-Awareness and Communication Are Key for Self-Taught Players and Luthiers - Premier Guitar - May 9th, 2020
- Devs: Here's the real science behind the quantum computing TV show - New Scientist News - May 4th, 2020
- Raytheon Technologies CEO and CFO to present at the BofA Securities 2020 Transportation and Industrials Conference - PRNewswire - May 4th, 2020
- When quantum computing and AI collide - Raconteur - May 4th, 2020
- Wolfram Physics Project Seeks Theory Of Everything; Is It Revelation Or Overstatement? - Hackaday - May 4th, 2020
- The Cool Parts Show Reveals 3D Printing Reality and Potential - Modern Machine Shop - May 4th, 2020
- Caves elected to membership in the National Academy of Sciences - UNM Newsroom - May 4th, 2020
- Week of May 6 - Style Weekly - May 4th, 2020
- Nuclear Weapons Denied: How Hitler Failed to Even Get Close to the Bomb - The National Interest Online - May 4th, 2020
- New Theory of Everything Unites Quantum Mechanics with Relativity ... and Much More - Discover Magazine - April 24th, 2020
- A new kind of physics? Stephen Wolfram has a radical plan to build the universe from dots and lines - The Conversation AU - April 24th, 2020
- Creator of Wolfram Alpha Has a Bold Plan to Find a New Fundamental Theory of Physics - ScienceAlert - April 24th, 2020
- The Three Pictures of Reality - The Great Courses Daily News - April 24th, 2020
- Quantum Mechanics and horizon of impossible - Greater Kashmir - April 24th, 2020
- Henry Geller, Who Helped Rid TV of Cigarette Ads, Dies at 96 - The New York Times - April 24th, 2020
- Stephen Wolfram: The Path to a Fundamental Theory of Physics May Begin With a Hypergraph - Synced - April 24th, 2020
- How Human Design can help you parent in the time of COVID-19 - Thrive Global - April 24th, 2020
- Light and the quantum universe take center stage in 'Cosmos: Possible Worlds' - Space.com - April 11th, 2020
- Making Sense of the Science and Philosophy of Devs - The Ringer - April 11th, 2020
- We're Getting Closer to the Quantum Internet, But What Is It? - HowStuffWorks - March 31st, 2020
- How a new twist on quantum theory could solve its biggest mystery - New Scientist - March 30th, 2020
- Will String Theory Finally Be Put to the Experimental Test? - Scientific American - March 30th, 2020
- Devs: Alex Garland on Tech Company Cults, Quantum Computing, and Determinism - Den of Geek UK - March 30th, 2020
- Maximizing the efficiency of a quantum circuit - Tech Explorist - March 30th, 2020
- Onassis AiR Open Call 2020/21: The Infinite Rehearsal in Four Movements - Announcements - E-Flux - March 30th, 2020
- Planet Earth Report Hidden Quantum Secrets to Earths 100-Million-Light-Year Long Virosphere - The Daily Galaxy --Great Discoveries Channel - March 30th, 2020
- As I See It: I cant think of a better place to be right now - West Hawaii Today - March 30th, 2020