The Big Theoretical Physics Problem At The Center Of The ‘Muon g-2’ Puzzle – Forbes

Posted: April 15, 2021 at 6:36 am

The Muon g-2 electromagnet at Fermilab, ready to receive a beam of muon particles. This experiment ... [+] began in 2017 and will take data for a total of 3 years, reducing the uncertainties significantly. While a total of 5-sigma significance may be reached, the theoretical calculations must account for every effect and interaction of matter that's possible in order to ensure we're measuring a robust difference between theory and experiment.

In early April, 2021, the experimental physics community announced an enormous victory: they had measured the muons magnetic moment to unprecedented precision. With the extraordinary precision achieved by the experimental Muon g-2 collaboration, they were able to measure the spin magnetic moment of the muon not only wasn't 2, as originally predicted by Dirac, but was more precisely 2.00116592040. There's an uncertainty in the final two digits of 54, but not larger. Therefore, if the theoretical prediction differs by this measured amount by too much, there must be new physics at play: a tantalizing possibility that has justifiably excited a great many physicists.

The best theoretical prediction that we have, in fact, is more like 2.0011659182, which is significantly below the experimental measurement. Given that the experimental result strongly confirms a much earlier measurement of the same g-2 quantity for the muon by the Brookhaven E821 experiment, theres every reason to believe that the experimental result will hold up with better data and reduced errors. But the theoretical result is very much in doubt, for reasons everyone should appreciate. Lets help everyone physicists and non-physicists alike understand why.

The first Muon g-2 results from Fermilab are consistent with prior experimental results. When ... [+] combined with the earlier Brookhaven data, they reveal a significantly larger value than the Standard Model predicts. However, although the experimental data is exquisite, this interpretation of the result is not the only viable one.

The Universe, as we know it, is fundamentally quantum in nature. Quantum, as we understand it, means that things can be broken down into fundamental components that obey probabilistic, rather than deterministic, rules. Deterministic is what happens for classical objects: macroscopic particles such as rocks. If you had two closely-spaced slits and threw a small rock at it, you could take one of two approaches, both of which would be valid.

But for quantum objects, you cant do either of those. You could only compute a probability distribution for the various outcomes that could have occurred. You can either compute the probabilities of where things would land, or the probability of various trajectories having occurred. Any additional measurement you attempt to make, with the goal of gathering extra information, would alter the outcome of the experiment.

Electrons exhibit wave properties as well as particle properties, and can be used to construct ... [+] images or probe particle sizes just as well as light can. This compilation shows an electron wave pattern, which cumulatively emerges after many electrons are passed through a double slit.

Thats the quantum weirdness were used to: quantum mechanics. Generalizing the laws of quantum mechanics to obey Einsteins laws of special relativity led to Diracs original prediction for the muons spin magnetic moment: that there would be a quantum mechanical multiplicative factor applied to the classical prediction, g, and that g would exactly equal 2. But, as we all now know, g doesnt exactly equal 2, but a value slightly higher than 2. In other words, when we measure the physical quantity g-2, were measuring the cumulative effects of everything that Dirac missed.

So, what did he miss?

He missed the fact that its not just the individual particles that make up the Universe that are quantum in nature, but also the fields that permeate the space between those particles must also be quantum. This enormous leap from quantum mechanics to quantum field theory enabled us to calculate deeper truths that arent illuminated by quantum mechanics at all.

Magnetic field lines, as illustrated by a bar magnet: a magnetic dipole, with a north and south pole ... [+] bound together. These permanent magnets remain magnetized even after any external magnetic fields are taken away. If you 'snap' a bar magnet in two, it won't create an isolated north and south pole, but rather two new magnets, each with their own north and south poles. Mesons 'snap' in a similar manner.

The idea of quantum field theory is simple. Yes, you still have particles that are charged in some variety:

but they dont just create fields around them based on things like their position and momentum like they did under either Newtons/Einsteins gravity or Maxwells electromagnetism.

If things like the position and momentum of each particle have an inherent quantum uncertainty associated with them, then what does that mean for the fields associated with them? It means we need a new way to think about fields: a quantum formulation. Although it took decades to get it right, a number of physicists independently figured out a successful method of performing the necessary calculations.

A visualization of QCD illustrates how particle/antiparticle pairs pop out of the quantum vacuum for ... [+] very small amounts of time as a consequence of Heisenberg uncertainty. If you have a large uncertainty in energy (E), the lifetime (t) of the particle(s) created must be very short.

What many people expected to happen although it doesnt quite work this way is that wed be able to simply to fold all the necessary quantum uncertainties into the charged particles that generate these quantum fields, and that would allow us to compute the field behavior. But that misses a crucial contribution: the fact that these quantum fields exist, and in fact permeate all of space, even where there are no charged particles giving rise to the corresponding field.

Electromagnetic fields exist even in the absence of charged particles, for instance. You can imagine waves of all different wavelengths permeating all of space, even when no other particles are present. Thats fine from a theoretical perspective, but wed want experimental proof that this description was correct. We already have it in a couple of forms.

As electromagnetic waves propagate away from a source that's surrounded by a strong magnetic field, ... [+] the polarization direction will be affected due to the magnetic field's effect on the vacuum of empty space: vacuum birefringence. By measuring the wavelength-dependent effects of polarization around neutron stars with the right properties, we can confirm the predictions of virtual particles in the quantum vacuum.

In fact, the experimental effects of quantum fields have been felt since 1947, when the Lamb-Retherford experiment demonstrated their reality. The debate is no longer over whether:

But what we do have to recognize is as in the case with many mathematical equations that we know how to write down that we cannot compute everything with the same straightforward, brute-force approach.

The way we perform these calculations in quantum electrodynamics (QED), for example, is we do whats called a perturbative expansion. We imagine what it would be like for two particles to interact like an electron and and electron, a muon and a photon, a quark and another quark, etc. and then we imagine every possible quantum field interaction that could happen atop that basic interaction.

Today, Feynman diagrams are used in calculating every fundamental interaction spanning the strong, ... [+] weak, and electromagnetic forces, including in high-energy and low-temperature/condensed conditions. The electromagnetic interactions, shown here, are all governed by a single force-carrying particle: the photon.

This is the idea of quantum field theory thats normally encapsulated by their most commonly-seen tool to represent calculational steps that must be taken: Feynman diagrams, as above. In the theory of quantum electrodynamics where charged particles interact via the exchange of photons, and those photons can then couple through any other charged particles we perform these calculations by:

Quantum electrodynamics is one of the many field theories we can write down where this approach, as we go to progressively higher loop orders in our calculations, gets more and more accurate the more we calculate. The processes at play in the muons (or electrons, or taus) spin magnetic moment have been calculated beyond five-loop order recently, and theres very little uncertainty there.

Through a herculean effort of the part of theoretical physicists, the muon magnetic moment has been ... [+] calculated up to five-loop order. The theoretical uncertainties are now at the level of just one part in two billion. This is a tremendous achievement that can only be made in the context of quantum field theory, and is heavily reliant on the fine structure constant and its applications.

The reason this strategy works so well is because electromagnetism has two important properties to it.

The combination of these factors guarantees that we can calculate the strength of any electromagnetic interaction between any two particles in the Universe more and more accurately by adding more terms to our quantum field theory calculations: by going to higher and higher loop-orders.

Electromagnetism, of course, isnt the only force that matters when it comes to Standard Model particles. Theres also the weak nuclear force, which is mediated by three force-carrying particles: the W-and-Z bosons. This is a very short-range force, but fortunately, the strength of the weak coupling is still small and the weak interactions are suppressed by large masses possessed by the W-and-Z bosons. Even though its a little more complicated, the same method of expanding to higher-order loop diagrams works for computing the weak interactions, too. (The Higgs is also similar.)

At high energies (corresponding to small distances), the strong force's interaction strength drops ... [+] to zero. At large distances, it increases rapidly. This idea is known as 'asymptotic freedom,' which has been experimentally confirmed to great precision.

But the strong nuclear force is different. Unlike all of the other Standard Model interactions, the strong force gets weaker at short distances rather than stronger: it acts like a spring rather than like gravity. We call this property asymptotic freedom: where the attractive or repulsive force between charged particles approaches zero as they approach zero distance from one another. This, coupled with the large coupling strength of the strong interaction, makes this common loop-order method wildly inappropriate for the strong interaction. The more diagrams you calculate, the less accurate you get.

This doesnt mean we have no recourse at all in making predictions for the strong interactions, but it means we have to take a different approach to our normal one. Either we can try to calculate the contributions of the particles and fields under the strong interaction non-perturbatively such as via the methods of Lattice QCD (where QCD stands for quantum chromodynamics, or the quantum field theory governing the strong force) or you can try and use the results from other experiments to estimate the strength of the strong interactions under a different scenario.

As computational power and Lattice QCD techniques have improved over time, so has the accuracy to ... [+] which various quantities about the proton, such as its component spin contribtuions, can be computed.

If what we were able to measure, from other experiments, was exactly the thing we dont know in the Muon g-2 calculation, there would be no need for theoretical uncertainties; we could just measure the unknown directly. If we didnt know a cross-section, a scattering amplitude, or a particular decay property, those are things that particle physics experiments are exquisite at determining. But for the needed strong force contributions to the spin magnetic moment of the muon, these are properties that are indirectly inferred from our measurements, not directly measured. Theres always a big danger that a systematic error is causing the mismatch between theory and observation from our current theoretical methods.

On the other hand, the Lattice QCD method is brilliant: it imagines space as a grid-like lattice in three dimensions. You put the two particles down on your lattice so that they're separated by a certain distance, and then they use a set of computational techniques to add up the contribution from all the quantum fields and particles that we have. If we could make the lattice infinitely large, and the spacing between the points on the lattice infinitely small, we'd get the exact answer for the contributions of the strong force. Of course, we only have finite computational power, so the lattice spacing can't go below a certain distance, and the size of the lattice doesn't go beyond a certain range.

There comes a point where our lattice gets large enough and the spacing gets small enough, however, that well get the right answer. Certain calculations have already yielded to Lattice QCD that havent yielded to other methods, such as the calculations of the masses of the light mesons and baryons, including the proton and neutron. After many attempts at predicting what the strong forces contributions to the g-2 measurement of the muon ought to be over the past few years, the uncertainties are finally dropping to become competitive with the experimental ones. If the latest group to perform that calculation has finally gotten it right, there is no longer a tension with the experimental results.

The R-ratio method (red) for calculating the muon's magnetic moment has led many to note the ... [+] mismatch with experiment (the 'no new physics' range). But recent improvements in Lattice QCD (green points, and particularly the top, solid green point) not only have reduced the uncertainties substantially, but favor an agreement with experiment and a disagreement with the R-ratio method.

Assuming that the experimental results from the Muon g-2 collaboration hold up and theres every reason to believe they will, including the solid agreement with the earlier Brookhaven results all eyes will turn towards the theorists. We have two different ways of calculating the expected value of the muons spin magnetic moment, where one agrees with the experimental values (within the errors) and the other does not.

Will the Lattice QCD groups all converge on the same answer, and demonstrate that not only do they know what theyre doing, but that theres no anomaly after all? Or will Lattice QCD methods reveal a disagreement with the experimental values, the same way that they presently disagree with the other theoretical method we have that presently disagrees so significantly with the experimental values we have: of using experimental inputs instead of theoretical calculations?

Its far too early to say, but until we have a resolution to this important theoretical issue, we wont know what it is thats broken: the Standard Model, or the way were presently calculating the same quantities were measuring to unparalleled precisions.

Follow this link:

The Big Theoretical Physics Problem At The Center Of The 'Muon g-2' Puzzle - Forbes

Related Post